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1 . Introduction

Let B =(B, ||.||) be a Banach space and C be a nonempty
subset of B. For x ∈ B, set

d(x,C ) = inf{||x− y|| : y ∈ C }

and
D(x,C ) = sup{||x− y|| : y ∈ C }.

We shall denote the set of all nonempty and compact
subsets of C by K (C ). Assuming B as having two
bounded subsets namely, A and B∗, the Hausdorff dance
between them is defined as:

H (A ,B∗) = max

{

sup
x∈A

d(x,B∗), sup
y∈B∗

d(A ,y)

}

.

H (·, ·) is known as the Hausdorff metric on the set
K (C ). A multi-valued mapping ℘ : C → K (C ) is said
to be nonexpansive if

H (℘x,℘y)≤ ||x− y||,

for each x,y ∈ C . Throughout this paper, N stands for
the set of natural numbers, and R stands for the set of
real numbers. A point q ∈ C is said to be a fixed point of
℘ : C →K (C ) if q∈℘q and is said to be an endpoint (or
a stationary point) of ℘ : C → K (C ) if ℘q = {q}. In this
article, we will denote the set of all endpoints and the set
of all fixed points of ℘ by E℘ and F℘ respectively. Note
that, a multi-valued mapping ℘ : C → K (C ) is said to
satisfy the endpoint condition [1] if E℘ = F℘.

The existence of fixed points for nonexpansive
mappings in Banach spaces was independently studied by
Browder [1], Gohde [2] and Kirk [3] in 1965. They
showed that every nonexpansive mapping defined on a
bounded closed convex subset of a uniformly convex
Banach space always has a fixed point. One of the
successful iteration methods for finding fixed points of
nonexpansive mappings was given by Ishikawa [4] in
1974.

Different iteration processes have been developed to
approximate the fixed points of multi-valued mappings. It
should be noted that Sastry and Babu [5] proved Mann
and Ishikawa-type convergence results for multi-valued
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nonexpansive mappings in the framework of Hilbert
spaces. Panyanak [6] extended the results of Sastry and
Babu to the framework of uniformly convex Banach
spaces. Actually, Panyanak showed some results using
Ishikawa-type iteration process without the endpoint
condition. Song and Wang [7] proved convergence for
Mann and Ishikawa iterates of multivalued nonexpansive
mapping ℘ under some appropriate conditions, which
revises a gap in Panyanak [6] and gave an affirmative
answer to Panyanak’s open question . Song and Wang [7]
reconstructed the iteration process to overcome the
limitations in Panyanak’s Results. After this, Shahzad and
Zegeye [8] constructed an iteration scheme which
removes a restrictive condition in Song and Wang results.

Shahzad and Zegeye [8] also relaxed compactness of
the domain of ℘ and constructed an iteration scheme
which removes the restriction of ℘ namely,
“℘(υ) = υ for anyυ ∈ F℘”. Note that, their first type
iteration also requires the endpoint condition. For a
multi-valued mapping ℘ : C → K (C ), if q ∈ C is an
endpoint of ℘, then q is also a fixed point of ℘; but the
converse is not always true (see; Example 1, [9]). We
refer the reader to relevant articles ([10] - [16]) for the
existence of the findings of the multi-valued mapping
endpoints in the context of the Banach spaces. Panyanak
[17] recently used the Ishikawa-type iterative procedure
to estimate the endpoints of multi-valued, nonexpansive
mappings in the Banach space. Agarwal et al. [18] have
introduced an iteration process called S−iteration
process, which is independent of both Mann [19] and
Ishikawa iterations, for single-valued mappings in Banach
spaces. They proved that the rate of convergence of
iteration process is the same as Picard iteration process
and faster than Mann iteration process for the class of
contraction mappings. Later, it was observed that this
scheme also converges faster than Ishikawa iteration
process. For more details and some recent literature on
S−iteration process (see; [20] - [26]).

2 Preliminaries

Definition 1. A Banach space B is said to be uniformly

convex if for each α ∈ (0,2], there is an existence of β > 0
such that for a,b∈B with ‖a‖≤ 1, ‖b‖≤ 1 and ‖a−b‖≥
α , we have

∣

∣

∣

∣

∣

∣

∣

∣

a+ b

2

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1−β .

Definition 2. ([27]) A Banach space B is said to have
Opial’s property if for each sequence {xη} ∈ B which
weakly converges to x ∈ B and for every y ∈ B−{x}, it
follows that

limsup
η→∞

||xη − x|| ≤ limsup
η→∞

||xη − y||.

Definition 3. Let C be a nonempty subset of a Banach

space B. A mapping ℘ : C → K (C ) is said to satisfy

condition (J) if there is a non-decreasing function

g : [0,∞) → [0,∞) with g(0) = 0, g(t) ≥ 0 for t ∈ (0,∞)
such that

D(x,℘x)≥ g(d(x,E℘)),

for each x ∈ C .

The mapping ℘ is called semicompact if for any sequence
{xη} in C such that

lim
η→∞

D(xη ,℘(xη)) = 0

There is an existence of a subsequence {xηk
} of {xη} and

s ∈ C such that limk→∞ xηk
= 0.

Definition 4. Let C be a nonempty subset of a Banach

space B. A sequence {xη} in B is called Fejer-monotone

with respect to C if

||xη+1 − c|| ≥ ||xη − c||,

for each c ∈ C and n ∈ N .

Lemma 1. A Banach space B is uniformly convex if and
only if for any number k > 0, and there is a strictly
increasing and continuous function ψ : [0,∞) → [0,∞)
with ψ(0) = 0 such that

||αx+(1−α)y||2 ≤ α||x||2 +(1−α)||y||2

−α(1−α)ψ(||x− y||),

for each x,y ∈ B with ||x|| ≤ k, ||y|| ≤ k, and
α ∈ [0,1].

Definition 5. If ℘ is a multi-valued mapping defined from

C to K (C ), then the following statements hold.

1. d(x,℘x) = 0 ⇐⇒ x is a fixed point of ℘.
2. D(x,℘x) = 0 ⇐⇒ x is an endpoint of ℘.
3. If ℘ is nonexpansive, then the mapping h : C → R

defined by h(x) = D(x,℘x) is continuous.

Lemma 2. ([28]) Let ℘ be a nonempty closed and convex
subset of a uniformly convex Banach space and
℘ : C → K (C ) be a multi-valued nonexpansive
mapping. Then, we have

{xη} ⊂ C ,

xη ⇀ x

D(xη ,℘xη)→ 0 =⇒ x ∈ E℘.

The following fact is needed and can be found in [29].
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Proposition 1. Let C be a nonempty closed subset of a
Banach space. Let {xη} be a Fejer-monotone sequence
with respect to C . Then, {xη} converges (strongly) to the
point of C if and only if

lim
η→∞

d(xη ,C ) = 0.

The following Lemma will be useful in our subsequent
discussion and are easy to establish.

Lemma 3. ([8]) Considering {η0
η} and {η1

η} being real
sequences, wherein

1.0 ≤ η0
η η1

η < 1,

2.η1
η → 0 as n → ∞,

3.∑η0
ηη1

η = ∞.

Let there is a real sequence {η2
η} which is non negative

and exists in such a manner that ∑η0
ηη1

η (1 − η1
η )η

2
η is

bounded, then the sequence {η2
η} has a null

sub-sequence.

3 Results

It is already proved that Picard iteration converges faster
than Mann iteration for a class of quasi-contractive
operators [1]. Apart from Mann and Ishikawa, there is
existence of many iteration algorithms with better
convergence rate. Also many iteration algorithms are
defined in the setting of more generalized mappings. It is
also important to note that many iteration algorithms are
special case of some pre-exiting schemes. Inspired and
motivated by the results of existing three-step iteration
algorithms, we introduce standard three-step iteration
algorithm namely, nv iteration algorithm which is a
general defining of many existing iteration algorithms.
The standard three-step scheme is defined as follows:

Let B be a normed linear space, C be a nonempty convex
subset of B and ℘ : C → K (C ) be a map. For any
υ0 ∈ C , we have

ℓη = ε0
η υη + τ0

ηυ ′
η + δ 0

ητη + ς0
ητ ′η ; (1)

τη = ε1
η υη + τ1

ηυ ′
η + δ 1

ηℓη + ς1
ηℓ

′
η ;

υη+1 = ε2
η υη + τ2

ηυ ′
η + δ 2

ητη + ς2
ητ ′η +ωηℓη +κηℓ

′
η ,

such that ε0
η + τ0

η + δ 0
η + ς0

η = 1, ε1
η + τ1

η + δ 1
η + ς1

η = 1

and ε2
η + τ2

η + δ 2
η +ωη + κη = 1. Also υ ′

η ∈ ℘υη such

that ||υη − υ ′
η || = D(υη ,℘υη), τ ′η ∈ ℘τη such that

||τη − τ ′η || = D(τη ,℘τη) and ℓ′η ∈ ℘ℓη such that

||ℓη − ℓ′η ||= D(ℓη ,℘ℓη).

In this section, we will study convergence analysis of
sequence generated by a standard three-step iteration
process for Suzuki generalized nonexpansive mappings in
the setting of uniformly convex Banach spaces.

Lemma 4. Let C be a nonempty closed convex subset of
a Banach space B, and let mapping ℘ : C → K (C ) be a
multi-valued nonexpansive mapping with E℘ 6= /0. For
arbitrarily chosen υ0 ∈ C , let the sequence {υη} be
generated by nv iteration algorithm (1) with the condition
that

(

(ε1
η + τ1

η)+ (δ 1
η + ς1

η)(ε
0
η + τ0

η)

1− (δ 1
η + ς1

η)(δ
0
η + ς0

η)

)

≤ 1 (2)

and

(ε2
η + τ2

η + δ 2
η + ς2

η +(ωη +κη)(ε
0
η + τ0

η + δ 0
η + ς0

η))≤ 1,

then limη→∞ ||υη −υ∗|| exists for any υ∗ ∈ E℘.

Proof. Let υ∗ ∈ E℘ and n ∈ N , we have

‖ℓη −υ∗‖= ‖ε0
η υη + τ0

ηυ ′
η + δ 0

ητη + ς0
ητ ′η −υ∗‖

≤ ε0
η ||υη −υ∗||+ τ0

ηd(υ ′
η ,℘υ∗)

+ δ 0
η ||τη −υ∗||+ ς0

ηd(τ ′η ,℘υ∗)

≤ ε0
η ||υη −υ∗||+ τ0

ηH (℘υη ,℘υ∗)

+ δ 0
η ||τη −υ∗||+ ς0

ηH (℘τη ,℘υ∗)

≤ ε0
η ||υη −υ∗||+ τ0

η ||υη −υ∗||

+ δ 0
η ||τη −υ∗||+ ς0

η ||τη −υ∗||

= (ε0
η + τ0

η)||υη −υ∗||+(δ 0
η + ς0

η)

× (||τη −υ∗||).

Also,

‖τη −υ∗‖= ‖ε1
η υη + τ1

ηυ ′
η + δ 1

ηℓη + ς1
ηℓ

′
η −υ∗‖

≤ ε1
η ||υη −υ ∗ ||+ τ1

ηd(υ ′
η ,℘υ∗)

+ δ 1
η ||ℓη −υ∗||+ ς1

ηd(ℓ′η ,℘υ∗)

≤ ε1
η ||υη −υ ∗ ||+ τ1

ηH (℘υη ,℘υ∗)

+ δ 1
η ||ℓη −υ∗||+ ς1

ηH (℘ℓη ,℘υ∗)

≤ ε1
η ||υη −υ∗||+ τ1

η ||υη −υ∗||

+ δ 1
η ||ℓη −υ∗||+ ς1

η ||ℓη −υ∗||

= (ε1
η + τ1

η)||υη −υ∗||+(δ 1
η + ς1

η)

× (||ℓη −υ∗||).
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Using the value of ‖ℓη −υ∗‖, we have

‖τη −υ∗‖ ≤ (ε1
η + τ1

η)||υη −υ∗||+(δ 1
η + ς1

η)

× ((ε0
η + τ0

η)||υη −υ∗||+(δ 0
η + ς0

η)

×||τη −υ∗||)

≤ ((ε1
η + τ1

η)+ (δ 1
η + ς1

η)(ε
0
η + τ0

η))

×||υη −υ∗||+(δ 1
η + ς1

η)(δ
0
η + ς0

η)

×||τη −υ∗||

‖τη −υ∗‖ ≤

(

(ε1
η + τ1

η)+ (δ 1
η + ς1

η)(ε
0
η + τ0

η)

1− (δ 1
η + ς1

η)(δ
0
η + ς0

η)

)

× (||υη −υ∗||).

Since

(

(ε1
η + τ1

η)+ (δ 1
η + ς1

η)(ε
0
η + τ0

η)

1− (δ 1
η + ς1

η)(δ
0
η + ς0

η)

)

≤ 1,

we have

||τη −υ∗‖ ≤ ||υη −υ∗||.

Now,

||υη+1 −υ∗|| ≤ ||ε2
η υη + τ2

ηυ ′
η + δ 2

ητη + ς2
ητ ′η

+ωηℓη +κηℓ
′
η −υ∗||

≤ ε2
η ||υη −υ∗||+ τ2

ηd(υ ′
η ,℘υ∗)

+ δ 2
η ||τη −υ∗||+ ς2

ηd(τ ′η ,℘υ∗)

+ωη ||ℓη −υ∗||+κηd(ℓ′η ,℘υ∗)

≤ ε2
η ||υη −υ∗||+ τ2

ηH (℘υη ,℘υ∗)

+ δ 2
η ||τη −υ∗||+ ς2

ηH (℘τη ,℘υ∗)

+ωη ||ℓη −υ∗||+κηH (℘ℓη ,℘υ∗)

≤ ε2
η ||υη −υ∗||+ τ2

η ||υη −υ∗||

+ δ 2
η ||τη −υ∗||+ ς2

η ||τη −υ∗||

+ωη ||ℓη −υ∗||+κη ||ℓη −υ∗||

≤ (ε2
η + τ2

η)||υη −υ∗||

+(δ 2
η + ς2

η)||τη −υ∗||

+(ωη +κη)||ℓη −υ∗||.

Since

||τη −υ∗|| ≤ ||υη −υ∗||,

we have

||υη+1 −υ∗|| ≤ (ε2
η + τ2

η + δ 2
η + ς2

η)

× (||υη −υ∗||)+ (ωη +κη)

× (||ℓη −υ∗||),

on substituting

||ℓη −υ∗||= (ε0
η + τ0

η)||υη −υ∗||

+(δ 0
η + ς0

η)||τη −υ∗||,

we have

||υη+1 −υ∗|| ≤ (ε2
η + τ2

η + δ 2
η + ς2

η)||υη −υ∗||

+(ωη +κη)((ε
0
η + τ0

η)||υη −υ∗||

+(δ 0
η + ς0

η)||τη −υ∗||)

≤ (ε2
η + τ2

η + δ 2
η + ς2

η)||υη −υ∗||

+(ωη +κη)((ε
0
η + τ0

η)+ (δ 0
η + ς0

η))

×||υη −υ∗||

= (ε2
η + τ2

η + δ 2
η + ς2

η +(ωη +κη)

× (ε0
η + τ0

η + δ 0
η + ς0

η))||υη −υ∗||.

Also, it is given that

(ε2
η + τ2

η + δ 2
η + ς2

η+(ωη +κη)

×(ε0
η + τ0

η + δ 0
η + ς0

η))≤ 1,

we have

||υη+1 −υ∗|| ≤ ||υη −υ∗||.

This implies that {||υη − υ∗||} is bounded and
non-increasing for all υ∗ ∈ f℘. Hence, limη→∞ ||υη −υ∗||
exists, as required.

Theorem 1. Let C be a uniformly closed and convex
subset satisfying Opial’s property of a uniformly convex
Banach space B, and let a mapping ℘ : C → K (C ) be a
multi-valued nonexpansive mapping. For arbitrarily
chosen υ0 ∈ C , let the sequence {υη} be generated by nv

iteration algorithm (1) for all η ≥ 1, where
{ε i

η},{τ i
η},{δ i

η}, {ς i
η} for i = 0,1,2 also ωη and κη are

sequences of real numbers in [a,b], for some a,b with
0 < a ≤ b < 1. Then, for E℘ 6= /0, {υη} converges weakly
to an element of E℘.

Proof. Since E℘ 6= /0, let υ∗ ∈ E℘. Using Lemma 2.1, there
is an existence of ψ : [0,∞)→ [0,∞) with ψ(0) = (0) such
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that for υ∗ ∈ E℘ and n ∈ N , we have

‖ℓη −υ∗‖
2 = ‖ε0

η υη + τ0
ηυ ′

η + δ 0
ητη + ς0

ητ ′η −υ∗‖
2

≤ ε0
η ||

2υη −υ∗||
2 + τ0

ηd2(υ ′
η ,℘υ∗)

+ δ 0
η ||τη −υ∗||

2 + ς0
ηd2(τ ′η ,℘υ∗)ε

0
η τ0

η δ 0

× (1− (ε0
η + τ0

η + δ 0
η))

×ψ(||(υη +υ ′
η + τη)− τ ′η ||)

≤ ε0
η ||υη −υ∗||+ τ0

ηH
2(℘υη ,℘υ∗)

+ δ 0
η ||τη −υ∗||+ ς0

ηH
2(℘τη ,℘υ∗)

≤ ε0
η ||υη −υ∗||

2 + τ0
η ||υη −υ∗||

2

+ δ 0
η ||τη −υ∗||

2 + ς0
η ||τη −υ∗||

2

which implies

‖ℓη −υ∗‖
2 = (ε0

η + τ0
η)||υη −υ∗||

2

+(δ 0
η + ς0

η)||τη −υ∗||
2.

Also,

‖τη −υ∗‖
2 = ‖ε1

η υη + τ1
ηυ ′

η + δ 1
ηℓη + ς1

ηℓ
′
η −υ∗‖

2

≤ ε1
η ||υη −υ∗||

2 + τ1
ηd2(υ ′

η ,℘υ∗)

+ δ 1
η ||ℓη −υ∗||

2 + ς1
ηd2(ℓ′η ,℘υ∗)

− ε1
ητ1

η δ 1(1− (ε1
η + τ1

η + δ 1
η))

×ψ(||(υη +υ ′
η + ℓη)− ℓ′η ||)

≤ ε1
η ||υη −υ∗||

2 + τ1
ηd2(υ ′

η ,℘υ∗)

+ δ 1
η ||ℓη −υ∗||

2 + ς1
ηd2(ℓ′η ,℘υ∗)

≤ ε1
η ||υη −υ∗||

2 + τ1
ηH

2(℘υη ,℘υ∗)

+ δ 1
η ||ℓη −υ∗||

2 + ς1
ηH

2(℘ℓη ,℘υ∗)

≤ ε1
η ||υη −υ∗||

2 + τ1
η ||υη −υ∗||

2

+ δ 1
η ||ℓη −υ∗||

2 + ς1
η ||ℓη −υ∗||

2

= (ε1
η + τ1

η)||υη −υ∗||
2 +(δ 1

η + ς1
η)||ℓη −υ∗||

2.

Using the value of ‖ℓη −υ∗‖, we have

‖τη −υ∗‖
2 ≤ (ε1

η + τ1
η)||υη −υ∗||

2

+(δ 1
η + ς1

η)× ((ε0
η + τ0

η)||υη −υ∗||
2

+(δ 0
η + ς0

η ×||τη −υ∗||
2)

≤ ((ε1
η + τ1

η)+ (δ 1
η + ς1

η)(ε
0
η + τ0

η))

×||υη −υ∗||
2 +(δ 1

η + ς1
η)(δ

0
η + ς0

η)

×||τη −υ∗||
2

‖τη −υ∗‖
2 ≤

(

ε1
η + τ1

η +(δ 1
η + ς1

η)(ε
0
η + τ0

η)

1− (δ 1
η + ς1

η)(δ
0
η + ς0

η)

)

×||υη −υ∗||
2.

Since
(

ε1
η + τ1

η +(δ 1
η + ς1

η)(ε
0
η + τ0

η)

1− (δ 1
η + ς1

η)(δ
0
η + ς0

η)

)

≤ 1,

we have

||τη −υ∗‖ ≤ ||υη −υ∗||.

Now,

||υη+1 −υ∗||
2 ≤ ||ε2

η υη + τ2
ηυ ′

η + δ 2
ητη

+ ς2
ητ ′η +ωηℓη +κηℓ

′
η −υ∗||

2

≤ ε2
η ||υη −υ∗||

2 + τ2
ηd(υ ′

η ,℘υ∗||

+ δ 2
η ||

τ
η −υ∗||

2 + ς2
ηd(τ ′η ,℘υ∗)

+ωη ||ℓη −υ∗||
2 +κηd2(ℓ′η ,℘υ∗)

− ε2
ητ2

η δ 2
ης2

η ωη

× (1− (ε2
η + τ2

η + δ 2
η + ς2

η +ωη))

×ψ(||(υη +υ ′
η + τη + τ ′η + ℓη)− ℓ′η ||)

≤ ε2
η ||υη −υ∗||

2 + τ2
ηH

2(℘υη ,℘υ∗)

+ δ 2
η ||τη −υ∗||

2 + ς2
ηH

2(℘τη ,℘υ∗)

+ωη ||ℓη −υ∗||
2 +κηH

2(℘ℓη ,℘υ∗)

− ε2
ητ2

η δ 2
ης2

η ωη

× (1− (ε2
η + τ2

η + δ 2
η + ς2

η +ωη))

×ψ(||(υη +υ ′
η + τη + τ ′η + ℓη)− ℓ′η ||)

≤ ε2
η ||υη −υ∗||

2 + τ2
η ||υη −υ∗||

2

+ δ 2
η ||τη −υ∗||+ ς2

η ||τη −υ∗||
2

+ωη ||ℓη −υ∗||
2 +κη ||ℓη −υ∗||

2

− ε2
ητ2

η δ 2
ης2

η ωη

× (1− (ε2
η + τ2

η + δ 2
η + ς2

η +ωη))×

ψ(||(υη +υ ′
η + τη + τ ′η + ℓη)− ℓ′η ||)

≤ (ε2
η + τ2

η)

(||υη −υ∗||
2)+ (δ 2

η + ς2
η)

×||τη −υ∗||
2 +(ωη +κη)||ℓη −υ∗||

2

− (1− (ε2
η + τ2

η + δ 2
η + ς2

η +ωη))×

ψ(||(υη +υ ′
η + τη + τ ′η + ℓη)− ℓ′η ||).

Since

||τη −υ∗||
2 ≤ ||υη −υ∗||

2,

we have

||υη+1 −υ∗||
2 ≤ (ε2

η + τ2
η + δ 2

η + ς2
η)× (||υη −υ∗||

2)

+ (ωη +κη)||ℓη −υ∗||
2 − ε2

ητ2
η δ 2

ης2
η ωη

× (1− (ε2
η + τ2

η + δ 2
η + ς2

η +ωη))

×ψ(||(υη +υ ′
η + τη + τ ′η + ℓη)− ℓ′η ||)
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on substituting

||ℓη −υ∗||
2 = (ε0

η + τ0
η)||υη −υ∗||

2

+(δ 0
η + ς0

η)||τη −υ∗||
2,

we have

||υη+1 −υ∗||
2 ≤ (ε2

η + τ2
η + δ 2

η + ς2
η)||υη −υ∗||

2

+(ωη +κη)((ε
0
η + τ0

η)||υη −υ∗||
2

+(δ 0
η + ς0

η)×||τη −υ∗||
2)

− ε2
ητ2

η δ 2
ης2

η ωη

× (1− (ε2
η + τ2

η + δ 2
η + ς2

η +ωη))×

ψ(||(υη +υ ′
η + τη + τ ′η + ℓη)− ℓ′η ||)

≤ (ε2
η + τ2

η + δ 2
η + ς2

η)||υη −υ∗||
2

+(ωη +κη)((ε
0
η + τ0

η)+ (δ 0
η

+ ς0
η))×||υη −υ∗||

2

and hence, we have

= (ε2
η + τ2

η + δ 2
η + ς2

η +(ωη +κη)

× (ε0
η + τ0

η + δ 0
η + ς0

η))||υη −υ∗||
2 − ε2

ητ2
η δ 2

ης2
η ωη

× (1− (ε2
η + τ2

η + δ 2
η + ς2

η +ωη))

×ψ(||(υη +υ ′
η + τη + τ ′η + ℓη)− ℓ′η ||).

Also, it is given that

(ε2
η + τ2

η + δ 2
η + ς2

η

+((ωη +κη)× (ε0
η + τ0

η + δ 0
η + ς0

η))≤ 1

we have

||υη+1 −υ∗||
2 ≤ ||υη −υ∗||

2 − ε2
ητ2

η δ 2
η ς2

η ωη

× (1− (ε2
η + τ2

η + δ 2
η + ς2

η +ωη))

×ψ(||(υη +υ ′
η + τη + τ ′η + ℓη)− ℓ′η ||).

This follows

∞

∑
η=1

ξ 5(1− (ε2
η + τ2

η + δ 2
η + ς2

η +ωη))

×ψ ||(υη +υ ′
η + τη + τ ′η + ℓη)− ℓ′η ||

≤
∞

∑
η=1

(ε2
η τ2

η δ 2
ης2

η ωη × (1− (ε2
η + τ2

η + δ 2
η

+ ς2
η +ωη)))×ψ(||(υη +υ ′

η + τη + τ ′η + ℓη)− ℓ′η ||).

Thus,

lim
η→∞

ψ(||(υη +υ ′
η + τη + τ ′η + ℓη)− ℓ′η ||) = 0.

Also, it is given that ψ is strictly increasing and
continuous function, we have

lim
η→∞

||(υη +υ ′
η + τη + τ ′η + ℓη)− ℓ′η ||= 0.

Hence,

lim
η→∞

D(υη ,℘υη) = lim
η→∞

||υ∗−υη ||= 0.

This implies that {||υη − υ∗||} is bounded and
non-increasing for all υ∗ ∈ f℘. Hence, limη→∞ ||υη −υ∗||
exists, as required.

Now, we are in the position to prove weak convergence
theorem.

Since f℘ 6= /0. By Lemma 2.1 {υη} is bounded and
limη→∞ ||℘υη − υη || = 0. To show that {υη} converges
weakly to an element of E℘, it suffices to show that {υη}
has a unique weak sub-sequential limit in E℘. For this
purpose, we assume that there are sub-sequences {υηετ}

and {υηεℓ} of {υη} such that {υηετ} ⇀ v1
∗ and

{υηεℓ}⇀ v2
∗.

Since, limη→∞ D(υη ,℘υη) = limη→∞ ||υ∗−υη ||= 0.

By Lemma 4, v1
∗ ∈ E℘. Similarly, it can be shown that v2

∗ ∈

E℘. Next, we prove v1
∗ = v2

∗. On the contrary, suppose v1
∗ 6=

v2
∗, then by Lemma 4 together with Opial’s property, we

have

lim
η→∞

||υη −υ∗||= lim
η→∞

||υηετ −υ1
∗ ||

< lim
η→∞

||υηετ −υ2
∗ ||

= lim
η→∞

||υη −υ2
∗ ||

= lim
η→∞

||υηεℓ−υ2
∗ ||

< lim
η→∞

||υηεℓ−υ1
∗ ||

= lim
η→∞

||υη −υ1
∗ ||

which is a contradiction. So, υ1
∗ = υ2

∗ . This implies that
{υη} converges weakly to a fixed point of ℘.

Next, we show significant convergence theorems in
Banach, uniformly convex. Opial’s property is not
essential, but it is appropriate to include some additional
conditions.

Theorem 2. Let C be a nonempty closed convex subset
of a uniformly convex Banach space B and
℘ : K → K (C ) be a multi-valued nonexpansive
mapping with E℘ 6= /0. For arbitrarily chosen υ0 ∈ C , let
the sequence {υη} be generated by nv iteration algorithm

(1) for all η ≥ 1, where {ε i
η},{τ i

η},{δ i
η}, {ς i

η} for
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i = 0,1,2 also ωη and κη are sequences of real numbers
in [a,b] for some a and b with 0 < a ≤ b < 1. If ℘
satisfies condition (J), then {υη} converges strongly to an
endpoint of ℘.

Proof. It follows from the nonexpansiveness of ℘ that E℘

is closed. Since ℘ satisfies condition (J),

lim
η→∞

d(υη ,E℘).

Lemma 3.1 implies that υη is Fejer monotone with respect
to E℘. The conclusion follows from Proposition 2.7.

Conclusion

Standard three-step iteration process namely, nv iteration
process (1) is introduced to find endpoints of
nonexpansive multi-valued mapping. nv iteration scheme
unifies most of the existing iteration schemes. For
different values of ε i

η ,τ
i
η ,δ

i
η ,ζ

i
η ,ωη ,κ

i
η for i = 0,1,2

iteration schemes like S, CR, Picard-S, Noor, SP and
many more can be achieved. Weak and strong
convergence results of nv iteration scheme are also
attained.
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