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Abstract: In this paper, we introduce a new method to analyze the convergence of the standard finite element method for Hamilton-

Jacobi-Bellman equation (HJB) with noncoercive operators. The method consists of combining Bensoussan-Lions algorithm with the

characterization of the solution, in both the continuous and discrete contexts, as fixed point of contraction. Optimal error estimates are

then derived, first between the continuous algorithm and its finite element counterpart, and then between the continuous solution and

the approximate solution.
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1 Introduction

We are interested in the finite element approximation of
the noncoercive problem associated with
Hamilton-Jacobi-Bellman equation (HJB): find
u ∈W 2,∞(Ω), such that:

{
max1≤i≤M(Aiu− f i) = 0 in Ω

u = 0 on Γ ,
(1)

where Ω is a bounded open set of RN , N ≥ 1 with
smooth boundary Γ ,A1, ...,AM denote uniformly second
order elliptic operators assumed to be noncoercive, and
f 1
, ..., f M are M regular functions.

Problems of type (1) arise in many applications:
stochastic control, management and economy, mechanics
and optics, . . . . .

The HJB equation has been analyticaly studied
by [1–4]. For the numerical approximations, P.Cortey
Dumont [5] investigated a finite element approximation
which is used a subsolution method. M. Boulbrachene
and M. Haiour [6] studied a finite element
Benssoussan-Lions algorithm version. They obtained a
quasi-optimal error estimate in the L∞-norm. M.
Boulbrachene and P.Cortey Dumont [7] explored a finite
element method using the concept of subsolution and
discrete regularity. They obtained an optimal error
estimate in the L∞-norm.

In the present paper, we instead combine, in both the
continuous and discrete contexts, the Benssoussan-Lions
algorithm with the characterization of the solution as a
fixed point of a contraction. We first establish an error
estimate between the continuous algorithm and its finite
element version, and then between the exact solution and
the finite element approximate.

The paper is organized, as follows: We review in
Section 2 the continuous problem and in Section 3 the
discrete problem. We address in Section 4 the continuous
algorithm and in Section 5 the discrete algorithm and we
establish, in both the continuous and discrete cases, the
geometrical convergence of this algorithms. Finally, in
Section 6, we present the finite element error analysis.

2 The continuous problem

We are concerned the noncoercive problem associated
with Hamilton-Jacobi-Bellman equation (HJB): find
u ∈W 2,∞(Ω), such that:

{
max1≤i≤M(Aiu− f i) = 0 in Ω

u = 0 on Γ ,
(2)

where Ω is a bounded domain of RN , N ≥ 1 with smooth
boundary Γ ,A1, ...,AM denote uniformly second order
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elliptic operators assumed to be noncoercive defined by:

Ai = ∑
1≤ j,k≤N

ai
jk(x)

∂ 2

∂x j∂xk

+ ∑
1≤k≤N

bi
k(x)

∂

∂xk

+ ai
0(x),

such that:

ai
jk(x),b

i
k(x),a

i
0(x) ∈C2(Ω ),

ai
jk(x) = ai

k j(x);ai
0(x)≥ β > 0,x ∈ Ω ,

∑
1≤ j,k≤N

ai
jk(x)ξ jξk ≥ α |ξ |2 ,∀ξ ∈ R

N
,x ∈ Ω ,α > 0,

and the operators

Bi = ∑
1≤ j,k≤N

ai
jk(x)

∂ 2

∂x j∂xk

+ ∑
1≤k≤N

bi
k(x)

∂

∂xk

+(ai
0(x)+λ ),

where λ > 0 is large enough so that Bi = Ai + λ I are
strongly coercive on H1(Ω).

We also define the associated bilinear forms

ai(u,v) =

∫

Ω
( ∑

1≤ j,k≤N

ai
jk(x)

∂u

∂x j

∂v

∂xk

+ ∑
1≤k≤N

bi
k(x)

∂u

∂xk

v,

(3)

+ai
0(x)uv)dx,

and

bi(u,v) = ai(u,v)+λ (u,v), (4)

where (., .) is the inner product in L2(Ω).
Finally, let f 1

, ..., f M be nonnegative right-hand sides
in W 2,∞(Ω).

We are concerned with the coercive HJB equation:

{
max1≤i≤M(Biu−F i(u)) = 0 in Ω

u = 0 on Γ ,
(5)

where F i(u) = f i +λ u.

It is shown in [3] that (5) can be approximated by the
following weakly coupled system of QVIs






bi(ξ i,v− ξ i)≥ (F i(u),v− ξ i),∀v ∈ H1
0 (Ω),

ξ i ≤ k+ ξ i+1,v ≤ k+ ξ i+1, i = 1, ...,M

ξ M+1 = ξ 1

(6)

where k is a positive constant. This is, precisely, stated in
the following theorem.

Theorem 1. [3] The system (6) has a unique solution

which belongs to (W 2,p(Ω))M,2 ≤ p < ∞. Moreover, as

k → 0, each component of this system converges

uniformly in C(Ω)to the solution u of HJB equation (5).

2.1 The solution of noncoercive HJB equation is

the unique fixed point of a contraction

Let the mapping

T : L∞(Ω)→ L∞(Ω)

ω → T ω = ξ ,

where ξ is the unique solution of the following coercive
HJB equation:

{
max1≤i≤M(Biξ −F i(ω)) = 0 in Ω

ξ = 0 on Γ .
(7)

From [3], (7) can be approximted by the following system
of QVIs





bi(ξ i,v− ξ i)≥ (F i(ω),v− ξ i),∀v ∈ H1
0 (Ω),

ξ i ≤ k+ ξ i+1,v ≤ k+ ξ i+1, i = 1, ...,M

ξ M+1 = ξ 1

(8)

and we have limk→0

∥∥ξ i − ξ
∥∥

C(Ω)
= 0,∀i = 1, ...,M.

Lemma 1. [8] There exists a constant c independent of k,

such that ∥∥ξ i − ξ
∥∥

∞
≤ ck, i = 1, ....,M.

Lemma 2.Let ω , ω̃ be in L∞(Ω) and

(ξ 1, ....,ξ M),(ξ̃ 1, ...., ξ̃ M) be the corresponding solutions

to system (8) with right-hand sides F i(ω) = f i +λ ω and

F i(ω̃) = f i +λ ω̃, i = 1, ...,M respectively. Then we have

max
1≤i≤M

∥∥∥ξ i − ξ̃ i
∥∥∥

∞
≤ ρ ‖ω − ω̃‖∞ ,ρ =

λ

λ +β
< 1.

Proof.Let φ i = 1
λ+β

∥∥F i(ω)−F i(ω̃)
∥∥

∞
, i = 1, ...,M.

Then,

F i(ω)≤ F i(ω̃)+
∥∥F i(ω)−F i(ω̃)

∥∥
∞

≤ F i(ω̃)+
ai

0(x)+λ

λ +β

∥∥F i(ω)−F i(ω̃)
∥∥

∞

≤ F i(ω̃)+ (ai
0(x)+λ )φ i

, i = 1, ...,M.

Thus, making use of monotonicity result with respect to
right-hand side for system of QVIs related to HJB equation
(see [5] ), we get:

ξ i ≤ ξ̃ i +φ i
,

we also get:

∥∥∥ξ i − ξ̃ i
∥∥∥

∞
≤ φ i

, i = 1, ...,M,

which completes the proof.

Theorem 2.Under the conditions of Lemma 2, the

mapping T is a contraction, so , the solution of HJB

equation (5) is its unique fixed point.
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Proof.Let ξ = Tω , ξ̃ = T ω̃ be solutions of HJB eqution
(7) with right-hand sides F i(ω) = f i +λ ω and F i(ω̃) =
f i +λ ω̃, respectively. Then making use of both Theorem
1, Lemma1 and Lemma 2, we have

‖T ω −T ω̃‖∞ ≤
∥∥∥ξ − ξ̃

∥∥∥
∞

≤
∥∥ξ − ξ i

∥∥
∞
+
∥∥∥ξ i − ξ̃ i

∥∥∥
∞
+
∥∥∥ξ̃ i − ξ̃

∥∥∥
∞
,

≤ ck+
∥∥∥ξ i − ξ̃ i

∥∥∥
∞
+ ck, i = 1, ...,M.

Hence, passing to the limit, as k → 0,we get:

‖Tω −T ω̃‖∞ ≤ max
1≤i≤M

∥∥∥ξ i − ξ̃ i
∥∥∥

∞
≤ ρ ‖ω − ω̃‖∞ ,

ρ =
λ

λ +β
< 1.

Thus, T is a contraction.

3 The discrete problem

Let Ω be decomposed into triangles, τh denote the set of
all those elements, and h > 0 be the mesh size. We assume
that the family τh is regular and quasi-uniform. Let

Vh =
{

v ∈C(Ω )∩H1
0 (Ω),v |K ∈ P1

}
,

be the finite element space, where K is a triangle of τh

and P1 is the space of polynomials with degree ≤ 1. Let
ϕi, i = 1, ....,m(h) be the basis functions of the space Vh,
and Ai the matrices with generic coefficients

(Ai)ls = ai(ϕl ,ϕs), l,s = 1, ....,m(h),1 ≤ i ≤ M.

Let us also define the discrete right-hand sides

F i = ( f i
,ϕl), l = 1, ....,m(h),1 ≤ i ≤ M,

and the usual restriction operator rh :

∀v ∈C(Ω)∩H1
0 (Ω),rhv =

m(h)

∑
l=1

vlϕl .

The discrete Hamilton-Jacobi-Bellman equation consists
of solving the following problem: Find uh ∈ Vh solution
to: {

max1≤i≤M(Aiuh −F i) = 0 on Ω
uh = 0 on Γ

. (9)

As in the continuous case, we shall handle the noncoercive
problem by transforming (9) into

{
max1≤i≤M(Biuh −F i(uh)) = 0 on Ω

uh = 0 on Γ
, (10)

where

(F i(uh))l = ( f i +λ uh,ϕl), l = 1, ....,m(h),1 ≤ i ≤ M,

and Bi are the matrices defined by

(Bi)ls = bi(ϕl ,ϕs), l,s = 1, ....,m(h),1 ≤ i ≤ M.

Lemma 3. [9] The matrices Bi ,i = 1, ...,M , are

M-matrices.

Theorem 3. [5] Under the conditions of Lemma 3, the HJB

equation (10) has a unique solution.

It is shown in [5] that (10) can be approximated by the
following discrete weakly coupled system of QVIs






bi(ξ i
h,v− ξ i

h)≥ (F i(uh),v− ξ i
h),∀v ∈Vh,

ξ i
h ≤ k+ ξ i+1

h ,v ≤ k+ ξ i+1
h , i = 1, ...,M

ξ M+1
h = ξ 1

h .

(11)

Theorem 4. [5] Under the conditions of Lemma 3. Then,

the system (11) has a unique solution. Morover, as k → 0;

each component of the solution of this system converges

uniformly in C(Ω) to the solution uh of (10).

3.1 The discrete solution of noncoercive HJB

equation is the unique fixed point of a

contraction

Let F i(ω) = f i + λ ω , i = 1, ...,M, we introduce the
mapping

Th : L∞(Ω)→Vh

ω → T ω = ξh,

where ξh is the unique solution of the following discrete
coercive HJB equation

max
1≤i≤M

(Biξh −F i(ω)) = 0, (12)

with

(F i(ω))l = ( f i +λ ω ,ϕl), l = 1, ....,m(h),1 ≤ i ≤ M,

the discrete coercive HJB equation (12) can be
approximated by the following system of QVIs





bi(ξ i
h,v− ξ i

h)≥ (F i(ω),v− ξ i
h),∀v ∈Vh,

ξ i
h ≤ k+ ξ i+1

h ,v ≤ k+ ξ i+1
h , i = 1, ...,M

ξ M+1
h = ξ 1

h .

and we have [8]:
∥∥ξ i

h − ξh

∥∥
∞
≤ ck, i = 1, ....,M.

Lemma 4.Under the conditions of Lemma 3. Then, we

have

max
1≤i≤M

∥∥∥ξ i − ξ̃ i
∥∥∥

∞
≤ ρ ‖ω − ω̃‖∞ ,ρ =

λ

λ +β
< 1,L∞(Ω).

∀ω , ω̃ ∈

Proof.Exactly the same as that of Lemma 2.

Theorem 5.Under the conditions of Lemma 3. The

mapping Th is a contraction, so the solution of discrete

HJB equation (10) is its unique fixed point.

Proof.Exactly the same as that of Theorem 2.
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4 A continuous iterative scheme

Starting from u0 ∈ H1
0 (Ω) is the unique solution of the

variational equation:

a1(u0
,v) = ( f 1

,v),∀v ∈ H1
0 (Ω).

We define the sequence (un)n≥1 by:

un = Tun−1
,∀n ≥ 1,

such that each iterate un solves the coercive HJB equation:

{
max1≤i≤M(Biun −F i(un−1)) = 0 in Ω

un = 0 on Γ
, (13)

with F i(un−1) = f i +λ un−1.

Theorem 6.Under the conditions of theorem 2., the

sequence (un)n≥0 converges to the unique fixed point u

and we have the error bound:

‖un − u‖∞ ≤
ρn

1−ρ

∥∥u0 − u1
∥∥

∞
.

Let (ξ i,n)1≤i≤M be the unique solution of the system of
QVIs wich approximates the coercive HJB equation (13):






bi(ξ i,n
,v− ξ i,n)≥ (F i(un−1),v− ξ i,n),∀v ∈ H1

0 (Ω),
ξ i,n ≤ k+ ξ i+1,n,v ≤ k+ ξ i+1,n, i = 1, ...,M

ξ M+1,n = ξ 1,n,

we have [8]:
∥∥ξ i,n − un

∥∥
∞
≤ ck, i = 1, ....,M. (14)

5 A discrete iterative scheme

Starting from u0
h ∈ Vh the unique solution of the discrete

variational equation:

a1(u0
h,v) = ( f 1

,v),∀v ∈Vh.

We define the sequence (un
h)n≥1 by:

un
h = Thun−1

h ,∀n ≥ 1,

such that each iterate un
h solves the discrete coercive HJB

equation:

{
max1≤i≤M(Biun

h −F i(un−1
h )) = 0, in Ω

un
h = 0 on Γ

, (15)

with F i(un−1
h ) = f i +λ un−1

h .

Theorem 7.Under the conditions of theorem 5, the

sequence (un
h)n≥0 converges to the unique fixed point uh

and we have the error bound:

‖un
h − uh‖∞ ≤

ρn

1−ρ

∥∥u0
h − u1

h

∥∥
∞
.

Let (ξ i,n
h )1≤i≤M be the unique solution of the system

of QVIs which approximates the discrete coercive HJB
equation (15):






bi(ξ i,n
h ,v− ξ i,n

h )≥ (F i(un−1
h ),v− ξ i,n

h ),∀v ∈Vh,

ξ i,n
h ≤ k+ ξ i+1,n

h ,v ≤ k+ ξ i+1,n
h , i = 1, ...,M

ξ M+1,n
h = ξ 1,n

h ,

we have [8]:

∥∥∥ξ i,n
h − un

h

∥∥∥
∞
≤ ck, i = 1, ....,M. (16)

6 L∞-Error estimate

We define the sequence (un
h)n≥0 such that:

u0
h = u0

h,u
n
h = Thun−1

,n ≥ 1,

where un
h is the unique solution of the discrete HJB

equation:

{
max1≤i≤M(Biun

h −F i(un−1)) = 0, in Ω
un

h = 0 on Γ
(17)

with F i(un−1) = f i +λ un−1, i = 1, ...,M.

Let (ξ
i,n

h )1≤i≤M be the unique solution of the system
of QVIs which approximates the discrete coercive HJB
equation (17):





bi(ξ
i,n

h ,v− ξ
i,n

h )≥ (F i(un−1),v− ξ
i,n

h ),∀v ∈Vh,

ξ
i,n

h ≤ k+ ξ
i+1,n

h ,v ≤ k+ ξ
i+1,n

h , i = 1, ...,M

ξ
M+1,n

h = ξ
1,n

h ,

we have [8]:

∥∥∥ξ
i,n

h − un
h

∥∥∥
∞
≤ ck, i = 1, ....,M. (18)

Lemma 5. [10] There exists a constant c independent of h

such that ∥∥u0 − u0
h

∥∥
∞
≤ ch2 |logh| .

Lemma 6. [11], [?] There exists a constant c independent

of both h and n such that

max
1≤i≤M

∥∥∥ξ i,n − ξ
i,n

h

∥∥∥
∞
≤ ch2 |logh|3 .

Theorem 8.We have

‖un − un
h‖∞ ≤

1−ρn+1

1−ρ
ch2 |logh|3 , (19)

where c is a constant independent of both n and h.

c© 2021 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 15, No. 1, 83-88 (2021) / www.naturalspublishing.com/Journals.asp 87

Proof.Combining Lemma 5, Lemma 6 and (14), (18)
yields:

‖u1 − u1
h‖∞ ≤ ‖u1 − u1

h‖∞ + ‖u1
h − u1

h‖∞

≤ ‖u1 − u1
h‖∞ + ‖Thu0 −Thu0

h‖∞

≤ ‖u1 − ξ i,1‖∞ + ‖ξ i,1− ξ
i,1

h ‖∞ + ‖ξ i,1
h − u1

h‖∞

+ρ‖u0− u0
h‖∞, i = 1, ..,M

≤ ck+ max
1≤i≤M

‖ξ i,1 − ξ
i,1

h ‖∞ + ck

+ρch2| logh|

≤ ck+ ch2| logh|3 +ρch2| logh|

≤ ck+(1+ρ)ch2| logh|3

≤ ck+
1−ρ2

1−ρ
ch2| logh|3.

Passing to the limit as k → 0, we get

∥∥u1 − u1
h

∥∥
∞
≤

1−ρ2

1−ρ
ch2 |logh|3 .

Now, we assume:

∥∥un−1 − un−1
h

∥∥
∞
≤

1−ρn

1−ρ
ch2 |logh|3 .

Then, combining Lemma 5, Lemma 6 and (14), (18),
we get:

‖un −un
h‖∞ ≤‖un −un

h‖∞ +‖un
h −un

h‖∞

≤‖un −un
h‖∞ +

∥∥Thun−1 −Thun−1
h

∥∥
∞

≤
∥∥un −ξ i,n

∥∥
∞
+
∥∥∥ξ i,n −ξ

i,n

h

∥∥∥
∞
+
∥∥∥ξ

i,n

h −un
h

∥∥∥
∞
+ρ

∥∥un−1 −un−1
h

∥∥
∞
,

i = 1, .....,M

≤ck+ max
1≤i≤M

∥∥∥ξ i,n −ξ
i,n

h

∥∥∥
∞
+ ck+ρ

1−ρn

1−ρ
ch2 |logh|3

≤ck+ ch2 |logh|3 +ρ
1−ρn

1−ρ
ch2 |logh|3

≤ck+(1+ρ
1−ρn

1−ρ
)ch2 |logh|3

≤ck+
1−ρn+1

1−ρ
ch2 |logh|3 .

Passing to the limite as k → 0, we get

‖un − un
h‖∞ ≤

1−ρn+1

1−ρ
ch2 |logh|3 .

Theorem 9.We have

‖u− uh‖∞ ≤ ch2 |logh|3 ,

where c is a constant independent of h.

Proof.Combining theorem 6, theorem 7 and theorem 8, we
have:

‖u− uh‖∞ ≤ ‖u− un‖∞ + ‖un − un
h‖∞ + ‖un

h − uh‖∞

≤
ρn

1−ρ

∥∥u0 − u1
∥∥

∞
+

1−ρn+1

1−ρ
ch2 |logh|3

+
ρn

1−ρ

∥∥u0
h − u1

h

∥∥
∞
,ρ < 1.

Hence , passing to the limit, as n → ∞,ρn → 0, we get:

‖u− uh‖∞ ≤
c

1−ρ
h2 |logh|3 .

7 Conclusion

Based on the constructive Bensoussan-Lions Algorithm
and the Banach fixed point principle, we omit derived
error estimate in the maximum norm of the standard finite
element approximation of elliptic
Hamilton-Jacobi-Bellman equations (HJB) with non
coercive operators. This new approach has turned out to
be successful and may be extended, in a future work, to
system of variational inequalities and quasi-variational
inequalities related to HJB equations.

List of abbreviations

Ω : bounded open set of RN

Γ : smooth boundary of Ω
‖‖∞ : L∞-norm.
HJB equation: Hamilton-Jacobi-Bellman equation.
(., .) : the inner product in L2(Ω).
Ai : noncoercive operators
Bi : coercive operators
ai(,) : bilinear forms of Ai

bi(,) : bilinear forms of Bi

T : contraction mapping
h : mesh size
Th : contraction mapping
(un)n≥1 : sequence of continuous iterative sheme
(un

h)n≥1 : sequence of descrete iterative sheme
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