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Abstract: In this article, we establish conditions on continuous restrictively bounded linear mapping T from S to S′ associated with

the kernel K under which the operator T extends to a bounded operator T : Lp
(

Rl
)

→ Lp
(

Rl
)

. Next, we generalize the interpolation

theorem for new functional classes, we show that bounded operator T defined, whose kernel satisfies the standard conditions, is bounded

with respect to convex seminorm, so, an inequality M̃1
−1

(

〈

M̃1 (|T ( f )|)
〉

µ

)

≤ A1M̃1
−1

(

〈

M̃1 (| f |)
〉

µ

)

holds for the constant A1 that

depends only on A, M1, M2.
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1 Introduction

The important tool of the theory of integral transforms is
the Calderon-Zygmund decomposition theorem, which
states that a given function f can be represented as a sum
of two functions one is “good” another is “bad” but on the
sets of small measure. Application of this approach to the
research of pseudodifferential operators yields the
Calderon-Zygmund requirements on the kernels of the
corresponded integral transforms that provide its
limitation on the functional spaces where these operators
can be defined [1 -10].

In the present paper, we establish some properties of
the pseudodifferential operators and attempt to generalize
the Calderon-Zygmund theory in the case of functional
spaces with convex norms. We consider the
Calderon-Zygmund operators in Lebesgue spaces and
generalize on functions with the convex norms [10 - 23].

Pseudodifferential operators can be associated with a
symbols class Sm

ρ ,δ that defined by the inequality

∣

∣

∣
∂ β

x ∂ α
ξ a(x,y)

∣

∣

∣
≤ Aα ,β (1+ |ξ |)m−ρ |α |+δ |β | .

The Calderon-Zygmund operator T is a mapping from
test function to distributions that can be defined by the
formula

T ( f ) = 〈K (x, ·) f (·)〉µ =

∫

Rl
K (x,y) f (y)dµ (y) ,

where associated kernel K is well defined for x 6= y and the
inequality

∣

∣

∣
∂ α

x ∂ β
y K (x,y)

∣

∣

∣
≤ A |x− y|−l−|α |−|β |

holds for such x, y.

Let us assume functions µ (t) η (s) t, s ∈ [0, +∞) are
monotonous strictly increasing functions and the function
η (s) is an inverse to µ (t), and the functionµ (t) is an
inverse to η (s), so

s = µ (t) = µ (η (s)) , µ (0) = 0;

t = η (s) = η (µ (t)) , η (0) = 0.

and let

M̃ (τ) =

∫ τ

0
µ (t)dt,

Ñ (τ) =

∫ τ

0
η (s)ds and τ ∈ [0, +∞)

be convex functions.

We establish that if T is a continuous bounded linear
mapping from S to S′ and its kernel K satisfying
inequalities,

|K (x,y)| ≤ A |x− y|−l ,

|K (x,y)−K (x̂,y)| ≤ A
|x− x̂|γ

|x− y|l+γ
,
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|x− x̂| ≤
1

2
|x− y| ,

|K (x,y)−K (x, ŷ)| ≤ A
|y− ŷ|γ

|x− y|l+γ

and

|y− ŷ| ≤
1

2
|x− y| ,

then the operator T extends to a bounded operator
T : Lp

(

Rl
)

→ Lp
(

Rl
)

if and only if the operator

T ∗ (g) = 〈K̄∗ (·,y)g(·)〉µ =

∫

Rl
K̄∗ (x,y)g(x)dµ (x)

is bounded.

Next, we prove that if the integral operators with well
defined and measurable function-kernel K (x,y) that
satisfies the regularity condition: there are constants A

and δ > 1 such that for all y̆ ∈ B(y,ε) there is

∫

Rl\B(y,δε)
|K (x,y)−K (x, y̆)|dµ (x)≤ A

for all y ∈ Rl and all ε > 0. And if

M̃2
−1

(

〈

M̃2 (|T ( f )|)
〉

µ

)

≤ AM̃2
−1

(

〈

M̃2 (| f |)
〉

µ

)

for functions f :
〈

M̃2 (| f |)
〉

µ
< ∞, then

M̃1
−1

(

〈

M̃1 (|T ( f )|)
〉

µ

)

≤ A1M̃1
−1

(

〈

M̃1 (| f |)
〉

µ

)

holds for all functions
f :

〈

M̃1 (| f |)
〉

µ
< ∞ and

〈

M̃2 (| f |)
〉

µ
< ∞, where

A1 is a constant.

2 Correlation Between Pseudodifferential

Operators and Singular Integrals

In this paragraph, we are going to consider a standard
integral operator defined on the functional space with the
positive Borel measure dµ , which we define by the
formula

T ( f ) = 〈K (x, ·) f (·)〉µ =

∫

Rl
K (x,y) f (y)dµ (y) , (1)

where the singular kernel K (x,y) satisfies certain
regularity conditions, and an adjoint operator is given by

T ∗ (g) = 〈K̄∗ (·,y)g(·)〉µ =

∫

Rl
K̄∗ (x,y)g(x)dµ (x) .

Let the integral operators be expressed in formula (1),
where the singular kernel is such that this integral is well
defined and the measurable function-kernel K (x,y)

satisfies the regularity condition: here are constants A and
δ > 1 such that for all y̆ ∈ B(y,ε) there is

∫

Rl\B(y,δε)
|K (x,y)−K (x, y̆)|dµ (x)≤ A, (2)

for all y ∈ Rl , and all ε > 0. Similarly, for the adjoint
kernel, we have constants Ā and δ > 1 such that for all
x̆ ∈ B(x,ε) there is

∫

Rl\B(x,δε)
|K̄∗ (x,y)− K̄∗ (x̆,y)|dµ (y)≤ Ā, (3)

for all x ∈ Rl and all ε > 0.
Statement 1. Assume K (x,y) is a function given for

x 6= y such that K (x,y) ≥ c |x− y|−l , c > 0. Then there

does not exist the operator T that satisfies the next equality,
〈

M̃ (|T ( f (·))|)
〉

≤C
〈

M̃ (| f (·)|)
〉

.

Proof. Let us assume the opposite. Let Q be a cube of
side 1

2
, in which its center coincides with the origin. Let us

consider the set S of cubes Qi, which are cube Q translated,
so the center is i ∈ Z, namely Qi = Q+ i, so we have

S =
⋃

|i|≤2R, i∈Z

Qi.

Let us take f = χS, if x /∈ S, then

T ( f ) = 〈K (x, ·) f (·)〉 ≥ c ∑
|i|≤2R

〈

·

|x−·|l

〉

Qi

.

We have
T ( f )≥ c1 logR,

for |x| ≤ R, R ≥ 1.
So, we obtain

〈

M̃ |T ( f )|
〉

≥
〈

M̃ |T ( f )|
〉

CS
⋂

{x: |x|<R}
≥

≥ M̃ (c1 logR)mes
(

CS
⋂

{x : |x|< R}
)

≥ M̃ (c1 logR)Rl ,

which contradicts with
〈

M̃ | f |
〉

≤ c f Rl . This contradiction
proves statement 1.

Let us consider integral representations of
pseudo-differential operator Ta presented as following:

Ta f = 〈k (x, ·) f (x−·)〉 ,

where k (x, ·) is inverse Fourier transform of the function
a(x,η) such that

a(x,η) = 〈k (x, ·)exp(−2π iη ·)〉 .

If we assume K (x,x− y) = k (x,x− y), we have

Ta f = 〈K (x, ·) f (·)〉 .

Statement 2. Assume a ∈ Sm, then

k (x,y) ∈C∞
(

Rl ×
(

Rl\{0}
))

and inequality

∣

∣

∣
∂ β

x ∂ α
y k (x,y)

∣

∣

∣
≤ Aα ,β ,L |y|

−l−m−|α |−L , y 6= 0

c© 2021 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 15, No. 1, 97-107 (2021) / www.naturalspublishing.com/Journals.asp 99

holds for all multi-indices α, β and all L ≥ 0, so that l +
m+ |α|+L > 0.

Statement 3. Assume a ∈ S0
1,1 and

Ta f =
〈

a(x, ·)exp(2π ix·) f̂ (·)
〉

, f ∈ S

then there is the kernel K that satisfies the next inequality:

∣

∣

∣
∂ β

x ∂ α
y K (x,y)

∣

∣

∣
≤ Aα ,β |x− y|−l−|α |−|β |

and

Ta f = 〈K (x, ·) f (·)〉

for all x /∈ sup p( f ).
Proof. Let us assume

Ta =
∞

∑
k=0

Tak,

where Ta0 = T S0 and Tak = Ta∆k, k ≥ 1, we have

a0 (x,η) = a(x,η) Φ̂ (η)

and

ak (x,η) = a(x,η)Ψ̂
(

2−kη
)

, k ≥ 1,

where Φ̂ (η) is the Fourier transform of function η , and

function Ψ is defined as Ψ̂ = ξ (η)− ξ (2η).
Now, let ξ be a fixed infinitely differentiable function

of compact support defined in the η- space Rl such that
ξ (η) = 1 for |η | ≤ 1, and ξ (η) = 0 for |η | ≥ 2. So, we
obtain that

1 = ξ (η)+
∞

∑
k=1

ξ
(

2−kη
)

− ξ
(

2−k+1η
)

,

and

1 =
∞

∑
k=−∞

ξ
(

2−kη
)

− ξ
(

2−k+1η
)

, η 6= 0.

So, we have function Φ ∈ S and integrals 〈Φ〉= 1 and
〈Ψ〉= 0.

Next, we have

Ta j f =
〈

k j (x, ·) f (x−·)
〉

,

where kernel k j satisfies the estimations

∣

∣

∣
∂ β

x ∂ α
y k j (x,y)

∣

∣

∣
≤ Aα ,β ,L |y|

−M
2 j(l+m+|α |+|β |), M ≥ 0.

Applying statement 1 we obtain that
Ta f = 〈k (x, ·) f (x−·)〉, where K (x,y) = k (x,x− y).

Let function f ∈ S has a compact support, then

(T f ) (x) = 〈K (x, ·) f (·)〉

for all x /∈ sup p( f ).

The operator T ∗ that is an adjoint of T can be defined
by the formula

〈T f ,g〉= 〈 f ,T ∗g〉 .

The operator T ∗ is associated with the kernel K∗ (x,y) =
K̄ (y,x). Now, we can prove the following theorem.

Theorem. Let T be a continuous restrictedly
bounded linear mapping from S to S′ and let kernel K

satisfy inequalities

|K (x,y)| ≤ A |x− y|−l ,

|K (x,y)−K (x̂,y)| ≤ A
|x− x̂|γ

|x− y|l+γ
, |x− x̂| ≤

1

2
|x− y| ;

|K (x,y)−K (x, ŷ)| ≤ A
|y− ŷ|γ

|x− y|l+γ
, |y− ŷ| ≤

1

2
|x− y| .

Then, in order for the operator T to extend to a
bounded operator to operator T : Lp

(

Rl
)

→ Lp
(

Rl
)

, it
has been necessary and sufficient that the operator T ∗

was restrictedly bounded.
Proof.

Let ϕR,x0
be a normalized test function for the ball

B(x0,R). The restrictedly boundedness of the operator T

means that the estimate

〈(

T ϕR,x0

)p〉
≤ ARl p

holds for T
(

ϕR,x0

)

∈Lp and all x0 ∈Rl , R> 0. Similarly,
constant A > 0, so that

〈(

T ∗ϕR,x0

)q〉
≤ ARlq

for T ∗
(

ϕR,x0

)

∈ Lq and x0 ∈ Rl , R > 0. So, from the
boundedness of T follows an inequality,

〈(

T ϕR,x0

)p〉
≤ Â

〈(

ϕR,x0

)p〉
≤ ARl p,

and for T , we have

〈(

T ∗ϕR,x0

)q〉
≤ Â

〈(

ϕR,x0

)q〉
≤ ARlq.

Let us suppose that

〈T f 〉= 0,〈T ∗g〉= 0,

where f and g are smooth functions of compact supports.
Let us denote the partial sum operator S j by the

formula
S j ( f ) = f ∗Φ2− j

and
∆ j ( f ) = S j ( f )− S j−1 ( f ) = f ∗Φ2− j .

Supposing Φ ∈C∞ is supported in the unit ball |x|< 1
and 〈Φ〉= 1, we have the equality

T = ∑
j=m1,....,m1

(

S jT S j − S j−1T S j−1

)
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and

∑
j=m1,....,m1

(

S jTS j − S j−1TS j−1

)

=

= ∑
j=m1,....,m1

∆ jT S j + j−1 ∑
j=m1,....,m1

S j−1T∆ j.

The operator ∆ jTS j is associated with a smooth kernel
K j as

(∆ jT S j ( f )) (x) =
〈

K j (x, ·) f (·)
〉

,

where the kernel K j is such that

∣

∣

∣
∂ α

x ∂ β
y K j (x,y)

∣

∣

∣
≤

≤ Aαβ 2(l+|α |+|β |) j min
{

1,
(

2 j |x− y|
)−l−γ

}

.

It is easy to see that

(T ( f ∗Φ)∗Ψ) =
〈〈

T (Φ (·− y)) ,Ψ̄ (x−·)
〉

f (y)
〉

y
,

so that implies

K j (x,y) =
〈

T (Φ2− j (·− y)) ,Ψ̄2− j+1 (x−·)
〉

,

that yields an inequality

∣

∣K j (x,y)
∣

∣≤ Aαβ 2l j.

Next, from the notation

K j (x,y) =
〈〈

Φ2− j (◦− y)K (·,◦)Ψ̄2− j+1 (x−·)
〉〉

,

we have an estimate

|K (z,s)−K (x,s)| ≤ A2 jγ 1

|x− y|l+γ
,

for sup p(Φ2− j ) is in the ball |z− x| ≤ 1
2 j+1 , and

sup p
(

Ψ̄2− j+1

)

is the ball |s− y| ≤ 1
2 j .

Thus, we have estimate

∣

∣

∣
∂ α

x ∂ β
y K j (x,y)

∣

∣

∣
≤

≤ Aαβ 2(l+|α |+|β |) j min
{

1,
(

2 j |x− y|
)−l−γ

}

.

Applying estimates

∣

∣K j (z,y)−K j (x,y)
∣

∣≤

≤ A2(l+γ̃) j |z− x|γ̃

min
{

1,
(

2 j |x− y|
)−l−γ

+
(

2 j |z− y|
)−l−γ

}

and
∣

∣K j (z,y)
∣

∣≤ A2l j
(

1+ 2 j |z− y|
)−l−γ

,

we obtain

∣

∣k j (x,y)
∣

∣≤ A2l j+γ̃( j−i)
(

1+ 2 j |z− y|
)−l−γ

for 0 < γ̃ < γ .

Lemma. Let us assume that kernel N (x,y) is such
that

sup
x
〈|N (x, ·)|〉 ≤ 1 and sup

y
〈|N (·,y)|〉 ≤ 1,

and the associated operator S is given by the formula

S f = 〈N (x, ·) f (·)〉 .

Then,

‖S‖Lp→Lp ≤ 1.

Proof. Indeed, we can estimate

sup
f∈Lp; g∈Lq

|〈S f ,g〉|

= sup
f∈Lp; g∈Lq

|〈〈N (◦, ·) f (·)g(◦)〉〉| ≤

sup
f∈Lp; g∈Lq

∣

∣

∣

1
p
〈〈N (◦, ·) | f (·)|p〉〉+ 1

q
〈〈N (◦, ·) |g(◦)|q〉〉

∣

∣

∣
.

Changing the order of integration and applying our
assumption, we obtain the statement of our Lemma.

As a result of this lemma, we have

∥

∥T ∗
i Tj

∥

∥

Lq→Lq ≤ 2−
⌢
γ |i− j|.

So, we have proven the theorem for such T that 〈T f 〉=
0, 〈T ∗g〉= 0 on smooth functions with compact supports.

Now, let us consider the integral

〈∣

∣TϕR,x0
−〈K (x̃, ·) f (·)〉

∣

∣

p〉

B̃
≤ Âmes

(

B̃
)

,

where B̃ = B
(

x̃, R̃
)

be any ball, B̃2 = B
(

x̃,2R̃
)

, and B̃3 =

B
(

x̃,3R̃
)

.

Let θ ∈C∞ such that

θ =

{

1, |x| ≤ 2
0, |x| ≥ 3.

We write

ϕR,x0
(x) = ϕR,x0

(x)θ

(

x− x̃

R

)

+

+ϕR,x0
(x)

(

1−θ

(

x− x̃

R

))

,

then

〈∣

∣

∣

∣

T ϕR,x0
(x)θ

(

x− x̃

R

)∣

∣

∣

∣

p〉

B̃

≤ Amin
{

Rl ,
(

3R̃
)l
}

,

and
∣

∣T
(

ϕR,x0
(x)

(

1−θ
(

x−x̃
R

)))

−
−
〈

K (x̃, ·)ϕR,x0
(x)

(

1−θ
(

x−x̃
R

))〉

B̃

∣

∣≤
≤ 〈|K (x, ·)−K (x̃, ·)|〉|y−x̃|≥2R̃ .

So,
∥

∥T
(

ϕR,x0
(x)

)∥

∥

BMO
≤ A.
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Let us denote operator
Sa = ∑∞

j=−∞

(

S j+m (a)− S j+m−1 (a)
)

S j, where a = T (1).
We define the additive set function dµ defined on

R+
l+1 by the formula

dµ =
∞

∑
j=−∞

∣

∣S j+m (a)− S j+m−1 (a)
∣

∣dxδ2− j (t) ,

where δ2− j is unit Dirac measure at t = 2− j. We have

〈|〈 f (·)Φt (x−·)〉|p〉R+
l+1 ≤ Ap ‖ f‖p

p ,

so

∞

∑
j=−∞

∥

∥

(

S j+m (a)− S j+m−1 (a)
)

S j ( f )
∥

∥

p

p
≤ Ap ‖ f‖p

p .

As a result, we can see that the kernel Kn (x,y) of the
operator Sn

a can be estimated from above by

∑
j

2l j
(

1+ 2 j |x− y|
)−l−1

≤ A |x− y|−l .

Let νε (x) = ν (εx) , ν (0) = 1 be an arbitrary smooth
function with compact support. So, we have

Sa (νε )(x) = Sa (ϕνε) (x)

+〈(K (x, ·)−K (0, ·))(1−ϕ (·))νε (·)〉 ;

taking a limit when ε → 0, we obtain

Sa (1)(x) = Sa (ϕ) (x)+ 〈(K (x, ·)−K (0, ·))(1−ϕ (·))〉 .

Now, we are streaming n → ∞ obtaining

Sa,n (1) =
n

∑
j=−n

S j+m (a)− S j+m−1 (a)→ a.

Similarly, we have

Sa
∗ (νε )(x) = Sa

∗ (ϕνε) (x)

+〈(K̄ (·,y)− K̄ (·,0))(1−ϕ (·))νε (·)〉 ,

and

Sa,n
∗ (1) =

n

∑
j=−n

S j
∗
(

S j+m
∗ (a)− S j+m−1

∗ (a)
)

→ 0.

Thus, the general case of the theorem is reduced to the
special case with the operator S such that

T = T ′+ Sa + Sb
∗.

Let ϕR,x0
be a normalized test function, we have

(

Tε ϕR,x0

)

(x) =
〈

Kε (x, ·)ϕR,x0
(·)

〉

=
〈

Kε (x, ·)
(

ϕR,x0
(·)−ϕR,x0

(x)
)

χ3R,x0
(·)

〉

+ϕR,x0
(x)〈Kε (x, ·)〉|y−x|<3R ,

where Kε (x,y) = νε

(

x−y
ε

)

K (x,y), which implies the
estimate

∣

∣Tε

(

ϕR,x0
(x)

)∣

∣≤
ARl

|x− x0|
l
, |x− x0| ≥ 2R.

Since the norm of Tε is uniformly bounded, there is a
subsequence Tε(k), that converges to T weakly in the Lp

topology. Invoking estimations for kernels Kε(k) (x,y), we

have Kε(k) (x,y) converges pointwise to K (x,y), so (1)
holds. So, the theorem has been proven.

The singular integrals and convex norm
Let µ (t) be a monotonous strictly increasing function

of the real argument, then this function has an inverse
η (s), so

s = µ (t) = µ (η (s)) , µ (0) = 0, µ (+∞) = +∞,

and

t = η (s) = η (µ (t)) , η (0) = 0, η (+∞) = +∞.

Then convex functions M̃ (τ) and Ñ (τ) can be
obtained as

M̃ (τ) =
∫ τ

0 µ (t)dt, τ ∈ [0, +∞) and

Ñ (τ) =
∫ τ

0 η (s)ds, τ ∈ [0, +∞), respectively.
There is an integral inequality

|〈 f ,g〉| ≤

∫ ∞

0
µ (λ )mes

{

x ∈ Rl : | f |> λ
}

dλ+

+

∫ ∞

0
µ−1 (λ )mes

{

x ∈ Rl : |g|> λ
}

dλ

for the arbitrary monotonous strictly increasing function
µ (t) of the real argument τ ∈ [0, +∞).

The essential properties of monotone norms:

An integral operator M ( f ) (x) is defined for an
arbitrary locally integrable function f by the formula

M ( f ) (x) = sup
r>0

1

mes(B(r))

∫

|y|<r
| f (x− y)|dy

is called the maximal operator, this operator is well defined
on the space of all locally integrable functions.

The grand maximal operator Mℑ ( f ) (x) can be defined
as

Mℑ ( f ) (x) = sup
t>0

|( f ∗ℑ(t))(x)| ,

We are going to describe the nonnegative measure with
the weight ω that satisfies the following inequality

〈

M̃ (M (| f |)ω)
〉

≤ A
〈

M̃ (| f |)ω
〉

and define the functional class AM̃ as the class of all
weights such that

M̃

(

1

mes(B)
〈| f |〉B

)

≤
const

〈ω〉B

〈

ωM̃ (| f |)
〉

B
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holds for an arbitrary locally integrable function f and any
ball B. The smallest constant for which this inequality is
valid will be called AM̃ bounds of the weight ω .

From harmonic analysis it is a well-known result that if
the measure leads to a weighted maximal inequality, then
the weight of the measure belongs to the functional class
AM̃.

Let us assume that f (x) ≡ f
(

x1, ...,xl
)

and

g(x) ≡ g
(

x1, ...,xl
)

, x ∈ Rl , l ∈ N are well defined

measurable functions such that Φ (u) ≡
〈

M̃ ( f )
〉

< ∞ and

ϒ ( f )≡
〈

Ñ ( f )
〉

< ∞.
Applying properties of Lebesgue integrals, we can

write

〈| f |〉=

∫ ∞

0
mes

{

x ∈ Rl : | f |> λ
}

dλ ,

and

〈

M̃ (| f |)
〉

=
∫ ∞

0
µ (λ )mes

{

x ∈ Rl : | f |> λ
}

dλ .

Theorem. Let f be a real positive integrable
function. Then we have

〈

M̃ ( f )
〉

B
≤ M̃ (〈 f 〉B) ,

where the B is a ball with a measure that equals one.
This theorem can be proven directly as a consequence

of Jensen’s inequality applied to Lebesgue’s sums. We are
going to prove this theorem using geometrical arguments,
let us rewrite the inequality of the theorem as

〈

M̃ ( f )
〉

B
=

∫ ∞

0
µ (λ )mes{x ∈ B : f > λ}dλ

≤ M̃ (〈 f 〉B) =

∫

∫ ∞
0 mes{x∈B: f>λ}dλ

0
µ (t)dt.

It is easy to see that the Riemann improper integrals
here converge, so for any natural numbers n and i, we can
consider the Riemann partition of the real axis λ [0, n] as

0 = λ1 < λ2 < ... < λi = n,

the Riemann sums are

∑
k

µ (λk+1)mes{x ∈ B : f > λk+1}(λk+1 −λk) ,

and
∫ ∑k mes{x∈B: f>λk+1}(λk+1−λk)

0
µ (t)dt

applying strictly the monotony of the function µ , we have

∑
k

µ (λk+1)mes{x ∈ B : f > λk+1}(λk+1 −λk)

≤

∫ ∑k mes{x∈B: f>λk+1}(λk+1−λk)

0
µ (t)dt.

Passing to the limit as i → ∞, we obtain

∫ n

0
µ (λ )mes{x ∈ B : f > λ}dλ ≤

≤

∫

∫ n
0 mes{x∈B: f>λ}dλ

0
µ (t)dt

for any natural numbers n. Since these integrals are
convergent we can pass to the limit as n → ∞ and obtain

∫ ∞

0
µ (λ )mes{x ∈ B : f > λ}dλ

≤
∫

∫ ∞
0 mes{x∈B: f>λ}dλ

0
µ (t)dt.

Statement. Since the function M̃ is convex, there are
several simple correlations:

1. There is a linear function aτ , such that

aτ < M̃ (τ) ;

2. for 0 < p < 1 there is an estimation

M̃ (pτ)< pM̃ (τ) ,

and for 1 < p

pM̃ (τ)< M̃ (pτ) ;

3. let us assume that function f is locally integrable
and function ϕ is positive and locally integrable, then

M̃

(∫ τ
a f (t)ϕ (τ)dτ
∫ τ

a ϕ (τ)τ

)

≤

∫ τ
a M̃ ( f (t))ϕ (τ)dτ

∫ τ
a ϕ (τ)τ

.

3 Generalization of the Interpolation

Theorem

Let us consider the singular integral (1) which defines an
operator on functional space; here, the singular kernel
K (x,y) is such that this integral is well defined in the
sense of distribution, and the measurable function-kernel
K (x,y) satisfies the regularity condition: there are
constants A and δ > 1 such that for all y̆ ∈ B(y,ε) there is
inequality (3) for all y ∈ Rl and all ε > 0. The integral
converges absolutely on the complement to the support of
f almost everywhere x.

Next, let us introduce a pair of strictly monotonously
increasing functions of real argument µ1 (t) and µ2 (t), t ∈
[0, +∞) such that t0 ∈ (0, ∞), so

µ1 (t)≤ µ2 (t)

for all t > t0.
We denote two functions,

M̃1 (τ) =

∫ τ

0
µ1 (t)dt, τ ∈ [0, +∞) ;
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M̃2 (τ) =

∫ τ

0
µ2 (t)dt, τ ∈ [0, +∞) ,

these two functions are convex over τ ∈ [0, +∞) and have
the property: there is τ0 ∈ (0, ∞) such that

M̃1 (τ)≤ M̃2 (τ)

for τ > τ0.
We can introduce the definitions of operator

boundedness as follows. An operator T is said to
be M̃1 (τ) weakly bounded if

mesµ {x : |T ( f (x))|> λ} ≤

〈

M̃1 (| f |)
〉

µ

M̃1 (λ )
,

and an operator T is said to be M̃1 (τ) strongly bounded if

M̃1
−1

(

〈

M̃1 (|T ( f )|)
〉

µ

)

≤ M̃1
−1

(

〈

M̃1 (| f |)
〉

µ

)

.

Theorem (Interpolation) 1. Let us assume that
condition (3) is held and the integral operator T (1)
satisfies the following integral inequality:

M̃2
−1

(

〈

M̃2 (|T ( f )|)
〉

µ

)

≤ AM̃2
−1

(

〈

M̃2 (| f |)
〉

µ

)

for arbitrary measurable function f under assumption
〈

M̃2 (| f |)
〉

µ
< ∞, where constant A is the same in

regularity condition (3).
Then an inequality

M̃1
−1

(

〈

M̃1 (|T ( f )|)
〉

µ

)

≤ A1M̃1
−1

(

〈

M̃1 (| f |)
〉

µ

)

is true for arbitrary measurable function f such that

〈

M̃1 (| f |)
〉

µ
< ∞, and

〈

M̃2 (| f |)
〉

µ
< ∞,

the constant A1 depends only on A, M1, and M2.
To prove the interpolation theorem, we will need an

analog of the Calderon-Zygmund decomposition theorem,
which states:

Let a function f ∈ L1 and a positive number α are
given such that

1

µ (Rl)
〈| f |〉µ < α.

Then there is a decomposition of f = g+b such that
b = ∑k bk, and there is a sequence of the balls

{

B∗
k

}

, so

|g(x)| ≤ cα, f or a.e. x;

〈|bk|〉µ ≤ cαmesµ (B∗
k) , 〈bk〉µ = 0;

∑
k

µ (B∗
k)≤

c

α
〈| f |〉µ ,

where the set B∗
k is the support of the function bk.

Proof of an analog of Calderon-Zygmund theorem. We
are going to consider the decomposition of f = g+b in the
form

mesµ

{

x : |T (g(x))|>
C

2
α

}

+mesµ

{

x : |T (b(x))|>
C

2
α

}

≤
Â

α
〈| f |〉µ .

In order to establish that the function g satisfies the
inequality

〈

M̃2 (|g|)
〉

µ
< ∞, we present

〈

M̃2 (| f |)
〉

µ
as

〈

M̃2 (| f |)
〉

µ
=

∫ ∞

0
µ2 (λ )mesµ

{

x ∈ Rl : | f |> λ
}

dλ

and integral
〈

M̃2 (|g|)
〉

µ
as

〈

M̃2 (|g|)
〉

µ

=
∫ ∞

0 µ2 (λ )mesµ
{

x ∈
⋃

B∗
k : |g|> λ

}

dλ
+
∫ ∞

0 µ2 (λ )mesµ
{

x ∈ C
⋃

B∗
k : |g|> λ

}

dλ .

From the first statement of the analog of
Calderon-Zygmund decomposition theorem, we obtain
the inequality

〈

M̃2 (|g|)
〉

µ(C
⋃

B∗
k)

≤ µ2 (cα)‖ f‖L1 ,

applying the second statement of the Calderon-Zygmund
decomposition, we obtain

〈

M̃2 (|g|)
〉

µ(
⋃

B∗
k)
≤

c

α
M̃2 (cα)‖ f‖L1 ,

so

〈

M̃2 (|g|)
〉

µ
≤
(

µ2 (cα)+
c

α
M̃2 (cα)

)

‖ f‖L1 .

Therefore, we have

mesµ
{

x : |T (g(x))|> C
2

α
}

≤
〈

M̃2 (|T (g)|)
〉

µ

(

M̃2

(

C
2

α
))−1

≤ Â1

(

M̃2

(

C
2

α
))−1 〈

M̃2 (|g|)
〉

µ

≤ Â1
α

(

αµ2 (cα)+ cM̃2 (cα)
)

‖ f‖L1

≤ Â
α ‖ f‖L1 .

Applying the classical approach, we consider T (b).
Function b can be defined as

bk (x) = χQ(k)

(

f (x)−
1

µ (Q(k))
〈| f |〉µ(Q(k))

)

,

where Bk ⊂ Qk ⊂ B∗
k , and χQ(k) is a characteristic function

of cube Q(k). Let y̆k be a common center of B∗
k and B∗∗

k
be balls radium ρ and ρε , respectively. Since T (bk) (x) =
〈|K (x, ·)−K (x, y̆k)|bk (·)〉µ , we have

〈∣

∣

∣
〈|K (x, ·)−K (x, y̆)|b(·)〉µ

∣

∣

∣

〉

xµ(C
⋃

B∗∗
k )
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≤ ∑
k

〈∣

∣

∣
〈|K (x, ·)−K (x, y̆k)|bk (·)〉µ

∣

∣

∣

〉

xµ(C
⋃

B∗∗
k )

≤ ∑
k

〈

|K (x, ·)−K (x, y̆k)| 〈|bk|〉µ(B∗
k)

〉

xµ(C
⋃

B∗∗
k )

.

Applying the second and third statement of the
Calderon-Zygmund decomposition, we obtain

〈
∣

∣

∣
〈|K (x, ·)−K (x, y̆)|b(·)〉µ

∣

∣

∣

〉

xµ(C
⋃

B∗∗
k )

≤ Â〈| f |〉µ ,

so

mesµ

{

x ∈ C
⋃

B∗∗
k : |T (g(x))|>

C

2
α

}

≤
Â

α
‖ f‖L1 .

However, we have

mesµ
{

⋃

B∗∗
k

}

≤ ∑
k

mesµ {B∗∗
k }

≤C∑
k

mesµ {B∗
k } ≤

Â

α
‖ f‖L1 .

Thus, we have obtained

mesµ {x : |T (g(x))|> α} ≤
Â

α
〈| f |〉µ .

Next, we are going to prove the statement about the
weak interpolation: let an operator T satisfy the condition
of subadditivity

|T ( f + g)| ≤ |T ( f )|+ |T (g)| .

Then, if operator T is weakly bounded in M̃1 (τ) and in
M̃2 (τ), it is strongly bounded for any M̃ (τ), where M̃ (τ)
satisfies the condition: there is τ0 > 0 such that M̃1 (τ)≤
M̃ (τ)≤ M̃2 (τ) for all τ > τ0.

Proof. The weakly boundedness means that

mesµ {x : |T ( f (x))|> λ} ≤

〈

M̃1 (| f |)
〉

µ

M̃1 (λ )

and

mesµ {x : |T ( f (x))|> λ} ≤

〈

M̃2 (| f |)
〉

µ

M̃2 (λ )
.

Let M̃ (τ) be such that M̃1 (τ) ≤ M̃ (τ) ≤ M̃2 (τ), then
we present function f (x) as

f (x) = h(x)+ s(x) ,

where

h(x) =

{

f (x) , f or x : | f (x)|> λ
0 f or x : | f (x)| ≤ λ

and

s(x) =

{

f (x) f or x : | f (x)| ≤ λ
0 f or x : | f (x)|> λ .

We can write

〈

M̃ (| f |)
〉

=

∫ ∞

0
µ (λ )mesµ

{

x ∈ Rl : | f |> λ
}

dλ ,

applying subadditivity inequality

|T ( f + g)| ≤ |T (h)|+ |T (s)| ,

we are obtaining

mesµ {x : |T ( f (x))|> λ}

≤

〈

M̃1 (|h|)
〉

µ

M̃1 (λ )
+

〈

M̃2 (|s|)
〉

µ

M̃2 (λ )

and

〈

M̃ (|T ( f )|)
〉

µ
=

∫ ∞
0 µ (λ )µmes

{

x ∈ Rl : |T ( f (x))|> λ
}

dλ

≤
∫ ∞

0 µ (λ )
〈M̃1(|h|)〉µ

M̃1(λ )
dλ +

∫ ∞
0 µ (λ )

〈M̃2(|s|)〉µ

M̃2(λ )
dλ .

We are estimating each term separately,

∫ ∞
0 µ (λ )

〈M̃1(|h|)〉µ

M̃1(λ )
dλ

=
∫ ∞

0
µ(λ )

M̃1(λ )

∫ ∞
0 µ1 (σ)µmes

{

x ∈ Rl : |h|> σ
}

dσdλ

=
∫ ∞

0
µ(λ )

M̃1(λ )
M̃1 (λ )µmes

{

x ∈ Rl : | f |> λ
}

dλ

=
〈

M̃1 (| f |)
〉

µ
,

and the second:

∫ ∞
0 µ (λ )

〈M̃2(|s|)〉µ

M̃2(λ )
dλ =

=
∫ ∞

0
µ(λ )

M̃2(λ )

∫ ∞
0 µ2 (σ)µmes

{

x ∈ Rl : |s|> σ
}

dσdλ =

=
∫ ∞

0
µ(λ )

M̃2(λ )
M̃2 (λ )µmes

{

x ∈ Rl : | f |> λ
}

dλ =

=
〈

M̃1 (| f |)
〉

µ
.

Next, compounding these two integrals together, we
have obtained

〈

M̃ (|T ( f )|)
〉

µ
≤
〈

M̃ (| f |)
〉

µ
,

which proves our statement about the weak interpolation.

Applying the statement of the weak interpolation, we
conclude the proof of the statement of the strong
interpolation theorem.

4 An Exemplar of the Calderon-Zygmund

Integral

Let us consider a class of singular integrals,

T ( f ) = 〈K (x−·) f (·)〉µ =

∫

Rl
K (x− y) f (y)dµ (y) ,
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where the singular kernel is such that this integral is well
defined is the sense of distribution and the measurable
function-kernel K (x,y) such that

∣

∣

∣

∣

(

∂

∂x

)α

K (x)

∣

∣

∣

∣

≤ A |x|−l−α

for all x ∈ Rl , x 6= 0, |α| ≤ 1.

In accordance with classical theory, the truncated
approximations can be defined as

Tε ( f ) = 〈Kε (x−·) f (·)〉µ =

∫

Rl
Kε (x− y) f (y)dµ (y) ,

where Kε (x) = K (x) i f |x| ≥ ε and Kε (x) =
0 i f |x| < ε . The function Tε ( f ) is continuous for all
f ∈ L1.

The maximal operator can be defined as

TM ( f (x)) = sup
ε>0

|Tε ( f (x))|

under the condition: There is constant C such that

|T ( f (x))| ≤ |TM ( f (x))|+C | f (x)| .

Since set O =

{

x : TM ( f (x)) = sup
ε>0

|Tε ( f (x))|> BC

}

is open, so we can apply Whitney covering lemma and

obtain O =
⋃

Qi. Let us consider one of these cubes
⌢
Q

with a diameter d. According to Whitney covering
decomposition, we can find point x̂ ∈ CO such that

dist (x̂,O)≤ 4d, the ball B = B(x̂,6d), so we have
⌢
Q⊂ B.

It has to be shown that

mes{x ∈ Q : TM ( f (x))> α and M ( f (x))≤ cα}

≤
AC

1− b
mesQ

hold for all cubes

The function f can be presented as the sum f = f1+ f2,
where

f1 =

{

f x ∈ B

0 x ∈ CB

and

f1 =

{

0 x ∈ B

f x ∈ CB.

So, we have

TM ( f ) ≤ TM ( f1)+TM ( f2)

and

{TM ( f )> α} ⊂ {TM ( f1)> b1α}
⋃

{TM ( f2)> b2α}

for b1 + b2 = 1.

Since, for f ∈ L1, we have

mes
{

x ∈ Rl : TM f (x)> α
}

≤
A

α
〈| f |〉 ,

then

mes{x ∈ Q : TM f1 (x)> αb1} ≤
A

αb1

〈| f1|〉 ,

and
〈| f1|〉 ≤ ACαmes(Q) ,

so

mes{x ∈ Q : TM f1 (x)> αb1} ≤
AC

b1

mes(Q) .

If x ∈ Q, y ∈ CB and CB ⊂ {y : |y− ŷ| ≥ d}, then

|Kε (x̂− y)−Kε (x− y)| ≤
dA

|y− ŷ|l+1
,

and we obtain

dA
〈

| f (·)|

|·−ŷ|l+1

〉

|·−ŷ|≥d
= dA

〈

| f (ŷ−·)|

|·|l+1

〉

|y|≥d

= ∑i dA
〈

| f (ŷ−·)|

|·|l+1

〉

2id≤|y|<2i+1d
≤ Ă∑i 2−iM ( f (ŷ)) ,

so
|TM ( f2 (x̂))−TM ( f1 (x))| ≤ AM ( f (ŷ))

for all x ∈ Q. Taking a supremum over ε , we are obtaining

TM ( f2 (x))−TM ( f (x̂))≤ AM ( f (ŷ))≤ α (b+CA)

for x ∈ Q. Assuming that b2 ≥ b + CA, we have
TM ( f2 (x))< αb2.

For b1 =
1−b

2
, b2 = 1− b, 0 < b < 1 and b2 ≥ b+CA,

we have

mes
{

x ∈ Rl : TM f (x)> α, M ( f (x))≤Cα
}

≤
AC

1− b
mes

{

x ∈ Rl : TM f (x)> αb
}

for all α > 0.
Now, we are going to prove that assuming ω ∈ AM̃ ,

then there is 0 < ã < 1 such that there is C > 0

ω
{

x ∈ Rl : TM f (x)> α, M ( f (x))≤Cα
}

≤ ãω
{

x ∈ Rl : TM f (x)> αb
}

holds for 0 < b < 1, for all α > 0.
Indeed, let us take C small enough so that

ω {x ∈ Q : TM f (x)> α, M ( f (x))≤Cα} ≤ C̆ω {Q}

and summing over all cubes, we obtain

ω
{

x ∈
⋃

Qi : TM f (x)> α, M ( f (x))≤Cα
}
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≤ C̆ω
{

x ∈
⋃

Qi : TM f (x)> αb
}

,

which proves our statement.
Assuming f 6= 0 gives M ( f (x)) ≥ c

(1+|x|)n and for all

smooth functions, we have inequality

|TM ( f (x))| ≤
A

(1+ |x|)n .

Every function such that
〈

M̃ (| f |ω)
〉

< ∞ can be
approximated by elements of C∞

0 , more precisely, for

every function f ,
〈

M̃ (| f |ω)
〉

< ∞, and for any ε > 0,
there is a sequence of functions φk ∈ C∞

0 , k ∈ N, and
there is a natural number k0 (ε) such that

〈

M̃ (| f −φk|ω)
〉

< ε

for every k > k0. The application of this fact concludes the
proving of the following theorem.

Theorem 2. Assume that

T ( f ) = 〈K (x−·) f (·)〉µ =
∫

Rl
K (x− y) f (y)dµ (y) ,

where the singular kernel is such that this integral is well
defined and the measurable function-kernel K (x,y) such
that

∣

∣

∣

∣

(

∂

∂x

)α

K (x)

∣

∣

∣

∣

≤ A |x|−l−α

for all x ∈ Rl , x 6= 0, |α| ≤ 1. The maximal operator
TM ( f (x)) satisfies the condition:

|T ( f (x))| ≤ |TM ( f (x))|+ | f (x)| .

Then the integral estimation

〈

M̃ (|T ( f )|)
〉

µ
≤ A

〈

M̃ (| f |)
〉

µ

holds for all smooth continuous functions f ∈ C∞
0 with

bounded support.

5 Conclusion

We have introduced new functional classes and
established the generalized interpolation theorem for
them; has been shown that bounded operator, whose
kernel satisfies the standard conditions, can be extended
with the preservation of its boundary constants. In our
future works, we are going to generalize these results in
the case of abstract Banach space.”
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