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Abstract: The present paper investigates the dynamical behaviors of a stochastic SIRS epidemic model with telegraphic noise and

Lévy noise. First, we establish the existence of a unique global positive solution for stochastic model. Furthermore, by constructing

some suitable Lyapunov functions, we show that if R0 ≤ 1 and under some conditions on the parameters, then the solution of stochastic

system fluctuates around the disease-free equilibrium, and if R0 > 1 the solution of stochastic system fluctuates around the disease-

endemic equilibrium of the deterministic model. Finally, we present numerical simulations to support the theoretical results.
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1 Introduction

The transmission and threat of infectious diseases
constantly increase causing the larger population. They
represent a major factor of mortality in developed and
underdeveloped countries. Therefore, the interest of
mathematical modeling in infectious diseases increases
due to the important role it plays in public health
research. This field of research helps analyze and
understand the dynamics of the spread of infectious
diseases. In 1927 Kermack and Mckendrick, introduced
the first SIR model which divides the population into
three classes: susceptible S, infectious I and recovered R
with permanent acquired immunity. Thus, some
recovered individuals R back to susceptible class S
because they lost immunity. To model this case we need
to use SIRS epidemic models (see, [1–5]). The SIRS
epidemic model is represented by the following system of
ordinary differential equations

dS(t)

dt
= Λ −β S(t)I(t)− µS(t)+ δR(t), (1)

dI(t)

dt
= β S(t)I(t)− (µ + γ)I(t),

dR(t)

dt
= γI(t)− (µ + δ )R(t),

S(t), I(t) and R(t) represent the population densities of
susceptible, infected and recovered at time t, respectively.
The parameter Λ is the recruitment rate of the population,
µ is the natural death rate of the population, γ is the
recovery rate of the infective individuals, δ is the rate at
which recovered individuals lose immunity and return to
the susceptible class, β is the transmission rate, β SI

represents the bilinear incidence rate [6]. The basic
reproduction number of the model (1) is given by

R0 = βΛ
µ(µ+γ) which represents the threshold that

determines the extinction and the persistence of disease
i.e.:

–If R0 ≤ 1 then model (1) has a unique disease-free
equilibrium E0 = (Λ

µ ,0,0) which is globally stable.

–If R0 > 1 then model (1) has an endemic equilibrium
E∗ = (S∗, I∗,R∗), which is globally asymptotically
stable.

However, the biological systems are necessarily subject to
different environmental fluctuations (climate change,
nutrition, pandemic, etc). Therefore, many scientists have
studied the disturbance of random environment when
investigating disease dynamics [7–15]. For example,
Khan et al. [16] proposed and analyzed a stochastic
Hepatitis B epidemic model with varying population size.
They introduced random perturbations of white noise type
directly to the fluctuation of the Hepatitis B transmission
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rate. Liu and Jiang [17] analyzed a stochastic SIR
epidemic model with Logistic birth. Using the stochastic
Lyapunov function method. They established sufficient
conditions for the existence of a stationary distribution
and conditions for the extinction of the disease. Jihad et
al. [18] introduced the noise effect directly to the
parameters in the model. They found necessary and
sufficient conditions for the extinction and persistence of
the disease. Tornatore et al. [19] addressed a stochastic
SIR model with or without delay. They investigated the
stability of disease-free equilibrium. Then, assuming that
the environmental noise is proportional to the variables
and of the white noise type, we obtain the following
stochastic model

dS(t) = [Λ −βS(t)I(t)−µS(t)+δR(t)]dt +σ1S(t)dB1(t),

dI(t) = [βS(t)I(t)− (µ + γ) I(t)]dt +σ2I(t)dB2(t), (2)

dR(t) = [γI(t)− (µ +δ )R(t)]dt +σ3R(t)dB3(t),

where B1(t),B2(t),B3(t) are independent Brownian
motions defined on a complete probability space
(

Ω ,F ,{Ft}t≥0 ,P
)

with a filtration {Ft}t≥0, satisfying
the usual conditions (i.e. it is increasing and right
continuous while F0 contains all P-null sets), σ1,σ2,σ3

representing the intensity of the white noise.

On the other hand, the universal situation in nature is
that the population fluctuates around a stable mean.
Nevertheless, this situation is seldom disrupted by a
sudden change to an entirely different regime caused by
factors such as nutrition, climatic characteristics, or
sociocultural factors. Then, in this case, it is necessary to
introduce telegraphic noise (or colored noise) [20–23].
Then, the telegraphic noise can be modeled by a
continuous-time Markov chain r(t) taking values in a
finite state space S = {1,2, ...,N} with the generator
Φ = (φuv)1≤u,v≤N given by

P(r(t +∆) = v | r(t) = u)=

{

φuv∆ + o(∆) if u 6= v,

1+φuu∆ + o(∆) if u = v,

where ∆ > 0, φuv is the transition rate from u to v and
φuv ≥ 0 if u 6= v, while φuu = −∑u 6=v φuv. Assume more
that Markov chain r(t) is irreducible and has a unique
stationary distribution π = (π1,π2, ...,πN) which can be
determined by solving the linear equation πΦ = 0,
subject to ∑N

i=1 πi = 1, and πi > 0, ∀i ∈ S.

Besides, population dynamics may be attacked with
sudden and large environmental disturbances, such as
pandemics, earthquakes, hurricanes, tsunamis, etc. These
events may break the continuity of the solution and can
not be better modeled by the white noise. Hence, under
the situation introducing Lévy jumps into these systems
may be a logical and significant approach (see, [24–26]).
Recently, Lui et al. [27] established a stochastic SIR
epidemic model with media coverage incorporating Lévy
noise. Fan et al. [28] explored the effect of Lévy noise on

the deterministic SIR epidemic models with delay.
Motivated by [29, 30] and the above-mentioned
discussion, we consider the stochastic SIRS model under
regime switching with Lévy jump, as follows

dS(t) = [Λ(r(t))−β (r(t))S(t)I(t)− µ(r(t))S(t)

+δ (r(t))R(t)]dt +σ1(r(t))S(t)dB1(t)

+

∫

A
q1(r(t),α)S(t−)Ñ(dt,dα), (3)

dI(t) = [β (r(t))S(t)I(t)− (µ(r(t))+ γ(r(t))) I(t)]dt

+σ2(r(t))I(t)dB2(t)

+
∫

A
q2(r(t),α)I(t−)Ñ(dt,dα),

dR(t) = [γ(r(t))I(t)− (µ(r(t))+ δ (r(t)))R(t)]dt

+σ3(r(t))R(t)dB3(t)

+

∫

A
q3(r(t),α)R(t−)Ñ(dt,dα),

where S(t−), I(t−) and R(t−) are the left limit of S(t),
I(t) and R(t) respectively, the system parameters β (k),
µ(k), γ(k), δ (k) and σi(k) (i = 1,2,3) are all positive
constants for all k ∈ S. Ñ(dt,dα) = N(dt,dα)− ν(α)dt,
N is a Poisson counting measure with characteristic
measure ν on measurable subset A of [0,∞), with
ν(A)< ∞, and qi : A×Ω −→ R (i = 1,2,3) represent the
effects of random jumps it’s bounded and continuous with
respect to ν and B(A)×Ft-measurable.
Assume that initially, the Markov chain r(0) = j ∈ S, then
the model (3) satisfies

dS(t) = [Λ( j)−β ( j)S(t)I(t)− µ( j)S(t)+ δ ( j)R(t)]dt

+σ1( j)S(t)dB1(t)+
∫

A
q1( j,α)S(t−)Ñ(dt,dα),

dI(t) = [β ( j)S(t)I(t)− (µ( j)+ γ( j)) I(t)]dt

+σ2( j)I(t)dB2(t)+

∫

A
q2( j,α)I(t−)Ñ(dt,dα),

dR(t) = [γ( j)I(t)− (µ( j)+ δ ( j))R(t)]dt

+σ3( j)R(t)dB3(t)+

∫

A
q3( j,α)R(t−)Ñ(dt,dα),

as soon as the Markov chain r(t) jumps to another state,
say k ∈ S, model (3) becomes

dS(t) = [Λ(k)−β (k)S(t)I(t)− µ(k)S(t)+ δ (k)R(t)]dt

+σ1(k)S(t)dB1(t)+

∫

A
q1(k,α)S(t−)Ñ(dt,dα),

dI(t) = [β (k)S(t)I(t)− (µ(k)+ γ(k)) I(t)]dt (4)

+σ2(k)I(t)dB2(t)+
∫

A
q2(k,α)I(t−)Ñ(dt,dα),

dR(t) = [γ(k)I(t)− (µ(k)+ δ (k))R(t)]dt

+σ3(k)R(t)dB3(t)+

∫

A
q3(k,α)R(t−)Ñ(dt,dα).

We consider the following hybrid stochastic differential
equations with jumps

dX(t) = f (X(t),r(t))dt + g(X(t),r(t))dB(t)

+

∫

A
h(X(t−),r(t),α)Ñ(dt,dα),
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on t ≥ 0, with initial data X(0) ∈ R
n and r(0) ∈ S,

f : Rn ×S−→R
n, g : Rn ×S−→R

n×m,

h : Rn ×S×A −→ R
n.

We assume

that the Markov chain r(t) is independent of the Brownian
motion B(t) and Poisson random measures Ñ(t,A).
Let C1,2(Rn × S;R+) the family of continuous
non-negative functions Q(X , i) defined on R

n × S such
that for each i ∈ S, they are continuously twice
differentiable in x. The differential operator L acts on a
function Q(X , i) ∈C1,2(Rn ×S;R+) given by

L Q(X , i) = Qx(X , i) f (X , i)

+
1

2
trace[gT (X , i)Qxx(X , i)g(X , i)]

+

∫

A
[Q(X + h(X , i,α), i)−Q(X , i)]ν(dα)

+
N

∑
j=1

φi jQ(X , j),

where Qx =
(

∂Q
∂x1

, ...,
∂Q
∂xn

)

, Qxx =
(

∂ 2Q
∂xi∂x j

)

n×n
.

The organization of this paper is as follows: In
Section 2, we investigate the existence and uniqueness of
the global positive solution to model (4). In Section 3, we
study the behavior of the solution to (4) around the
disease-free equilibrium E0. In Section 4, we address the
behavior of the solution to the system (4) around the
endemic equilibrium E∗. In Section 5, the analytical
results are illustrated with the support of numerical
examples.

2 Global positive solution

In this section, we establish the existence of a unique
global positive solution for our stochastic epidemic model
with Lévy noise and telegraphic noise. Next, we impose
two assumptions, Assumption 2.1 and Assumption 2.2,
which are necessary to show the existence and uniqueness
of a global positive solution of (4).
Assumption 2.1. For each d > 0 there exists Ld > 0 such

that

∫

A
|Gi(x,k,α)−Gi(y,k,α)|2 ν(dα)≤ Ld |x− y|2

for i = 1,2,3, k ∈ S, where
G1(z,α) = q1(α,k)z for z = S(t−), G2(z,α) = q2(α,k)z
for z = I(t−), G3(z,α) = q3(α,k)z for z = R(t−),
with |x| ∨ |y| ≤ d.

Assumption 2.2. |ln(1+ qi(α))| ≤ C, for qi(α) > −1,
where C is positive constant i = 1,2,3, k ∈ S.

Theorem 2.1. For any given initial value
(S(0), I(0),R(0)) ∈ R

3
+, there is a unique solution

(S(t), I(t),R(t)) to Equation (4) on t ≥ 0 and the solution

will remain in R
3
+ with probability one, namely

(S(t), I(t),R(t)) ∈ R
3
+ for all t ≥ 0 almost surely.

proof By Assumption 2.1 for any initial value
(S(0), I(0),R(0)) ∈ R

3
+, there is a unique local solution

(S(t), I(t),R(t)) of system (4) on [0,ζe), where ζe is the
explosion time. To show that (S(t), I(t),R(t)) ∈ R

3
+ a.s.

for all t ≥ 0, we need to check ζe = ∞ a.s. Let m0 be
sufficiently large so both S(0), I(0) and R(0) lie within the

interval
[

1
m0
,m0

]

. For each integer m ≥ m0, define the

stopping time

ζm = inf

{

t ∈ [0,ζe) :S(t) 6∈

(

1

m
,m

)

or I(t) 6∈

(

1

m
,m

)

= or R(t) 6∈

(

1

m
,m

)}

Obviously, ζm is increasing as m→∞. Set ζ∞ = limm→∞ ζm

and ζ∞ ≤ ζe a.s. So to complete the proof, if we can prove
ζ∞ = ∞ a.s. then ζe = ∞ a.s. and (S(t), I(t),R(t)) ∈ R

3
+

a.s. If this statement is false, then there exists a pair of
constant T > 0 and ε ∈ (0,1) such that

P(ζ∞ ≤ T )≥ ε.

Thus, there is an integer m1 ≥ m0, such that

P(ζ∞ ≤ T )≥ ε, f or all m ≥ m1.

Define a C2−function U : R3
+ −→R+ by :

U(S, I,R,k) = S− 1− lnS+ I− 1− lnI +R− 1− lnR.

From the Itô’s formula, we have

dU = L Udt +σ1(k)(S− 1)dB1(t)+σ2(k)(I − 1)dB2(t)

+σ3(k)(R− 1)dB3(t)

+
∫

A
[q1(k,α)S− ln(1+ q1(k,α))] Ñ(dt,dα)

+

∫

A
[q2(k,α)I − ln(1+ q2(k,α))] Ñ(dt,dα) (5)

+

∫

A
[q3(k,α)R− ln(1+ q3(k,α))] Ñ(dt,dα),

where

LU = Λ(k)− µ(k)S− (µ(k)+ d(k)) I− µ(k)R−
Λ(k)

S

−β (k)S+ µ(k)+ d(k)+ γ(k)− γ(k)
I

R

+µ(k)+ δ (k)+
σ1(k)+σ2(k)+σ3(k)

2

+

∫

A
[q1(k,α)− ln(1+ q1(k,α))]ν(dα)

+
∫

A
[q2(k,α)− ln(1+ q2(k,α))]ν(dα)

+

∫

A
[q3(k,α)− ln(1+ q3(k,α))]ν(dα),
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which implies that

LU ≤ Λ(k)+ µ(k)+ d(k)+ γ(k)+ µ(k)+ δ (k)

+
σ1(k)+σ2(k)+σ3(k)

2

+

∫

A
[q1(k,α)− ln(1+ q1(k,α))]ν(dα)

+

∫

A
[q2(k,α)− ln(1+ q2(k,α))]ν(dα)

+
∫

A
[q3(k,α)− ln(1+ q3(k,α))]ν(dα).

Since z − ln(1+ z) ≥ 0 for all z > −1 and using the
Assumption 2.2, we get

LU ≤ Λ(k)+ µ(k)+ d(k)+ γ(k)+ µ(k)+ δ (k)

+
σ1(k)+σ2(k)+σ3(k)

2
+ 3K′ := K,

with

K′ = max

{

∫

A
[q1(k,α)− ln(1+ q1(k,α))]ν(dα),

∫

A
[q2(k,α)− ln(1+ q2(k,α))]ν(dα),

∫

A
[q3(k,α)− ln(1+ q3(k,α))]ν(dα)

}

.

Integrating both sides of (5) between 0 and ζm ∧ T and
taking expectation we obtain

0 ≤ EU (S(ζm ∧T ), I(ζm ∧T ),R(ζm ∧T ))

≤ U (S(0), I(0),R(0))+KT.

Define for each s > 0, H(s) =
inf
{

U(u1,u2,u3), ui ≥ s or ui ≤
1
s
, i = 1,2,3

}

, with
u1 = S, u2 = I and u3 = R then we have lims→∞ H(s) = ∞.
Therefore

U (S(0), I(0),R(0))+KT ≥

E
[

1{ζm≤T}U (S(ζm ∧T ), I(ζm ∧T ),R(ζm ∧T ))
]

≥ εH(m).

Letting m→ ∞ leads to ∞ >U (S(0), I(0),R(0))+KT =∞
which is a contradiction, for consequent ζ∞ = ∞ a.s. This
completes the proof. �

3 Asymptotic behavior around the

disease-free equilibrium

In this section, we investigate the behavior of the global
positive solution (S(t), I(t),R(t)) around the disease-free

equilibrium E0 = (Λ
µ ,0,0). Assume that R0 ≤ 1 and let

M1 = 2µ(k)− 2σ2
1 (k)− 4

∫

A
q2

1(k,α)ν(dα),

M2 = 2µ(k)−σ2
2 (k)− 4

∫

A
q2

1(k,α)ν(dα),

M3 =
2µ(k)γ(k)+ 2µ(k)(µ(k)+ δ (k))

γ(k)

−

(

4+
2µ(k)

γ(k)

)

∫

A
q2

3(k,α)ν(dα),

−σ2
3 (k)

(

1+
2µ(k)

γ(k)

)

M4 =
Λ 2(k)

µ2(k)

[

2σ2
1 (k)+ 4

∫

A
q2

1(k,α)ν(dα)

]

,

M = min{M1,M2,M3} .

Theorem 3.1. Consider the stochastic system (4) with
initial condition (S(0), I(0),R(0)) in R

3
+. Assume that the

following conditions hold

2µ(k)> 2σ2
1 (k)+ 4

∫

A
q2

1(k,α)ν(dα),

2µ(k)> σ2
2 (k)+ 4

∫

A
q2

2(k,α)ν(dα),

2µ(k)γ(k)+ 2µ(k)(µ(k)+ δ (k))

γ(k)
> σ2

3 (k)

(

1+
2µ(k)

γ(k)

)

+

(

4+
2µ(k)

γ(k)

)

∫

A
q2

3(k,α)ν(dα).

Then, the solution of model (4) has the property

limsup
t→∞

1

t
E

∫ t

0

[

(

S(u)−
Λ

µ

)2

+ I2(u)+R2(u)

]

du≤
M4

M
.

Proof. Let X(t) = S(t)− Λ
µ ; Y (t) = I(t); Z(t) = R(t).

Then, model (4) becomes

dX =

[

−µ(k)X −β (k)XY −β (k)
Λ(k)

µ(k)
Y + δ (k)Z

]

dt

+σ1(k)

(

X +
Λ(k)

µ(k)

)

dB1(t)

+

∫

A
q1(k,α)

(

X +
Λ(k)

µ(k)

)

Ñ(dt,dα),

dY =

[

β (k)XY −

(

µ(k)+ γ(k)−β (k)
Λ(k)

µ(k)

)

Y

]

dt

+σ2(k)Y dB2(t)+

∫

A
q2(k,α)Y Ñ(dt,dα),

dZ = [γ(k)Y − (µ(k)+ δ (k))Z]dt +σ3(k)ZdB3(t)

+
∫

A
q3(k,α)ZÑ(dt,dα).

We consider the following function

U(X ,Y,Z,k) = (X +Y +Z)2 + d1(k)Y + d2(k)Z
2
,
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where d1(k), d2(k) for all k ∈ S, are two positive constants
to be chosen later. Then, using Ito’s formula, we have

dU = LUdt + 2(X +Y +Z)

[

σ1(k)

(

X +
Λ(k)

µ(k)

)

dB1(t)

+σ2(k)Y dB2(t)+σ3(k)ZdB3(t)]

+d1(k)σ2(k)Y dB2(t)+ 2d2(k)σ3(k)Z
2dB3(t)

+

∫

A

{[

q1(k,α)

(

X +
Λ(k)

µ(k)

)

+ q2(k,α)Y

+q3(k,α)Z]2 + 2(X +Y +Z)

[

q1(k,α)

(

X +
Λ(k)

µ(k)

)

+q2(k,α)Y + q3(k,α)Z]+ d1(k)q2(k,α)Y (6)

+2d2(k)q3(k,α)Z2 + d2(k)q
2
3(k,α)Z2

}

Ñ(dt,dα),

where

LU = −2µ(k)(X +Y +Z)X − 2µ(k)(X +Y +Z)Y

−2µ(k)(X +Y +Z)Z + d1(k)β (k)XY

−d1(k)

(

µ(k)+ γ(k)−β (k)
Λ(k)

µ(k)

)

Y

+2d2(k) [γ(k)Y − (µ(k)+ δ (k))Z]Z

+σ2
1 (k)

(

X +
Λ(k)

µ(k)

)2

+σ2
2 (k)Y

2

+σ2
3 (k)(1+ d2(k))Z2

+

∫

A

{[

q1(k,α)

(

X +
Λ(k)

µ(k)

)

+ q2(k,α)Y

+q3(k,α)Z]2 + d2(k)q
2
3(k,α)Z2

}

ν(dα)

+
N

∑
l=1

φklV (X ,Y,Z, l)

= −
[

2µ(k)−σ2
1 (k)

]

X2 −
[

2µ(k)−σ2
2 (k)

]

Y 2

− [2µ(k)+ 2d2(k)(µ(k)+ δ (k))

−σ2
3 (k)(1+ d2(k))

]

Z2

−d1(k)(µ(k)+ γ(k))(1−R0)Y

+[d1(k)β (k)− 4µ(k)]XY

−4µ(k)XZ+[2d2(k)γ(k)− 4µ(k)]Y Z

+2σ2
1 (k)X

Λ(k)

µ(k)
+σ2

1 (k)
Λ 2(k)

µ2(k)

+

∫

A

{[

q1(k,α)

(

X +
Λ(k)

µ(k)

)

+ q2(k,α)Y

+q3(k,α)Z]2 + d2(k)q
2
3(k,α)Z2

}

ν(dα)

+
N

∑
l=1

φklV (X ,Y,Z, l),

choosing

d1(k) =
4µ(k)

β (k)
and d2(k) =

2µ(k)

γ(k)
,

such that

d1(k)β (k)−4µ(k)= 0 and 2d2(k)γ(k)−4µ(k)= 0,

which can be simplified to

LU ≤ −
[

2µ(k)−σ2
1 (k)

]

X2 −
[

2µ(k)−σ2
2 (k)

]

Y 2

−

[

2µ(k)γ(k)+ 4µ(k)(µ(k)+ δ (k))

γ(k)

−σ2
3 (k)

(

1+
2µ(k)

γ(k)

)]

Z2 + 2σ2
1 (k)X

Λ(k)

µ(k)

+σ2
1 (k)

Λ 2(k)

µ2(k)
+
∫

A

{[

q1(k,α)

(

X +
Λ(k)

µ(k)

)

+q2(k,α)Y + q3(k,α)Z]2

+
2µ(k)

γ(k)
q2

3(k,α)Z2

}

ν(dα)+
N

∑
l=1

φklV (X ,Y,Z, l).

Next, let ď=max
{

di(l)
di(k)

: 1 ≤ i ≤ 2, 1 ≤ l,k ≤ N

}

, then

for any l,k ∈ S, we obtain

U(X ,Y,Z, l) = (X +Y +Z)2 + d1(l)Y + d2(l)Z
2

≤ ď

[

(X +Y +Z)2 + d1(k)Y + d2(k)Z
2
]

= ďU(X ,Y,Z,k),

then

N

∑
l=1

φklU(X ,Y,Z, l) ≤ ď

(

N

∑
l=1

|φkl |

)

U(X ,Y,Z,k)

:= C2U(X ,Y,Z,k).

Using the inequalities 2ab ≤ a2 + b2 and

(a+ b+ c+ d)2 ≤ 4
(

a2 + b2 + c2 + d2
)

, we obtain

LU ≤ −2
[

µ(k)−σ2
1 (k)

]

X2 −
[

2µ(k)−σ2
2 (k)

]

Y 2

−

[

2µ(k)γ(k)+4µ(k)(µ(k)+δ (k))

γ(k)

−σ2
3 (k)

(

1+
2µ(k)

γ(k)

)]

Z2 +2σ2
1 (k)

Λ 2(k)

µ2(k)

+4

∫

A

{[

q2
1(k,α)X2 +q2

1(k,α)
Λ 2(k)

µ2(k)
+q2

2(k,α)Y 2

+q2
3(k,α)Z2

]

+
2µ(k)

γ(k)
q2

3(k,α)Z2

}

ν(dα)

+C2V (X ,Y,Z,k).
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Integrating both sides of (6) from 0 to t and taking
expectation, we get

0 ≤ EU(X(t),Y (t),Z(t),r(t))≤U(X(0),Y (0),Z(0),r(0))

+ E

∫ t

0

{

−

(

2
(

µ(k)−σ2
1 (k)

)

−4

∫

A
q2

1(k,α)ν(dα)

)

X2(u)

−

(

(

2µ(k)−σ2
2 (k)

)

−4

∫

A
q2

2(k,α)ν(dα)

)

Y 2(u)

−

[

2µ(k)γ(k)+4µ(k)(µ(k)+δ (k))

γ(k)

−σ2
3 (k)

(

1+
2µ(k)

γ(k)

)

−

(

4+
2µ(k)

γ(k)

)

∫

A
q2

3(k,α)ν(dα)

]

Z2(u)

}

du

+ 4t

∫

A
q2

1(k,α)
Λ 2(k)

µ2(k)
ν(dα)+2σ2

1 (k)
Λ (k)

µ(k)2

2

t

+ C2

∫ t

0
U(X(u),Y (u),Z(u),r(u)).

using the Gronwall inequality, we obtain

0 ≤ EU(X(t),Y (t),Z(t),r(t))≤ {U(X(0),Y (0),Z(0),r(0) )

+ E

∫ t

0

[

−

(

2
(

µ(k)−σ2
1 (k)

)

−4

∫

A
q2

1(k,α)ν(dα)

)

X2(u)

−

(

(

2µ(k)−σ2
2 (k)

)

−4

∫

A
q2

2(k,α)ν(dα)

)

Y 2(u)

−

(

2µ(k)γ(k)+4µ(k)(µ(k)+δ (k))

γ(k)

−σ2
3 (k)

(

1+
2µ(k)

γ(k)

)

−

(

4+
2µ(k)

γ(k)

)

∫

A
q2

3(k,α)ν(dα)

)

Z2(u)

]

du

+ 2σ2
1 (k)

Λ 2(k)

µ2(k)
t +4t

∫

A
q2

1(k,α)
Λ 2(k)

µ2(k)
ν(dα)

}

eC2t
.

Thus, we get

E

∫ t

0

[(

2
(

µ(k)−σ2
1 (k)

)

−4

∫

A
q2

1(k,α)ν(dα)

)

X2(u)

+

(

(

2µ(k)−σ2
2 (k)

)

−4

∫

A
q2

2(k,α)ν(dα)

)

Y 2(u)

+

(

2µ(k)γ(k)+4µ(k)(µ(k)+δ (k))

γ(k)

−σ2
3 (k)

(

1+
2µ(k)

γ(k)

)

−

(

4+
2µ(k)

γ(k)

)

∫

A
q2

3(k,α)ν(dα)

)

Z2(u)

]

du

≤ 2σ2
1 (k)

Λ 2(k)

µ2(k)
t +4t

∫

A
q2

1(k,α)
Λ 2(k)

µ2(k)
ν(dα)

+U(X(0),Y (0),Z(0),r(0)).

Therefore,

limsup
t→∞

1

t
E

∫ t

0

[(

2
(

µ(k)−σ2
1 (k)

)

−4

∫

A
q2

1(k,α)ν(dα)

)

X2(u)

)

+

(

(

2µ(k)−σ2
2 (k)

)

− 4

∫

A
q2

2(k,α)ν(dα)

)

Y 2(u)

+

(

2µ(k)γ(k)+ 4µ(k)(µ(k)+ δ (k))

γ(k)

−σ2
3 (k)

(

1+
2µ(k)

γ(k)

)

−

(

4+
2µ(k)

γ(k)

)

∫

A
q2

3(k,α)ν(dα)

)

Z2(u)

]

du

≤ 2σ2
1 (k)

Λ 2(k)

µ2(k)
+ 4

∫

A
q2

1(k,α)
Λ 2(k)

µ2(k)
ν(dα).

Hence

limsup
t→∞

1

t
E

∫ t

0

[

(

S(u)−
Λ

µ

)2

+ I2(u)+R2(u)

]

du≤
M4

M
.

�.

Remark 3.1. If R0 ≤ 1 and under the conditions of the
theorem 3.1 we conclude that the solution of (4) fluctuates
around the disease-free equilibrium.

4 Asymptotic behavior around the endemic

equilibrium

In this section we handle the behavior of the global
positive solution (S(t),I(t),R(t)) of the system (4) around
the endemic equilibrium E∗. We assume that R0 > 1. Let

T1 =
µ(k)+ δ (k)

µ(k)+ γ(k)+ δ (k)
−

1

2
σ2

1 (k)−
3

2

∫

A
q2

1(k,α)νd(α),

T2 = µ(k)−
1

2
σ2

2 (k)−
3

2

∫

A
q2

2(k,α)ν(dα),

T3 =
µ(k)(µ(k)+ δ (k))

γ(k)
−

2µ(k)+ γ(k)

2γ(k)
σ2

3 (k)

−

(

2µ(k)+ 3γ(k)

2γ(k)

)

∫

A
q2

3(k,α)ν(dα),

T =
2µ(k)

β (k)
I∗
∫

A
[q2(k,α)− log(1+ q2 (k,α))]ν(dα)

+
µ(k)

β (k)
σ2(k)I

∗

+
µ(k)

(

σ2
2 (k)+ 3

∫

A q2
2(k,α)ν(dα)

)

2µ(k)−σ2
2 (k)− 3

∫

A q2
2(k,α)ν(dα)

(I∗)2

+
µ(k)(µ(k)+ δ (k)) [A]

B
(S∗)2
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+
µ(k)(µ(k)+ δ (k))C

γ(k)D
(R∗)2

,

where
A = σ2

1 (k)+3
∫

A q2
1(k,α)νd(α)

B = 2µ(k)(µ(k)+δ (k)) − σ2
1 (k)(µ(k)+ γ(k)+δ (k)) −

3(µ(k)+ γ(k)+δ (k))
∫

A q2
1(k,α)ν(dα)

C = σ2
3 (k)(2µ(k)+ γ(k))

+(2µ(k)+3γ(k))
∫

A q2
3(k,α)ν(dα)

D = 2µ(k)(µ(k)+δ (k)) − σ2
3 (k)(2µ(k)+ γ(k)) −

(2µ(k)+3γ(k))
∫

A q2
3(k,α)ν(dα)

Theorem 4.1. Under the following conditions

µ(k)+δ (k)

µ(k)+ γ(k)+δ (k)
>

1

2
σ2

1 (k)+
3

2

∫

A
q2

1(k,α)ν(dα),

µ(k) >
1

2
σ2

2 (k)+
3

2

∫

A
q2

2(k,α)ν(dα),

µ(k)(µ(k)+δ (k))

γ(k)
>

2µ(k)+ γ(k)

2γ(k)
σ2

3 (k)

+

(

2µ(k)+3γ(k)

2γ(k)

)

∫

A
q2

3(k,α)ν(dα),

for any given initial condition (S(0), I(0),R(0)) ∈ R
3
+ the

solution of system (4) satisfies

limsup
t→∞

1

t
E

∫ t

0

[

(

S(s)−
µ(k)(µ(k)+ δ (k))

(µ(k)+ γ(k)+ δ (k))T1
S∗
)2

+

(

I(s)−
µ(k)

T2

I∗
)2

+

(

R(s)−
µ(k)(µ(k)+ δ (k))

γ(k)T3

R∗

)2
]

ds ≤
T

T̂

where T̂ = min{T1,T2,T3} .

Proof Consider the function U2 expressed by

U2(S, I,R,k) =
1

2
(S− S∗+ I− I∗+R−R∗)2

+w1(k)

(

I− I∗− I∗ ln
I

I∗

)

+
1

2
w2(k)(R−R∗)2

,

where w1(k),w1(k) for each k ∈ S are two positive
constants to be determined below. Then, using the Itô’s

formula we have

dU2 = LU2dt +(S− S∗+ I− I∗+R−R∗) [σ1(k)SdB1(t)

+σ2(k)IdB2(t)+σ3(k)RdB3(t)]

+w1(k)

(

1−
I∗

I

)

σ2(k)IdB2(t)

+w2(k)σ3(k)(R−R∗)RdB3(t)

+

∫

A
{(S− S∗+ I− I∗+R−R∗) [q1(k,α)S

+q2(k,α)I + q3(k,α)R]

+
1

2
[q1(k,α)S+ q2(k,α)I + q3(k,α)R]2

+w1(k) [q2(k,α)I − I∗ ln(1+ q2 (k,α))]

+w2(k)(R−R∗)q3(k,α)R

+
1

2
w2(k)q

2
3(k,α)R2

}

Ñ(dt,dα),

where

LU2 = (S− S∗+ I− I∗+R−R∗) [Λ(k)− µ(k)S− µ(k)I

− µ(k)R]+w1(k)

(

1−
I∗

I

)

[β (k)SI− (µ(k)+ γ(k)) I]

+
1

2
σ1(k)S

2 +
1

2
σ2(k)I

2 +
1

2
w1(k)σ2(k)I

∗

+w2(k)(R−R∗) [γ(k)I − (µ(k)+ γ(k))R]

+
1

2
σ3(k)R

2 +
1

2
w2(k)σ3(k)R

2

+
∫

A

{

1

2
[q1(k,α)S+ q2(k,α)I + q3(k,α)R]2

+w1(k)I
∗ [q2(k,α)− ln(1+ q2 (k,α))]

+
1

2
w2(k)q

2
3(k,α)R2

}

ν(dα)+
N

∑
l=1

φklU2(S, I,R, l).

Using the fact that the endemic equilibrium
E∗ = (S∗, I∗,R∗) satisfies

Λ(k)−β (k)S∗I∗− µ(k)S∗+ δ (k)R∗ = 0,

β (k)S∗I∗− (µ(k)+ γ(k)) I∗ = 0,

γ(k)I∗− (µ(k)+ δ (k))R∗ = 0,
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we obtain

LU2 = (S−S∗+ I − I∗+R−R∗) [−µ(k)(S−S∗)

−µ(k)(I − I∗)−µ(k)(R−R∗)]+
1

2
σ1(k)S

2

+w1(k)β (k)(I − I∗)(S−S∗)+
1

2
σ2(k)I

2

+w2(k)(R−R∗) [γ(k)(I − I∗)

−(µ(k)+δ (k)) (R−R∗)]

+
1

2
w1(k)σ2(k)I

∗+
1

2
σ3(k)(1+w2(k))R2

+
∫

A

{

1

2
[q1(k,α)S+q2(k,α)I +q3(k,α)R]2

+w1(k)I
∗ [q2(k,α)− ln(1+q2 (k,α))]

+
1

2
w2(k)q

2
3(k,α)R2

}

ν(dα)+
N

∑
l=1

φklU2(S, I,R, l)

= −µ(k)(S−S∗)2 −µ(k)(I − I∗)2

− [µ(k)+w2(k)(µ(k)+δ (k))] (R−R∗)2

+[w1(k)β (k)−2µ(k)] (S−S∗)(I − I∗)

+[w2(k)γ(k)−2µ(k)] (I − I∗)(R−R∗)

−2µ(k)(S−S∗)(R−R∗)+
1

2
σ1(k)S

2 +
1

2
σ2(k)I

2

+
1

2
w1(k)σ2(k)I

∗+
1

2
σ3(k)(1+w2(k))R2

+

∫

A

{

1

2
[q1(k,α)S+q2(k,α)I +q3(k,α)R]2

+w1(k)I
∗ [q2(k,α)− ln(1+q2 (k,α))]

+
1

2
w2(k)q

2
3(k,α)R2

}

ν(dα)+
N

∑
l=1

φklU2(S, I,R, l).

Choose w1(k) =
2µ(k)
β (k) and w2(k) =

2µ(k)
γ(k) , such that

w1(k)β (k)− 2µ(k) = 0 and w2(k)γ(k)− 2µ(k) = 0.

Using the inequality (a+ b+ c)2 ≤ 3
(

a2 + b2 + c2
)

and

2ab ≤ a2

ε(k) + ε(k)b2 where ε(k) = µ(k)+γ(k)+δ (k)
γ(k) , we get

LU2 ≤ −
µ(k)(µ(k)+δ (k))

µ(k)+ γ(k)+δ (k)
(S−S∗)2 −µ(k)(I − I∗)2

−
µ(k)(µ(k)+δ (k))

γ(k)
(R−R∗)2 +

1

2
σ2

1 (k)S
2

+
1

2
σ2

3 (k)

(

1+
2µ(k)

γ(k)

)

R2 +
3

2
S2
∫

A
q2

1(k,α)ν(dα)

+
1

2
σ2

2 (k)I
2 +

3

2
I2
∫

A
q2

2(k,α)ν(dα)

+
2µ(k)

β (k)
I∗
∫

A
[q2(k,α)− ln(1+q2 (k,α))]ν(dα)

+

(

µ(k)

γ(k)
+

3

2

)

R2
∫

A
q2

3(k,α)ν(dα)

+
µ(k)

β (k)
σ2(k)I

∗+
N

∑
l=1

φklU2(S, I,R, l).

There exists a constant C3 such that

N

∑
l=1

φklU2(S, I,R, l)≤C3U2(S, I,R,k).

Thus

LU2 ≤ −T1

(

S−
µ(k)(µ(k)+ δ (k))

(µ(k)+ γ(k)+ δ (k))T1

S∗
)2

−T2

(

I−
µ(k)

T2

I∗
)2

−T3

(

R−
µ(k)(µ(k)+ δ (k))

γ(k)T3

R∗

)2

+T +C3U2(S, I,R,k).

Taking expectation on both sides of (7) and using the
Gronwall inequality, we get

0 ≤ EU2 (S(t), I(t),R(t),r(t))

≤ U2 (S(0), I(0),R(0),r(0))

−E

∫ t

0

[

T1

(

S(s)−
µ(k)(µ(k)+ δ (k))

(µ(k)+ γ(k)+ δ (k))T1

S∗
)2

+T2

(

I(s)−
µ(k)

T2

I∗
)2

+T3

(

R(s)−
µ(k)(µ(k)+ δ (k))

γ(k)T3

R∗

)2
]

ds

+C3

∫ t

0
EU2(S(s), I(s),R(s),r(s))+Tt

≤ {U2 (S(0), I(0),R(0),r(0))

−E

∫ t

0

[

T1

(

S(s)−
µ(k)(µ(k)+ δ (k))

(µ(k)+ γ(k)+ δ (k))T1

S∗
)2

+T2

(

I(s)−
µ(k)

T2

I∗
)2

+T3

(

R(s)−
µ(k)(µ(k)+ δ (k))

γ(k)T3
R∗

)2
]

ds+Tt

}

eC3t
.

Therefore

E

∫ t

0

[

T1

(

S(s)−
µ(k)(µ(k)+ δ (k))

(µ(k)+ γ(k)+ δ (k))T1

S∗
)2

+T2

(

I(s)−
µ(k)

T2

I∗
)2

+T3

(

R(s)−
µ(k)(µ(k)+ δ (k))

γ(k)T3
R∗

)2
]

ds

≤ U2 (S(0), I(0),R(0),r(0))+Tt.
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Fig. 1: The trajectory of the Markov chain r(t).

Hence

limsup
t→∞

1

t
E

∫ t

0

[

(

S(s)−
µ(k)(µ(k)+ δ (k))

(µ(k)+ γ(k)+ δ (k))T1

S∗
)2

+

(

I(s)−
µ(k)

T2

I∗
)2

+

(

R(s)−
µ(k)(µ(k)+ δ (k))

γ(k)T3

R∗

)2
]

ds

≤
T

T̂
.

.�.

Remark 4.1. From theorem 4.1, one can conclude that if
R0 > 1 the solution will fluctuate around the endemic
equilibrium.

5 Examples

In this section, we give simulations corresponding to the
analytical results showed in the past sections using the
Euler-Maruyama scheme [31].
We consider Markov chain r(t) taking value in state space
S = {1,2} with the generator

Φ =

(

−1 1
2 −2

)

.

Then, the Markov chain r(t) has a unique stationary
distribution,

π = (π1,π2) =

(

2

3
,

1

3

)

.

Given a step size ∆ = 0.0001, the Markov chain r(t) can be
simulated by computing the one-step transition probability
matrix P = e∆Φ [32], the transition probability matrix is
given by

P =

(

0.9999 0.0001
0.0002 0.9998

)

.
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Fig. 2: Paths of stochastic and deterministic systems as given in

Example 5.1.

Fig. 1 shows a result of one simulation run of the Markov
chain r(t).

Example 5.1. In this example, we set ν(A) =0.5,
(S(0), I(0),R(0)) = (0.5,0.4,0.1), r(0) = 2, and the
coefficients:
If k = 1,

Λ(1) = 0.25,β (1) = 0.2,µ(1) = 0.19,γ(1) = 0.2,

δ (1) = 0.2,σ1(1) = 0.3,σ2(1) = 0.4,σ3(1) = 0.26,

q1(1,α) = 0.1, q2(1,α) = 0.23, q3(1,α) = 0.2
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If k = 2,

Λ(2) = 0.24,β (2) = 0.22,µ(2) = 0.18,γ(2) = 0.19,

δ (2) = 0.2,σ1(2) = 0.35,σ2(2) = 0.34,σ3(2) = 0.3,

q1(2,α) = 0.2,q2(2,α) = 0.2,q3(2,α) = 0.3.

This implies that

R0 = 0.8421 < 1,

µ(1) = 0.38 > 2σ2
1 (1)+ 4

∫

A
q2

1(1,α)ν(dα) = 0.2,

2µ(1) = 0.38 > σ2
2 (1)+ 4

∫

A
q2

2(1,α)ν(dα) = 0.2658,

2µ(1)γ(1)+ 2µ(1)(µ(1)+ δ (1))

γ(1)
= 1.121

> σ2
3 (1)

(

1+
2µ(1)

γ(1)

)

+

(

4+
2µ(1)

γ(1)

)

∫

A
q2

3(1,α)ν(dα) = 0.3140.

And

R0 = 0.7719 < 1,

2µ(2) = 0.38 > 2σ2
1 (2)+ 4

∫

A
q2

1(2,α)ν(dα) = 0.3250,

2µ(2) = 0.38 > σ2
2 (2)+ 4

∫

A
q2

2(2,α)ν(dα) = 0.2025,

2µ(2)γ(2)+ 2µ(2)(µ(2)+ δ (2))

γ(2)
= 1.1210 >

σ2
3 (2)

(

1+
2µ(2)

γ(2)

)

+

(

4+
2µ(2)

γ(2)

)

∫

A
q2

3(2,α)ν(dα) = 0.5265.

Which implies that the solution of (4) fluctuates around the
disease-free equilibrium. Fig. 2 represents the trajectories
of the solutions to (1) and (4).

Example 5.2. In this example we present a simulation of
the trajectories of the solutions around the endemic
equilibrium E∗ with the following parameters:
If k=1,

Λ(1) = 0.25,β (1) = 0.4,µ(1) = 0.19,γ(1) = 0.2,

δ (1) = 0.2,σ1(1) = 0.1,σ2(1) = 0.12,σ3(1) = 0.11,

q1(1,α) = 0.1, q2(1,α) = 0.23, q3(1,α) = 0.2.

If k=2,

Λ(2) = 0.24,β (2) = 0.38,µ(2) = 0.18,γ(2) = 0.2,

δ (2) = 0.21,σ1(2) = 0.13,σ2(2) = 0.1,σ3(2) = 0.13,

q1(2,α) = 0.2,q2(2,α) = 0.2,q3(2,α) = 0.3.
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Fig. 3: Paths of stochastic and deterministic systems as given in

Example 5.2.

A simple computation gives that

R0 = 1.3495,

µ(1)+ δ (1)

µ(1)+ γ(1)+ δ (1)
= 0.6610

>
1

2
σ2

1 (1)+
3

2

∫

A
q2

1(1,α)ν(dα) = 0.0125,

µ(1) = 0.19 >
1

2
σ2

2 (1)+
3

2

∫

A
q2

2(1,α)ν(dα) = 0.0469,

µ(1)(µ(1)+ δ (1))

γ(1)
= 0.3705 >

2µ(1)+ γ(1)

2γ(1)
σ2

3 (1)

+

(

2µ(1)+ 3γ(1)

2γ(1)

)

∫

A
q2

3(1,α)ν(dα) = 0.0699.
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And

R0 = 1.2982,

µ(2)+ δ (2)

µ(2)+ γ(2)+ δ (2)
= 0.6610

>
1

2
σ2

1 (2)+
3

2

∫

A
q2

1(2,α)ν(dα) = 0.0385,

µ(2) = 0.18 >
1

2
σ2

2 (2)+
3

2

∫

A
q2

2(2,α)ν(dα) = 0.0385,

µ(2)(µ(2)+ δ (2))

γ(2)
= 0.3510 >

2µ(2)+ γ(2)

2γ(2)
σ2

3 (2)

+

(

2µ(2)+ 3γ(2)

2γ(2)

)

∫

A
q2

3(2,α)ν(dα) = 0.1317.

Then, the condition of theorem 4.1 is satisfied. Hence, the
solution of (4) fluctuates around the endemic equilibrium.
The computer simulations in Fig 3, illustrate these results.

6 Conclusion

This paper addressed a stochastic SIRS epidemic model
(4) driven by Brownian motion, regime switching and
Lévy noise, which accurately represent the natural effects.
We first showed the existence and the uniqueness of the
global positive solution for the stochastic system (4),
Then, we proved that the solution of the system (4)
fluctuates around the equilibria under sufficient
conditions using Lyapunov method. We illustrated our
theoretical results by numerical simulations. In future
studies, we will study the effect of white, color and Lévy
noise on other epidemic models such as SVIS model and
SEIR model.
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Matemática Mexicana, 25(3), 637-658 (2019).

[3] S. Zhang, X. Meng, X. Wang, Application of stochastic

inequalities to global analysis of a nonlinear stochastic SIRS

epidemic model with saturated treatment function, Advances

in Difference Equations, 2018(1), 50 (2018).

[4] Z. Cao, Y. Shi, X. Wen, L. Liu, L. Zu, Dynamic behaviors of

a two-group stochastic SIRS epidemic model with standard

incidence rates, Physica A: Statistical Mechanics and its

Applications, 554, 124628 (2020).

[5] L. Xiang, Y. Zhang, J. Huang, Stability analysis of a discrete

SIRS epidemic model with vaccination, Journal of Difference

Equations and Applications, 26(3), 309-327 (2020).

[6] C. S. Holling, The functional response of predators to prey

density and its role in mimicry and population regulation, The

Memoirs of the Entomological Society of Canada, 97(S45),

5-60 (1965).

[7] S. P. Rajasekar, M. Pitchaimani, Ergodic stationary

distribution and extinction of a stochastic SIRS epidemic

model with logistic growth and nonlinear incidence, Applied

Mathematics and Computation, 377, 125143 (2020).
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