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Abstract: The present paper explores estimating failure time data under step-stress partially accelerated life testing based on multiply

censored data. The lifetime distribution of the test units is assumed to follow the Power Function distribution. The point and interval

maximum-likelihood estimations are obtained for the distribution parameter and tampering coefficient. The performances of the

estimators of the model parameters using multiply censored data are evaluated and compared in terms of biases and root mean squared

errors using a Monte Carlo simulation study.
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1 Introduction

Mukherjee and Islam [1] presented an important finite
range failure-time distribution called Power Function
failure model, which includes the exponential and
rectangular distribution as particular cases. The model is
commonly used as a simple lifetime distribution to assess
system reliability. It exhibits a better fit for failure
information and provides more appropriate information
about the hazard rate and other reliability measures.
Hence, it caught the attention of many reliability
practitioners in the world. Lai and Mukherjee [2]
discussed some ageing properties of this distribution and
rectified the mistakes and brought to light some other
interesting properties of this distribution. Lia et al. [3]
mentioned this distribution in the list of some important
bath-tub-shaped failure rate models. Showkat et al. [4]
presented the procedure of estimating the Step-Stress
Partially Accelerated Life Test for Power Function
Distribution under Time Constraint. Recently, Showkat et
al. [5] have introduced a location parameter of the
distribution at a time α(i.e. a time before which failure
cannot occur) which makes it a more useful failure
distribution than the existing one.
It is difficult to collect failure record of highly reliable

products with long lifetimes since only a few or even no
failures occur within a limited testing time under normal
operating conditions. To overcome this problem, an
Accelerated life test (ALT) or partially accelerated life
test (PALT) is used to induce failure information in a
short time. The testing procedure involves the test units to
higher stress conditions than normal to induce failures
more quickly than would be observed under usual
operating conditions. The relation between life and stress
of units is usually known or assumed. For modern and
advanced products, such life–stress relationships are
unknown and cannot be assumed, i.e. ALT data cannot be
extrapolated to use condition. Thus, in such cases,
partially accelerated life test (PALT) is a more suitable
test to be performed, for which tested units are subjected
to both normal and accelerated conditions. PALTs have
been successfully used to enable engineers to estimate the
acceleration factor and so extrapolate the accelerated data
to usual conditions. Thus, PALT is used for reliability
analysis to save more time and money over the ordinary
or traditional life tests.
The two types of PALTs are step-stress and constant
stress). In step-stress PALT, a sample of test items is first
run at use condition and, if it does not fail for a specified
time, it is run at accelerated condition until pre-specified
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numbers of failures are obtained or censoring time is
reached. Goel [6] considered the estimation problem of
the accelerated factor using both maximum likelihood and
Bayesian methods for items having exponential and
uniform distributions. DeGroot and Goel [7] estimated
the parameters of the exponential distribution and
acceleration factor in SS-PALT using Bayesian approach,
with different loss functions. Also, Bhattacharyya and
Soejoeti [8] estimated the parameters of the Weibull
distribution and acceleration factor using the maximum
likelihood method. Bai and Chung [9] estimated the scale
parameter and acceleration factor for the exponential
distribution under type I censored sample using the
maximum likelihood method. Abdel-Ghaly et al. [10]
investigated the estimation problem of the acceleration
factor and the parameters of the Weibull distribution in
SS-PALT using the maximum likelihood method in two
types of data, namely, type I and type II censoring. Wang
et al. [11] discussed step-stress PALTs for Weibull
distribution under multiply censored data. Showkat et al.
[12] described the step stress partially accelerated life
testing plan for competing risk using adaptive type-I
progressive hybrid censoring. Rahman et al. [13] obtained
the likelihood estimation of Exponentiated exponential
distribution under step stress partially accelerated life
testing plan using progressive type-II censoring. Recently,
Lone and Ahmed [14] have presented the detailed
analysis and design of Accelerated Life Testing with an
Application under Rebate Warranty. More recently,
Ahmed et al. [15] have discussed the statistical inference
for burr type X distribution using geometric process in
accelerated life testing design for time censored data.
Alam et al. [16] presented a study on accelerated life test
and age replacement under type-II censoring for Burr
type-X distribution. Alam et al. [17] also tackled with
step-stress partially accelerated life test under progressive
censoring scheme using power function distributions.
This study consists of estimating the acceleration factor
and parameters of Power Function distribution using the
maximum likelihood method. This work was conducted
for SS-PALT under multiply censored data. The precision
of the estimators obtained is investigated in terms of mean
bias, root mean square error and the coverage rate based
on a simulation study. Moreover, the confidence intervals
of the estimators are also obtained. The Power Function
model is used first time under multiply censored data. No
previous studies were available.
This study is organized, as follows: In section 2, the
model under SS-PALT using multiply censored data is
provided. In section 3, the maximum likelihood method is
used to find the point and interval estimates of parameters
and acceleration factor for the finite range model under
multiply censored data. Simulation studies for illustrating
the theoretical results are presented in section 4.
Conclusion is presented in section 5.

2 The Material and Test Method

Power Function failure model is an important finite range
distribution in the modern reliability practice and can be
frequently preferred over mathematically more complex
distribution, such as the Weibull and the lognormal
because of its simplicity. The distribution has the
probability function follows:

f (t, p,θ ,α) =
p

θ p
t p−1 p > 0,θ > 0,0 < t < θ (1)

where θ is a scale parameter and p is the shape parameter.
The cumulative distribution function is:

F(t) =
( t

θ

)p

(2)

And the reliability function of the finite range model is
given by

R(t) = 1−
( t

θ

)p

(3)

In SS-PALT, all of the n units are first tested under
normal use conditions and if the unit does not fail for a
pre-specified time τ , then it runs at accelerated condition
until failure occurs. This means that if the item has not
failed by some pre-specified time τ , the test is switched to
the higher level of stress and is continued until failure
occurs. The effect of this switch is to multiply the
remaining lifetime of the item by the inverse of the
acceleration factor β . In this case, switching to a higher
stress level will shorten the life of the test item. Thus the
total lifetime of a test item, denoted by Y, passes through
two stages: the normal and accelerated stage. Therefore,
the lifetime of the test unit in SS-PALT is given, as
follows:

Y =

{

T T ≤ τ
τ +β−1(T − τ) T > τ

(4)

Where T is the lifetime of the item at normal use
condition, τ is the stress change time and β (> 1) is the
acceleration factor which is the ratio of mean life of an
item at use condition to that at the accelerated condition.
Assume that the lifetime of the test item follows Power
Function failure distribution with shape parameter θ and
scale parameter p. The probability density function and
cumulative density function of total lifetime, Y , of an item
is given by equations (5) and (6), respectively.

f (y) =







0 y < 0
f1(y) 0 < y ≤ τ
f2(y) y > τ

(5)

where f1 =
p

θ p t p−1 is equivalent form equation(1), and

f2(y) =
β p
θ p [τ +β (y− τ)]p−1 θ > 0, p > 0 and β > 0

F(y) =







0 y < 0
F1(y) 0 < y ≤ τ
F2(y) y > τ

(6)

c© 2021 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 15, No. 2, 147-152 (2021) / www.naturalspublishing.com/Journals.asp 149

where F1(y) =
(

y
θ

)p
and F2(y)=

[τ+β (y−τ)]p

θ p ; θ > 0, p> 0
and β > 0

This is obtained using equations (1) and (4) by the
variable transformation technique. At normal use
condition, suppose y1 f ,y2 f , · · · ,yr1 f

are r1 failure times
and y1s ,y2s , · · · ,ym1s

are m1 censoring times of test items.
Also, at accelerated conditions, we assume that there are
r2 failures at times y1 f ,y2 f , · · · ,yr2 f

and m2 units with

censoring times y1s,y2s, · · · ,ym2s. Then, the likelihood
function for the SS-PALT using multiply censored data is

L =C

r1

∏
i=1

f (yi f )
m1

∏
j=1

[1−F(y js)]
r2

∏
k=1

f (yk f )
m2

∏
i=1

[1−F(yis)]

(7)
Substituting equations (5) and (6) in likelihood equation
(7) and taking the logarithm, we get

lnL = ln(c)+ r1ln(p)− r1 pln(θ )+ (p− 1)
r1

∑
i=1

ln(yi, f )

+
m1

∑
j=1

ln(θ p − y
p
j,s)+ r2ln(β p)− r2pln(θ )

+(p−1)
r2

∑
k=1

lnφk, f +
m2

∑
l=1

ln(θ p−φ p
l,s)− (m1 +m2)lnθ p

(8)

where φk, f = τ +β (yk, f − τ) and φl,s = τ +β (yl,s− τ)

3 Estimation of Parameters

The maximum likelihood estimation method is used to
find an estimate of the parameters with good statistical
properties. The point and interval estimation of the
parameters of Power Function distribution and tempering
coefficient is evaluated.

3.1 Point estimation

In this subsection, the process of obtaining the point ML
estimates of parameters and tempering coefficient is
discussed. The maximum likelihood estimates of β , θ and
p are obtained by setting the first partial derivatives of
equation (8) to zero with respect to β , θ and p

respectively.

∂ lnL

∂θ
=

m1

∑
j=1

pθ p−1

(θ p)− y
p
j,s

−
p(r1 + r2)

θ
+

m2

∑
l=1

pθ p−1

(θ p)−φ p
l,s

−
p(m1 +m2)

θ
= 0 (9)

∂ lnL

∂β
= β−1r2 +(p− 1)

r2

∑
k=1

yk, f − τ

φk, f

−
m2

∑
l=1

pφ p−1
l,s (yl,s − τ)

θ p −φ p
l,s

= 0 (10)

∂ lnL

∂ p
=

r1 + r2

p
− (r1 + r2)lnθ

−
r1

∑
i=1

lnyi, f +
m1

∑
j=1

θ plnθ − y
p
j,sln(y j,s)

θ p − y
p
j,s

+
r2

∑
k=1

φk, f

+
r1

∑
i=1

lnyi, f +
m2

∑
l=1

θ plnθ − y
p

l,sln(yl,s)

θ p −φ p
l,s

−(m1+m2)lnθ = 0

(11)

Equations (9), (10) and (11) are non-linear functions
of population parameters as well as functions of the
solutions of these equations. Due to this difficulty, it
impossible possible to find an exact solution. Hence, to
obtain the MLEs of β ,p and θ , the Newton Raphson
method is used.

3.2 Interval estimates

The asymptotic variance-covariance matrix of β ,p and θ
is obtained by inverting the Fisher information matrix, I =
[

− ∂ 2lnL
∂ωi∂ω j

]

; i, j = 1,2,3, where ω1 = β , ω2 = θ , ω3 = p.

The elements of fisher information are given by:

∂ 2lnL

∂θ 2
=−

m1

∑
j=1

pθ 2p−1p(p− 1)yp
j,sθ

p−2

(θ p − y
p
j,s)

2

+
m1 +m2 + r1 + r2

θ 2

+
m2

∑
l=1

p(p− 1)pθ p−2(θ p −φ p
l,s)− p2θ 2p−1

(θ p −φ p
l,s)

2
(12)

∂ 2lnL

∂β 2
=−

r2

β
− (p− 1)

r2

∑
k=1

φ−2
k, f (yk, f − τ)2

−
m2

∑
l=1

p(yl,s − τ)2





(p− 1)θ pφ p−2
l,s +φ

2(p−1)
l,s

(θ p −φ p
l,s)

2



 (13)

∂ 2lnL

∂ p2
=

m1

∑
j=1

θ py
p
j,s[2lnθ ln(y j,s)− ln2y j,s − ln2θ ]

(θ p − y
p
j,s)

2

+
m2

∑
l=1

θ pφ p
l,s[2lnθ ln(φl,s)− ln2φl,s − ln2θ ]

(θ p −φ p
l,s)

2

−
(r1 + r2)

p2
(14)
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∂ 2lnL

∂θ∂β
=

m2

∑
l=1

p2θ p−1φ p−1
l,s (yl,s − τ)

(θ p −φ p
l,s)

2
(15)

∂ 2lnL

∂θ∂ p
=

m1

∑
j=1

θ 2p−1 −θ p−1y
p
j,s + pθ p−1y j,s(θ

−1y j,s)

(θ p − y
p
j,s)

2

m2

∑
l=1

θ 2p−1 −θ p−1φ p
l,s + pθ p−1φl,s(θ

−1φl,s)

(θ p −φ p
l,s)

2

+
(r1 + r2)

θ
(16)

∂ 2lnL

∂β ∂ p
=

m2

∑
i=1

(yi,s − τ)φ p−1
i,s (θ p −φ p

i,s)(plnφi,s + 1)

(θ p −φ p
i,s)

2

−
m2

∑
l=1

[

p(θ plnθ −φ p
l,slnφl,s)

(θ p −φ p
l,s)

2

]

+
r2

∑
k=1

yk, f

φk, f
(17)

4 Simulation Study

Simulation studies are performed to discuss the
performance of the ML estimators in terms of their
biases, root mean square errors (RMSEs) and coverage
rate for different combinations of true values of θ , β and
p. For the samples of multiply censored data, the
simulation algorithm included the following
Sample size n = 20,50,100; parameter true values
θ = 4,5, β = 6,8 and p = 10,15 censoring level
(CL) = 0.2,0.4.
We first generate a sequence of multiply censored data
from Power Function distribution in partially accelerated
life test using the inverse CDF method. Based on the
simulated data, a series of calculations that refer to MLE
and performance indicator (bais, RMSE, coverage rate)
will be performed. The procedure is as follows:
1. Generate n random samples (t1, t2, · · · , tn)T from a
Power Function distribution with the specified values of
shape and scale parameter. The generation of Power
Function distribution is very simple, if U is uniform

distribution U(0, 1), then t = θU1/p is a Power Function
distribution.
2. Let t1 = (t11, t21, · · · , tn11) be the number of samples
that fail at normal operating conditions before the
specified stress change time . Again, choose n2 samples
that fail after the specified time, /tau, as the stress
condition samples which is t2 = (t12, t22, · · · , tn22).
3. Let the number of failures at normal and accelerated
stress levels be n1 f = n1(1−CL) and n2 f = n2(1−CL),
respectively, where CL denotes the censoring level. For
example, CL = 0.2 denotes 20% censored data and hence
80% failure data.
4. Let

δi,1 =

{

1 i = 1,2, · · · ,n1 f

ui,1 i = n1 f + 1, · · · ,n1

and

δ j,2 =

{

1 j = 1,2, · · · ,n2 f

u j,2 i = n2 f + 1, · · · ,n2

where ui,1andu j,2 are drawn from the uniform distribution
U(0,1).
5. Set xi,1 = δi,1 × ti,1,i=1,2,··· ,n1

and

x j,2 = δ j,2 ×
[(

t j ,2−τ

β

)

+ τ
]

, j = 1,2, · · · ,n2

6. Finally, bias, root mean square error and coverage rate
of parameters are calculated from the obtained data. The
coverage rates of the 95% confidence interval for the
parameters are based on 1000 replications. Simulation
programs are performed using R software. The frequency
coverage rate for the limit is a binomial random variable
with β = 0.05 and N = 1000. Therefore, the confidence
interval for the coverage proportion is
0.95 ± 1.96

√
0.95× 0.05÷ 1000. Hence, the limit of

coverage proportion is 0.9365 − 0.9635. The observed
results are presented in the Tables [1-4].

Table 1: The simulation results for the Power Function

distribution under multiply censored data (p = 10,β = 6,θ =
4,τ = 3&CL = 0.2)

Sample Parameter Estimated Bias RMSE 95% limits Coverage

size value Lower Upper rate

P 10.1274 0.1102 0.4879 9.4623 11.1029

20 θ 3.9197 0.1019 0.1733 3.7422 4.1066 89.9%

β 6.1002 0.0672 0.4109 5.7268 6.4481

P 10.2089 0.2074 0.5699 9.4155 11.0956

50 θ 4.0285 0.1285 0.1877 3.5221 4.2335 96.3%

β 5.9879 0.0118 0.1226 5.3528 6.5592

P 10.0365 0.0832 0.3365 9.1002 11.3870

100 θ 4.0711 0.0876 0.2189 3.4560 4.1478 98.4%

β 5.8663 0.0832 0.1351 5.3001 6.5033

Table 2: The simulation results for the Power Function

distribution under multiply censored data (p = 10,β = 6,θ =
4,τ = 3&CL = 0.4).

Sample Parameter Estimated Bias RMSE 95% limits Coverage

size value Lower Upper rate

P 9.9871 0.4105 9.3877 9.3877 10.5788

20 θ 3.9215 0.1416 0.4717 3.7100 3.9879 93.9%

β 5.8879 0.2642 0.4945 5.3845 5.8967

P 1 9.9633 0.0043 0.3591 9.5433 10.0967

50 θ 4.0156 0.1023 0.6289 3.6122 4.1305 96.7%

β 5.7125 0.3189 0.1945 5.3087 6.2562

P 9.9378 0.0334 0.2744 9.1002 11.0811

100 θ 3.9344 0.0689 0.2688 3.4560 4.0123 98.1%

β 5.6673 0.0944 0.2255 5.3001 6.4073
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Table 3: The simulation results for the Power Function

distribution under multiply censored data (p = 15,β = 8,θ =
5,τ = 4&CL = 0.2).

Sample Parameter Estimated Bias RMSE 95% limits Coverage

size value Lower Upper rate

P 15.3761 0.1115 1.1187 13.8977 16.4533

20 θ 5.1216 0.0916 0.2718 4.7880 5.4223 92.5%

β 7.8571 0.1642 0.4965 7.3870 8.4499

P 15.3124 0.0941 0.7591 13.7866 16.3477

50 θ 5.0156 0.1227 0.2259 4.5639 5.3987 91.3%

β 7.7175 0.1180 0.2940 7.2017 8.5112

P 15.1371 0.0924 0.5744 13.8547 16.1090

100 θ 5.0044 0.0644 0.1624 4.6988 5.2770 98.4%

β 7.6323 0.0849 0.3034 7.2133 8.0173

Table 4: The simulation results for the Power Function

distribution under multiply censored data (p = 15,β = 8,θ =
5,τ = 4&CL = 0.4).

Sample Parameter Estimated Bias RMSE 95% limits Coverage

size value Lower Upper rate

P 14.8746 0.2110 1.0187 13.5917 15.4563

20 θ 4.9978 0.1906 0.2718 0.3798 4.6788 89.5%

β 7.7911 0.1655 0.3045 7.2843 8.0455

P 14.9980 0.2100 0.1745 13.9860 16.2247

50 θ 4.9101 0.1221 0.2478 4.3679 5.7787 90.0%

β 8.0229 0.1855 0.5908 7.1227 8.2811

P 15.0188 0.0911 0.5045 14.8564 16.1109

100 θ 5.0910 0.0646 0.1655 4.5908 5.1773 89.7%

β 7.9321 0.1167 0.3795 7.3193 7.6717

5 Conclusion

The present paper presented the processes and simulated
procedure for estimating failure time data under
step-stress partially accelerated life tests based on
multiply censored data. The lifetime distribution of the
test units is assumed to follow Power Function
distribution. It was observed that ML estimates could not
be obtained in closed form and so the Newton-Raphson
technique was used as an alternative method. The results
showed that the MLE method performed well in most of
the cases in terms of bias, RMSE and the coverage rate.
Also, the coverage rate in most of the cases close to the
nominal value for large sample sizes. Thus, the MLE
method is a good approach to estimate the parameters of
Power Function distribution and the acceleration factor in
step-stress partially accelerated life tests under multiply
censored data. As future work, the same can be
considered under Bayesian environment.
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