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Abstract: In this paper, we investigate some properties through four-level A-type atom interacting with a single-mode quantized field
with multi-photon transitions. We study this system in the presence of detuning parameter, Kerr nonlinearity, and intensity-dependent
atom-field coupling in a dissipative cavity (i.e. the field is suffering decay rate). Also, the coupling parameter modulated to be time
dependent. The exact solution of this model is given using the Schrédinger equation when the atom and the field are initially prepared
in superposition state and coherent state, respectively. We employed the results to calculate some aspects such as atomic population
inversion, geometric phase and Husimi Q-function. It is emphasized that the system can be used as a quantum memory.

Keywords: Atomic population inversion, Four-level atom, Geometric phase, Husimi Q-function, Kerr-medium

1 Introduction

Jaynes-Cummings model (JCM) [1] is a well-known and
important model in quantum optics. It is an exactly
solvable model which clearly describes the interaction
between a two-level atom and a single-mode of a
quantized radiation field, when the Rotating-Wave
Approximation (RWA) is considered. Much attention has
been paid to generalize the JCM in many different
directions such as multi-photon transition, multi-level
atoms, intensity-dependent coupling, multi-atoms
interaction, multi-mode fields, Stark shift and Kerr
nonlinearity, which have been recently
investigated [2—15].

Numerous efforts have been devoted to analytical
solutions of multi-level atoms interacting with the cavity
field problems. One of the interesting example is the
system of three-level atom different configurations (A, V,
and Z) and one- or two-mode field [2, 7, 16-21]. Many
studies have been conducted on the atom-field
entanglement and  geometric phase in  such
systems [2,7, 16, 18-22]. Several studies of a three-level
atom in motion which interacts with a single-mode field
in an optical cavity in an intensity-dependent coupling
regime have been conducted [23]. On the other hand,
when the quantum systems interact with their surrounding

environments, this results in the dissipation and then the
decoherence which leads to reducing the quantum system
entanglement. Several studies have been conducted in this
domain. For instance, information dynamics of a
three-level atom interacting with a damped cavity field
has been recently investigated taking into consideration
that the optical cavity is coupled to the environment [24].
Also, the case of a dissipative cavity is studied for a
three-level atomic system through master equation
methods [25,26] and postulating a non-Hermitian model
Hamiltonian [27-29].

Another example of multi-level atoms interacting with
the cavity field problems is the system of four-level atom.
Several systems of the four-level atom configurations
such as =, N, X, Y, A, A, double-A, etc. have been
introduced and some of their aspects have been
visualized [21,30-36]. For instance, the author in [32] has
considered the quantum mutual entropy of a single
four-level atom strongly coupled to a cavity field and
driven by a laser field. Another study has been done by
Abdel-Aty et al. in [33]. They have studied an
intensity-dependent coupling regime that consists of a
A-type Four-level atom interacting with a single-mode
quantized field and some physical properties of the
atom-field entangled have been investigated.
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In the recent years, much attention has been focused
on the properties of the four-level atomic systems when
time-dependent  coupling  with  the field is
considered [37-42]. Theoretical efforts have been
stimulated by experimental progress in cavity QED. In
addition to the experimental drive, there also exists a
theoretical motivation to include the atomic motion effect
in the four-level atomic systems. More recently, dynamics
of entanglement of time-dependent three- and four-Level
atomic system under Stark effect and Kerr-medium has
been investigated [21].

In this work, we extend the models in [33,41,42] by
considering  the  coupling parameter to  be
intensity-dependent. Also, the four-level atom is moving
in a dissipative cavity. The atomic inversion, the
geometric phase and the Husimi Q-function expressions
are calculated. The present paper is organized as follows:
In Sec. 2, we introduce the model and its solution under
certain approximation similar to that of the
Rotating-Wave Approximation (RWA) at any time ¢ > 0,
In Sec. 3, we investigate the atomic inversion and the
dynamical properties for different regimes. Numerical
results for the atomic inversion are discussed in this
section, as well. In Sec. 4, the geometric phase is
investigated. We devote Sec. 5 to study one of the
quasi-probability distribution functions. In particular, the
expression of the Husimi Q-function is presented. The
main results and conclusion are presented in Sec. 6.

2 Physical Model

The considered model is an intensity-dependent regime
that consists of a moving four-level A-type atom with the
energy levels w4 > @3 > @, > o, interacting with a
single-mode quantized field of frequency £ in an optical
cavity surrounded by Kerr nonlinearity in the presence of
detuning parameters. The transitions [4) «— |3),
|3) «— |1), and |3) «— |2) are allowed while the
transition |2) «— |1} is forbidden as shown in Fig. 1.
This means that the number of photons of the atomic
states |2) and |1) is the same. To include damping effects,
we propose the following non-Hermitian Hamiltonian in
the Rotating Wave Approximation (RWA) of the
introduced physical system (. = 1) [33,41,42]:

H = a)i(%iiﬁL.QﬁTﬁJr'yl (t)(]ék(%g,[ Jr]é-rkélg,)

M#

1
+1(1) (R 632+ R™623) + 13(1) (R* 643 + R™634) (1)

Tat?a® - %F&Tﬁ. )

In which, the operators 6;; = |i) (j| are the atomic
raising or lowering operator, the bosonic operators a' and
a are the field creation and annihilation operators,
respectively, 2 is the frequency of the single-mode field,
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Fig. 1: Schematic diagram of a four-level A-type atom with
frequencies w; (i=1, 2, 3, 4) interacting with single-mode
electromagnetic field with frequency £ in a cavity suffers a
decay rate I” for field.

Yi(t), i = 1,2,3 are the atom-field coupling parameters, ¥
is the third-order nonlinearity of the Kerr-medium and I
is the decay (dissipation) coefficient of the field. In
addition, the operators R" = f(7)a" and R = af (i) with A
= a'a are, respectively, the nonlinear (f—deformed)
creation and annihilation operators, which satisfy the
following communication relations:

R,RT] = A+ 1)f2(A+1)—af*(h)

A

[RT,i] = —RT, [R,A] =R, 3)

where f(7) is a function of the number operator (intensity
of light). To observe what we have really done, we put

4 .
~ A AT A KO =P N
H= Z a)jcjj—i—.QaTa—i——i—xaTzaz— EFaTa
Jj=1

+" (t)(a [f(ﬁ/]c)]' 03] + [f(ﬁ — ]]CS]!di(AFB)
+p(r)(a" [ f[(J,;(i);](!)] [0t [ f[({%(?;c!)] ! a™63)
+r(r) (@ [ [(Jl;(i)]](!)] [6u3+ [ f[({%(?]]:)] ! a"6y). @

The interaction Hamiltonian can be rewritten in the
following manner
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Where, the detuning parameters Ay, Ay and Az are given
by

Al = @) — 3+ kQ,
Ay = 0 — 3+ kQ,
Az = 03 — 4 +kQ.
For simplicity, we consider ¥; (1) = (1) = »(¢) = y(¢) =
Aisin(8t), where A;, i = 1,2, 3 are arbitrary constants. We

assume that the wave function of the atom-field at any time
t > 0 can be expressed as

oo

¥ () = ) [A1(n1) [1,m) +Ax(n.1) |2,m)

n=0
+A3(n—2,t)|3,n—2)
+A4(7’l—4,t) |4,I’l—4>] (6)

To reach this goal, suppose that the atoms enter the cavity
in the coherent superposition of the states |1), |2), |3) and
[4), i.e.,

|‘I’(O)>:061|1>+062|2>+OC3|3>+OC4|4>, @)

where o1, 0, 03 and oy are arbitrary constants and obey
the normalization relation
4

Yl =1, (8)

i=1

and the field is assumed to be initially in the coherent state,
i.e.,

[¥(0))r =} qnln). ©)
n=0
where ¢, = e"o“z/z?—:ﬁ, |a|? is the initial mean photon

number for the mode. Now, substituting | (7)) from Eq.
(5) and H; from Eq. (4) in the time-dependent
Schrédinger equation i% |¥ (1)) = Hy |¥(t)), one may
arrive at the following coupled differential equations for
the atomic probability amplitudes

iAy(n,t) = viA|(n,t) + g1V sin(81)As(n — k,t),
iAy(n,t) = viAa(n,t) + g2e™ sin(81)Az(n — k1),
iA3(n—k,t) = vaAz(n—k,t) + gre "1 sin(81)A; (n,1)
+gre "2 sin(8t)Aa (n, 1)
+g3e sin(8t)A4(n — 2k,1)

Where,

vy = Xn(nfl)fél"n, vz:X(nfk)(nfkfl)fél"(nfk),

vy = 2(n—2K)(n—2k—1)— %F(n72k),

= nt ) _ n__[fm]!
g1 =M (n=k)! [f(n k)] p=h T T
o = Ay 2R =R

(n—2k)! [f(n—26)]"
F)]t = f)f(n=1)...f(1), [FO)]!=1.

As one can see there are two exponential terms in each
equation: one is rapidly oscillating terms eF(+A) and
the other is slowly varying terms e(3=4)! In this case if
we neglect the rapidly varying terms compared with the
slowly varying terms, then Eq. (9) reduces to

Aq Vi 0 _glel: A_]t 0 Aq

ii Ay | 0 ) Vi —go¢é Aot 0 ) Ar
dr | Az - gle—i At gze—i Ast v —g3ei Ast Az
Ay 0 0 g‘3e’i Azt V3 Ay

(11)

where A; = A;— 8, §; = g1/2i, j=1,2,3. It is obvious
that the coefficients of this coupled system of differential
equations are time-dependent ones. We can avoid this
problem using the transforms

_ o A
Ag(n—2k,t) = Ag(n— 2k, t)e (At 31 (12)

and the Laplace transform to arrive at

s+ivp 0 —igi 0 Li(s) A1(0)
0 s+ivy —ig 0 L (S) . 42(0)
ig1 igr S+iv3 —ig3 L3 (S) B 43 (0)
0 0 igz3 Ss+ivg Ly(s) A4(0)
(13)
Where
A _ A
V= V1+71, \72=V1+(A2—71),
i ) z
V3 = szjl, \74:V3*(A3+71)

We used Cramer’s rule [43] to solve the set of algebraic
equations (12) and obtained

iAa(n—2K,1) = v3da(n —2k.1) 1) = 1. 1a6) = 2 120 = 28 1 = 28,
+g3e ' sin(8t)As(n— k,1). (10) (14)
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where
AG) 0 -z 0
| Ay(0) s+ivy —iga O
fl (S) - 63(0) ng S+ZV3 *l§3 ) (15)
A4(0) 0O ig3 s+ivs
s+ivy AI(O) —ig] 0
_| 0 Ay0) —iga O
PO =1 g A3(0) s+ivy —igs | (16)
0 A4(0) ig3 s+ivg
s+ivp 0 A(0) 0
0 s+ivm Az( ) 0
=| . |, 17
f3(s) ig) ig) () —ig; a7)
0 0 A4(0)S+i\74
s+iv; O —ig Al(O)
B 0 s+ivy —igr A(0)
f4(S) - lgl lgz S+lV3 A3( ) ) (18)
0 0 ig3 A4(0)
4
(s) =TT —ny), (19)
j=1
and u;, j=1,2,3,4 are the roots of the equation
s4+a3s3+a2s2+als+ao:0, (20)
which can be given using MATHEMATICA, where
ap = Vi l73v4+g1V2V4+ng1V4 +ng1V2,
ay = —i[304(F) +72) + V19273 + ¥a) + &7 (72 + V)
+83 (71 +74) + G (71 + 7)),
ay = =[P (T 4734 74) + 02 (T3 4 74) + B30 + 32 + 25 + 23],
az = (V] +Vy + V3 +74). 21)

Taking the inverse Laplace transform for L;(s), L(s),
Li(s), and L4(s), we get the expressions for Aj(n,t),
As(n,t), Az(n — k,t), and A4(n — 2k,t) and then the
expressions for Aj(n,t), Ax(n,t), Asz(n — k,t), and
Ag(n — 2k,t). At any time ¢ > 0 the reduced density
matrix of the atom is given by:

The reduced density operator of the field pr(¢) is given by
Pr(t) = Tra([¥ (1)) (F(1)]). (24)

In the next sections, the initial mean photon numbers are
fixed at |t|> = 25, and the atom is prepared initially in the
superposition state (o = op = 03 = o4 = 1/2). For
simplicity, we consider the constants A; = A have been
taken to be real and the interaction time is the scaled time
T = At. Also, all plots correspond to the
intensity-dependent coupling with the nonlinearity
function f(n) = 1/4/n, and 2-photon transition (k = 2).

3 Atomic Population Inversion

Through the collapse and revival phenomenon, we can get
information about the behavior of the atom-field
interaction. Thus, we shall study the dynamics of an
important quantity, i.e. atomic population inversion. The
atomic inversion is defined as the difference between the
population of the exited state |4) and the ground state
|1) which is written, as follows [2,44]:

W (1) = pas(t) — p11(2). (25)

No, we discuss the behavior of the atomic population
inversion that corresponds to the intensity-dependent
coupling with nonlinearity function (f(n) = 1//n). This
will be done on the basis of the previous calculations. We
examine the influence of the time-dependent coupling
parameter, detuning parameter, Kerr-medium and the field
damping factor on the behavior of the atomic population
inversion. The temporal evolution atomic population
inversion is presented in Figs. 2-4. In Fig. 2, we have
considered the cases in which the values of the
time-dependent coupling parameter 6/A = 0.01, Pi and
5Pi in the absence (left plots) or presence (right plots) of
the field damping factor I". Moreover, we have considered
Al/ﬂ, = Az/l = A3/l = X/l = 0. When
6/A =0.01, I =0, the periodic behavior of the atomic
population inversion function appears (see Fig. 2(a)).
However, when I" = 0.01, the periodicity that appeared in
Fig. 2(a) disappears and the atomic population inversion
function equals zero in time evolution process in the
considered time interval (see Fig. 2(b)). When
0/A = Pi, I =0, the time interval of the period and the
maximum value of oscillations reduces compared to the
previous case.

Furthermore the mean value of oscillations is shifted
downward (see Fig. 2(c)). The time interval of the period
of oscillations increases again and the mean value of
oscillations is zero in Fig. 2(e) when § /A = 5Pi, I" =0,
and the maximum values of oscillations decrease
compared to the previous cases. The atomic population
inversion function equals zero as the time develops when
0/A =5Pi, I' = 0.01, but less than the previous cases
(see Fig. 2(f) compared to Fig. 2(b) and Fig. 2(d)). To

P44Etg P43Etg P42gt% P41gt%
AN | p3a(t) p3a(t) pa2(t) pai(t
A =Tr P OO = | 550 pos(t) pra(t) i (1) |
p1a(t) p13(t) p12(t) p11(t)
(22)
pu() = Y 4y (m )2,
n=0
p22 Z |A2 n, t
o) = i As(n—2,1)P,
n=0
p44 Z |A4 n—4a.t | (23)
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(b) 6/A=0,01, T=001
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Fig. 2: Evolution of the atomic population inversion W(z) for
f(n) = 1/y/n of a four-level atom interacting with a single-
mode coherent field for the parameters 7 = 25, A} = Ay =
A3 =0, x/A =0 and for: (a) 6/A =0.01, ' =0, (b) §/A =
0.01, ' =0.01 (¢c) 6/A =Pi, I' =0, (d) 6/A = Pi, I =0.01,
(e)6/A=5Pi, ' =0, (f) 6/A =5Pi, ' =0.01.

analyze the behavior of the atomic population inversion
function in the presence of the detuning parameter and in
the presence or absence of the field damping factor, we
have plotted Fig. 3. In Fig. 3(a), when
A /A =5, Ap/A =A3/A =0and I" = 0, the periodicity
appears, but when I' = 0.01, it disappears as time
develops (see Fig. 3(b)). The time interval of the period of
oscillations elongates in Fig. 3(c) compared with Fig.
3(a). A new kind of periodicity appears when
A /A =5, Ay/JA =10, A3/A =15, T' = 0. Also, the
range of oscillations is less than the previous cases (see
Fig. 3(e)). The effect of Kerr-medium in the absence or
presence of the field damping factor has plotted in Fig. 4.
We observe that the number of oscillations decreases
compared with that in Fig. 2 and Fig. 3. Furthermore, the
range of oscillations decreases as the parameter y/A
increases. In Fig. 4(a), when /A = 0.7, I' = 0, the mean
value of oscillations is shifted upward in the time
evolution process. The field damping factor leads to

destruction of the behavior of the atomic inversion
function (see Fig. 4(b, d, f)).

4 Geometric Phase

Through a cyclic evolution governed by a slow change of
parameters, the quantum system acquires a phase factor ,

(b) Ay/A=5,A0/A=A3/1=0,T=0.01

¥ i 8
N

w(r)

=
2
8

(d) Aj/A=15,A5A=A3/A=0,T=0.01

Vi
A4

Wi(r)

0 200 400 600 800 [ 10 20 30 40 50

X A A=5.0,/A=10.A3A=15
808 (VA5 =108y =15 (£) Ay/A=5.A) A=10,45/A=15,7=0.01

w@)

D T i
o TR R R TI

~0.04

Fig. 3: Dynamics of the atomic population inversion with the
same conditions as stated in Fig. 2 but for § /A = x/A = 0 and
for: (a,b) A} =51, Ay =A3 =0, (c,d) A} =154, Ay =A3 =0,
(e,f) Ay =51, Ay =104, A3 =15A.

i.e. the geometric phase. The most common formulations
are known as the Pancharatnam [45], Berry phase [46]
and the Aharonov-Bohm phase [47]. The phase
prescription is not trivial when the evolution is not cyclic
because the initial and final states are different. On
subtracting the dynamical phase ¢,(¢t) from the
Pancharatnam phase [45] (the total phase ¢ (7)) we obtain
the geometric phase @ (z). Pancharatnam prescribes the
phase between the vectors |¥(0)) and |¥(7)) as

¢ () = arg (F(0)[¥ (1)) - (26)

In our model, the interaction is time-dependence ,so the
geometric phase is just the total phase, i.e.

(1) = arg (W (0)[¥(2)) - 27

Now, we address the evolution of geometric phase
0 (t) versus the scaled time Ar under the influence of the
system parameters. In Figs. 5-7, we have plotted the
evolution of geometric phase @, (¢) versus the scaled time
At when the field is initially prepared in the coherent state
and the atom is prepared in superposition between the
levels |1), |2), |3), and |4), for many values of the system
parameters 0 /A, A /A, Ay/A, A3/A, /A and T

In Fig. 5, we have examined the behavior of the
geometric phase in the presence of the time-dependent
coupling parameter (6/A = 0.01, Pi, 5Pi) and in the
absence (left plots) or presence (right plots) of the field
damping factor I". According to Fig. 5(a), the oscillations
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-0.004
0

0.015
' 0.010
0.005
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Fig. 4: Dynamics of the atomic population inversion with the
same conditions as stated in Fig. 2 but for § /A =0, A; =A; =
Az =0and for: (a,b) x/A =0.1,(c,d) x /A =0.5, (e, f) x /A = 1.

of the geometric phase function started from zero and
oscillated approximately between -1.5 and 1.5. The
addition of the field damping factor (I" = 0.1) decreases
the number of oscillations (see Fig. 5(b)). In Fig. 5
(¢),when 6/A = Pi, I' =0 and in Fig. 5 (e), when
0/A =5Pi, I' =0, new types of periodicity appear. It is
clear that in Fig. 5 (d) and Fig. 5 (f), the field damping
factor (I' = 0.1) has changed the behavior of the
geometric phase function to another type of periodicity.

On the other hand, to visualize the influence of the
detuning parameters, we have plotted Fig. 6. In Fig. 6(a),
when A; /A =5 and all the other parameters are zero, the
behavior of the geometric phase function changes, i.e. a
new type of periodicity appears. The effect of the field
damping factor (I' = 0.1), results in changing this type of
periodicity to another type. Also, the mean value of
oscillations is shifted upward as the time develops in the
considered time interval (see Fig. 6(b)). When
Ay/A = 15, the time interval of the period is elongated
compared with the previous case (see Fig. 6(c) and Fig.
6(d)). When A /A =5, Ay/A =10, A3/A =15, and all
the other parameters are zero, the periodicity that appears
in Fig. 6(a) and Fig. 6(c) disappears. However, it appears
again when I' = 0.1 (see Fig. 6(e) and Fig. 6(f)). By
entering the effect of Kerr-medium, the behavior of the
geometric phase function is unpronounced in the time
evolution process (see Fig.7(a) and Fig. 7(b)).

() A=0.01

{b) 61=0.01, T=0.1
SR

N ienes

0 50 100 150 200 250 300 0 50 100 150 200 250 300

Pg

5 NP1 =
L (5A5Pi (d)§A=Pifk=0.1

L3
=

Pe

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Fig. 5: Dynamics of the geometric phase with the same
conditions as stated in Fig. 2 but for I' = 0.1 in (b, d, f).

5 Husimi Q-Function

The quasi-probability distribution functions such as the
Wigner W-function, Glauber-Sudarshan P-representation
and Husimi Q-function [48-51] are important tools for
detecting quantum states of the systems. In homodyne
experiments, these functions can be detected [52]. The
quasi-probability distribution functions are c-number
functions which can take negative values that allow us to
study the non-classical features of the radiation fields.

Therefore, we devote the present section to one of
these functions, i.e. the Husimi Q-function which has the
nice properties of being always positive and no
singularity problems arise at all. Also, it exists for any
density matrix because it is simply expressed as the
coherent expectation value of the reduced field density
matrix. The width of the Q-function gives a measure for
the light squeezing. Therefore, it is interesting to study
the behavior of the Husimi Q-function which can be given
in the following form [50, 53, 54]

1 4
=D MLZIVROI R
j=1

0(B.1) =~ (BlrIB) =
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Fig. 6: Dynamics of the geometric phase with the same
conditions as stated in Fig. 3 but for I' = 0.1 in (b, d, f).
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=
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Fig. 7: Dynamics of the geometric phase versus x/A in the

absence of all other parameters at (a) T = Pi/4, (b) T = Pi/2.

where P is the reduced density operator of the cavity
field and | ) is the coherent state which is defined by

By=e Y Pl gt )
n=0

and y; (B,1) are given by

i) é/1=10Pi

(@) /x=10R, y/1=0.1

Fig. 8: The 3D sketch (upper) and the contour plot (lower) of
Husimi Q-function in the subspace f in the complex B-plane
when T = Pi/2, n =25 with f(n) = 1/y/n of a four-level atom
interacting with a single-mode coherent field for the parameters
A=Ay =A3=0,T =0and for: (a) §/A = Pi,
x/A=0,(0)8/A=10Pi, x/A =0 (c) /L =Pi, x/A =0.1,
(d) 6/A = 10Pi, x/A =0.1.

i (B,1) = e 2 PP Y Py (nr),
n=0 n!
_ ey BT
w2(B5t) =e 2 rl;o\/’?A2(n7t)ﬂ

I’l*k,t),

v (B.1) = e 2Pl r;)\/ﬁfh(
_ ey BT
‘I/4(ﬂ,f)* ,;)\/MA4(

In Figs. 8-11, we sketch mesh plots (upper) and the
corresponding contour plots (lower) of the Husimi
Q-function in the subspace B . First, in Fig. 8, we
examine the effect of the time-dependent coupling
parameter in the absence or presence of Kerr-medium on
the Q-function behavior by plotting the mesh and contour
plot of the Q-function for a fixed scaled time 7 = %. We
notice that the distribution of Q-function is represented by
only one peak for the considered values of the
time-dependent coupling parameter (8/A = Pi, 10Pi)
(see Fig. 8(a) and Fig. 8(b)). The behavior of the

n—2kt).  (30)
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Fig. 9: The 3D sketch (upper) and the contour plot (lower) of
Husimi Q-function in the subspace B in the complex (-plane
when T = Pi/4, n =25 with f(n) = 1//n of a four-level atom
interacting with a single-mode coherent field for the parameters
6/A =0, A=A, =A3 =0, ' =0 and for: (a) x/A = 0.1, (b)
x/A=03()x/A=0.5,() x/A=1.

Q-function distribution in Fig. 8(a) and Fig. 8(b) has
changed by considering the Kerr-medium parameter
(x/A = 0.1). We can see that the time-dependent
coupling parameter has no effect on the Q-function
distribution in the presence of Kerr-medium effect (see
Fig. 8(c) and Fig. 8(d)).

To investigate the effect of Kerr-medium on the
evolution of the Q-function in the absence of all the other
parameters at T = %, we sketched the numerical results
in Fig. 9 for mesh plots and contour plots for different
values of the Kerr-medium parameter y/A. We have
started with /A = 0.1. We noted that the shape and
height of Husimi Q-function are changed. The height
decreased and the contour had a crescent-like shape (see
Fig. 9(a)). When x/A = 0.3, the peak height is
compressed and splitted into many contentious small
peaks and the contour plot takes a semi-ring shape (see
Fig. 9(b)). When x/A = 0.5, the height of Husimi
Q-function increases again. Also, we note that the contour
is separated into 8 squeezed circles. Hence, we can say
that in Fig. 9(c), the system is in multi Schrédinger cat
states. It is noted that by applying a strong Kerr-medium
(x/A = 1) to the system, Q-function is splitted into four
fully-separated peaks with a height greater than the
previous case. Also, the contour changes as

Fig. 10: The same as in Fig. 9 but for T = Pi/2.

x/A increases. In Fig. 10, we have investigated the
influence of Kerr-medium on the evolution of the Husimi
Q-function in the absence of all the other parameters, but
we have fixed the scaled time at T = %. In Fig. 11, we
have examined the influence of Kerr-medium (x /A = 0.5)
on the evolution of the Husimi Q-function for different
values of the field damping factor at the scaled time
T = %. We observed that the shape and the peaks height
of Husimi Q function are changed. Also, the contour
shape slightly changes as the parameter I increases. By
increasing the value of I', the peak height decreases and
the number of peaks decreases. Consequently, if the
system suffers a field decay rate, its stability decreases.

6 Conclusion

We have considered a nonlinear system of four-level
A-type atom interacting with a single-mode quantized
field through two-photon transition in a dissipative cavity.
The Kerr-medium, detuning parameter, the field damping
factor and intensity-dependent coupling were considered.
Also, the coupling parameter modulated to be
time-dependent. Under an approximation similar to that
of the Rotating-Wave Approximation (RWA), the exact
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) y/A=05,T=04

) yA=05,T=0.1

) y1=03,T=06 ) =05, T=1

Fig. 11: The 3D sketch (upper) and the contour plot (lower) of
Husimi Q-function in the subspace f in the complex B-plane
when T = Pi/2, n =25 with f(n) = 1/y/n of a four-level atom
interacting with a single-mode coherent field for the parameters
8/A =0, A1 =A; =As;=0and for: (a) x/A =0.5, I

=0.1, (b) x/A =05, T =04, (c) x/A =0.5, I = 0.6, (d)
x/A=05T=1.

expression of atom-field wave function was obtained.
After obtaining the exact analytical form of the state
vector of the whole system, the influence of the
time-dependent coupling parameter, detuning parameter,
Kerr nonlinearity, and the field damping factor (when the
nonlinearity function f(n) = 1/4/n) on the atomic
population inversion, the geometric phase and Husimi
Q-function were examined. One can study this system
when both the field and the atom are initially prepared in
other states. Moreover, an exciting extension of this
model can be investigated by considering other
nonlinearity functions.
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