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Abstract: In this paper, we compute the geodetic set and geodetic number of circulant graphs G, ({2,4,---,[% | —1,[%]}) where

m=2porm=p.
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1 Introduction

Through out this article, a graph G is a finite simple
connected graph without loops and multiple edges. The
distance between any two vertices v; and v; is the length
of the shortest path between v; and v,. We represent it by
d(vy,v2). The shortest path between two vertices (points)
vy and v, is called a v{-v, geodesic. The set of all vertices
in G that lie on v; — v, geodesic is denoted by Ig[vy, v2].
For any subset S of G, let I[S] = U, eslc[vi, v2]. If
Ig[vi, v2] = V(G), then S is called a geodetic set of G.
The minimum number of a geodetic set of G is called the
geodetic number and this number is denoted by g(G). The
geodetic number of a graph was intensively investigated
in [1,2,3,4]. The maximum of the distance between any
two difference vertices x and y in G is called diameter and
is denoted by diam(G). Two vertices v|, v, of a graph G
are called antipodal in G if d(v,v;) = diam(G).
Moreover, the geodetic, hull, and Steiner numbers of
powers of paths were investigated by AbuGhneim et al.
[5]. Moreover, for connected graphs, the closed intervals
Ig[u,v] were studied extensively by Nebesky [6]. In
addition, power graphs also have applications in quantum
random walks in physics and routing in networks and so
have generated interest in past and current paper [7,8,9].
Let 1 <a; <ay <---<apy<|5], where m,n,a; are
integers, 1 <i<m,andn >3.SetS = {aj,az, - ,am}. A
graph G with the vertex set {1,2,---,n} and with the
edge set {{i,j} : |i— j| = a;(mod n) for some 1 <t <m}
is called a circulant graph with respect to set S (or with

connection set S), and denotes by C,(S) or
Cu(ay,az,- -+ ,an). For example, every power of cycle is
Circulant graph, and Circulant graphs play a very
important and crucial role in Networks design [10,11,12]
and have an applications to telecommunication network,
VLSI design as well as parallel and distributed
computing.

The present paper aims to compute the geodetic
number of the circulant graphs

Cm({2747 3 L%J - 17 L%J})

2 Preliminary Lemmas

Let C,({2,4,...,[ %3] —1,|%]}) be the circulant graphs
withm = p orm = 2p.
In this section, we present the necessary lemmas to
compute the geodetic number of the circulant graphs
Cn({2,4,...,15] — 1,[3]}). We will also present some
crucial lemmas.

To illustrate the idea of the following lemma, a vertex
v in a graph G is called a extreme point if the subgraph
induced by its neighbors is complete. If S is a geodetic,
then S contains the set of extreme points. Now, we give
some lemmas of properties Cy, ({2,4,...,[ 5] — 1, 5] }).

circulant

—1,[%1}) have no extreme point.

Lemma 1.7he
Cn({2,4,..., L%J

ProofLet L = {vo, vi, ..

L, = {v%lﬂ, Volipesss vp—1}. We want to prove that

graphs

vp1} and
2

* Corresponding author e-mail: manal.allabadi @uop.edu.jo

© 2021 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/amis/150208

166 %N = =)

M. Al-Labadi: Geodetic Number Of Circulant Graphs Cy, ({2,4, ..., % |

_]7|_%J})

the circulant graph C,({2,4,...,|%5] —1,[%]}) has no
extreme point. We can use the following cases:

—Case 1: If m = 2p where p is a prime number, then
let the three vertices v, Vp—442 and ve—p 4 exist in the
circulant graph C,,({2,4,...,p—3,p— 1, p}).

Now, v, is adjacent to v, and v, where the two vertices
v, and v, are not adjacent in C5,({2,4,...,p —3,p —
I,p}),sincec—b=p—2¢{2,4,...p—3,p—1,p}.

—Case 2: If m = p where p is a prime number, then we
have two subcases:

—Subcase 2.1: If prl is even, then there exist three
vertices Vg, Vp—qin and v, _l in the circulant

graphs C,({2,4,..., 5= — 1,5 ).

Now, the vertex va is adjacent to v, and v, where the
two vertices v, and v, are not adjacent in
Cn({2,4,..,578 — 1 1’*‘}),
c—b*” 3¢{24 ——1 2}
—Subcase 2.2. If 2~ is odd, then there exist three
vertices Vg, Vp—gi2 and v | in the circulant

:TJra
graphs Cp({2,4,..., 251 —1,251}).
Now,the vertex va is adjacent to v, and v, where the
two vertices vy and v, are not adjacent in
Cp({2,4,. 1 p;] ), since

c—b= p v 1,2 }
Thus, v, is not an extreme pomt in the circulant graph

Cn({2,4,...,|5] — 1,|5]}) for any vertex v,.

I4+a

since

2¢{24

The following Lemma is well known, see [13].

Lemma 2.The circulant  graphs  C,({S}), where
S = {ai,---, a}, is connected if and only if
ged(ay, ay) = 1.

We have the following lemma to determine the diameter of
the circulsnt grsph C,,({2,4,...,[ 5] — 1,[%5]}).

Lemma 3.The diameter of the
Cn({2,4,..., 5] —1,[3]})is2.

Proof.-We have the following two cases:

circulant  graphs

—Case 1: If m = 2p where p is a prime number, then
we have S; = {vi,v3,...,Vp,Vpi2,...,v2p—1} and
Sy = {vo,v2,--,Vp—1,Vps1,...,v2p—2} Wwhich are a
complete subgraph. Each vertex in §; is adjacent to
only one vertex in S, such that {v; : v; € S} is
adjacent to  {vir, : vigp € S2},  then
diam(Co,({2,4,...,p=3,p—1,p}) =

—Case 2: If m = p where p is a prime number, then we
have two subcases
—Subcase 2.1: If ”Tfl is

even, then we have

S = {v07v27"'5v’%]725v’%]},
S2 = {V[,V3,...,V7%]73,Vp%]71},
S3 = {vpa Vet o Vp—a,Vp-2} and

Sy = {V%H,VIZ_H, v,,,3,v,,,1}. These sets have

the distances between their vertices as follows:

—Sub-subcase 2.1.1: If two distinct vertices (points)
in Sy are adjacent, S is a complete subgraph.

—Sub-subcase 2.1.2: If two distinct vertices (points)
in §; are adjacent, S5 is a complete subgraph.

—Sub-subcase 2.1.3: If two distinct vertices (points)
in S5 are adjacent, S3 is a complete subgraph.

—Sub-subcase 2.1.4: If two distinct vertices (points)
in S, are adjacent, Sy is a complete subgraph.

—Sub-subcase 2.1.5: Let v; be a vertex in §1 and v;
be a vertex in S». Then

If i > j, then v; is adjacent to the vertex v, i and
2

., is adjacent to v; so d(vi, vj) <2.

If i < j, then v; is adjacent to the vertex v -1 Y and
2

Vp-1
2

vp1, ; is adjacent to v; so d(vi, vj) <2.
2
—Sub-subcase 2.1.6: If vertex v; € Sy is adjacent to
the vertex v, ., , and v, is adjacent to each
5 +i+1 5
vertex v; € 83, d(v;, v;) < 2.
—Sub-subcase 2.1.7: If v; € S| is adjacent to the
vertex v,-1 and v, is adjacent to each vertex
2 2
vj e Sy, d(v,', Vj) <2.
—Sub-subcase 2.1.8: If v; € S, is adjacent to the

vertex vy, and v, is adjacent to each
2 2

vertex v; € 83, d(vi, vj) <2.

—Sub-subcase 2.1.9: If v; € S, is adjacent to the
vertex v and vy is adjacent to each vertex v; € Sy,
d(Vi, Vj) S 2.

—Sub-subcase 2.1.10: For any two distinct vertices
in S3 and Sy, let i = {1,3,.. 3p—]—1}
j=12.,4,.., p—l -2, l} Then for any vertex
v iy € 83 is adjacent to the vertex v; and the
vertex v; is adjacent to each vertex Vit € Sy for

2

each i < j. On other hand for each i > j every
element v, L €S3 is adjacent to the vertex v;
2

and v; is adjacent to each vertex v; € S4, so

d(vi, Vj)gz.
—Subcase 2.2: If ”771 is odd, then we have
Sl = {V07V27---,VL7173; v”—flfl}’
7 )
52 = {vl,V3,...,v%172,v%1},
S3 = {V;%]+1,V%|+3,..., vp,3,vp,]} and

Sy = {V%I+Z,V7%]+4,...7Vp74, vp—2}. Now we have

the following sub-subcases.

—Sub-subcase 2.2.1: If two distinct vertices in S
are adjacent, S is a complete subgraph.
The rest Sub-subcases follow analogously.

Now, before we start to compute the geodetic number of
the circulant graphs C,,({2,4,...,[ 5] — 1,3 ]}), consider
this illustrative example to compute the geodetic number
of the circulant graphs C,({2,4,...,| 5| —1,[3]}), see

@© 2021 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 15, No. 2, 165-169 (2021) / www.naturalspublishing.com/Journals.asp

Figure 1.

Fig. 1: C7(2,3).

3 The geodetic number of the circulant
graphs Cm({2747 ) L%J - 17 L%J }>

In this section we determine the geodetic number of the
circulant graphs C,,({2,4,...,[ 5] — 1,[ 5] })-

We also assume the vertex set of
Cm({274,...,l_%J - 1,|_%J}) is {V(),vl,...7 Vprl} if
m = 2p, and the vertex set is {vo,v1,...,v,—1} if m = p.

Lemma 4.If m = 2p where p is a prime number, then

g(Czp({254’a Y 2 1ap})) =D

Proof 1f m = 2p, then let
St = {vi,v3,.Vp,Vpya, . v2p—1}  is @ complete
subgraph.

Let S> = {vo,v2,.--,Vp—1,Vp+1,.--,v2p—2} be a complete

subgraph and each vertex in S; is adjacent to only one
vertex in S, such that {v; : v; € §;} is adjacent to
igp ¢ vigp € S}, then consider
S = {v3,Vs5,..,Vp,Vpi2,..sV2p—1, Vpy1} geodesics cover
all the vertices of C»,({2,4,...,p—3,p—1,p}).

Now, we discuss the cases for the geodetic number when
m=p.

Lemma 5.If m = p where p is a prime number, then
g(Cp({2,4,.., 251 — 1,21 })) =3 ifand only if p = 5 or
p="T.

ProofIt is clear that when p = 5, Cs5(2) & Cs,
g(Cs(2))) = 3. When p =7 with § = {vg, vi, ve},
8(G1({2, 3}))) =3.

On the other hand if g(Cp({2,4,..., 2 — 1,21})) = 3.
Then we have the following cases:

—Case 1:If ”771 is even, then consider S = {v;, vq, vy}
where vy is not adjacent to v, and v, so
Va, Vp € {Sl, 53}\{\)1;2;1, vp;—lJrl}'

Now, without loss of generality let b € S| and a € S3.
Thus, vi — 82 — v, a € Sz \ {V%H}, then
Va = Vpi s Otherwise, not all vertices in S, are
2
adjacent to v,. Also, vi —S3 —vp, b € S\ {v,1},
2
then b =v 21y Otherwise, not all vertices in S3 are
adjacent to vp. This leads to the vertex vo =v,1_, i.e
2
p = 5. Otherwise, vg does not lie on any vi — Vol s
2
V] — v,%l 5 geodetic.

—Case 2: If ”771 is odd, then consider S = {vo, vq4, vp}
with vy is not adjacent to v, and v, where
Va, Vp € {Sz, 53}\{vp74+1, v%}

Now, without loss of generality let v, € S, and
Vg € 83. So, vo—S4 —vp, v €5 \ {VD}» then
2
Vb = Vp-1_,. Otherwise, not all vertices in Sy are
2
adjacent to v,. Also, vo — S| — Vg, v4 € 53\ {vaq+l},

then v, = vy Otherwise, not all vertex in S3

743
adjacent to v,. This leads to the vertex vi = v, , 1.e
S
p = 1. Otherwise, v| does not lie on any vo — v -1 9
o

Vo — Vp-1 eodetic.
27113 8

Observation 1.
Based on the proof of Lemma 5, we conclude that if
n = p where p > 5 is a prime number, then we have the
following cases:

—Case 1: If ”771 is even, then every geodetic set of
C,,({2,4,...,17771 - 1,”771}) contains the set of

{vl,v%ﬁ Vp-l 55

2

— Case 2: If 1%1 is odd, then every geodetic set of
1 —1

CP({2545'-'7PT - 17PT})

Vo,Vp-1 Vp-1 .
Ay T2

contains the set of

The following lemma states that for any prime number p >
11, the geodetic number of C,({2,4, ..., ”771 -1, %4}) is
greater than or equal to 5.

Lemma 6.[f m = p where p > 11 is a prime number, then
—i —1

Proof.Using similar argument to the proof of Lemma 5 ,
we get g(C,p({2,4,..., 21 —1,2711)) > 5. We have two
cases to consider.

—Case 1: If ”771 is even, then the set
{vi,vpo1_ g vp1_,} is a subset of any geodetic set of
2 2

Cy({2,4,... % — 1,21, Let
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S={vi,vp1_ 5 Vp1_,,ve}. We want to show that § Then we have two cases:
2 2
cannot be a geodetic set of C,({2,4,..., prl -1, |
— . . . — . P2 i i
21Y). Now, v, is different from the vertices Case LIf 5 is even, then  consider

{VO,Vp—l+3,V 7172}. Since

diam(Cp({2,4,...,55- — 1,2 })) =2, v, does not lie
on any v; — vp 1+5, 1 — vD72 geodetic, i.e.
2

Ve & {82,854} by the symmetric of Cp({2,4,...,
5] —1,|%5]}) we can let v, = vo. This means
Icp({2,4,...,%'71,’%]})[""VP;—'+5] =
{V] ,SQ,VJ%]+1,V7%]+3,V7%]+S},

le (24,2501 2ty s

v’%],z] {V],S4,V;%1,V;%1+2,V%|72} and
ley (242t -1 251y o] - {vo,
Vesl Vel I,VL+1,V|}. Therefore, S is not geodetic

setofC »({2,4,.. ——1 })

—Case 2: If prl is odd, then the set
{vo,vL]H,vL ,} is a subset of any geodetic set of
Co({2,4,. — L)), Let S = {wo.ve

Y ve}. We want to show that S cannot be a

geodetlc setof C,({2,4,..., 55— 1,2 }) Now, v, is

different from the vertlces {V(),VL+3, V’%,z}-

Since diam(Cp({2,4,..., 5~ — 1, })) =2, v, does
not lie on any v — VL+3, Vo — v;i2 geodetic, i.e.
2 2

ve ¢ {S1, Si} by the

v,

symmetric  of

Cp({2,4,... ,pT -1, 1}) We can let v, = v;. This
means (2, 210 1})[V0,VL1+3] _
tvo, Sty Vel +3}
Ie2a... —1,25 1})[‘}0"}%72] =
{V0a54aVL1 VL,Z} and
[C,, ({244,..., 1,25 1})["07"1] =

{VO,VL+],VL17V1_1+2 v1} Therefore, S is not

geodetic set of C,({2,4,...., 55~ — 1,2 })

Now, we turn our discussion to study the cases for when
the geodetic number is 5 of the circulant graphs

({24, 250 —1,251)).

Lemma 7.If m = p where p is a prime number, then

g(Cn({2,4,.., 251 — 1,21y = 5 if and only if p = 11
orp=13.

ProofIt is clear that when p = 11, consider
S = {vo,vi,v2,v3,19} is a geodetic set and

g(C11({2,4, 5}))) = 5. Also when p = 13 consider
S = {vo,vi,vi1,v4,vi0} is a geodetic set and
g(C11({2,4,5}))) =5.

On the other hand if g(Cp({2.4,..., 25" — 1,2 })) = 5.

S={vi,vp1_ 5,Vp1_5,v0,ve} With v is not adjacent
2 2

to ve where ve € {82, Sa} \{vpo1_ |, vpor )
2 2
Now, if the vertex v, € S4 . So, vo — S| — ve, then

Ve = Vp (S Otherwise, not all vertices in S are

adJacent to v,. This leads to the vertex vop = v ,_1 I
2

ie. p =

VITVerlys

If the vertex v, € Sy , vog — S3 —

13. Otherwise, vo does not lie on any
VIi—Vpi_, geodetic.
el
Ve, then v, = v, 5
el

Otherwise, not all vertices in S3 are adjacent to v,.
Thus to the vertex v, does not lie on any geodetic set
Orvy =vp1_,,i.e. p=9 whichis a contradiction.

2

—Case 2: If prl is odd, then consider
S = {vo,v1§_172,v1,;_1+3,v1,ve} with vy is not adjacent
to ve where v, € {S1,84}\ {vpz;ul, vpg_|+2}.

Now, if the vertex v, € S4. So, vi —S» — v., then
Ve = Vp-1,. Otherwise, not all vertices in S are
2

adjacent to v,. Thus to the vertex vo = vp_1 . ie.
2

p = 13. Otherwise, vy does not lie on any geodetic set.
If the vertex v, € Si. So, vi — S3 — v, then
Ve =Vp_1_,. Otherwise, not all vertices in S3 adjacent

to ve. This leads to the vertex v3 = v, , i.e p =13,
=
which is a contradiction.

Finally, we discuss the case when the geodetic number is
6.

Lemma 8. For the circulant graphs
Cn({2,4,. -1, l}) If m = p where p is a prime
number greater than 13, then
—1
8(Cp({2,4,... 55— LB })) =6.
Proof.By usin g previous  lemma, we  get
2(Cp({2,4,. —1,2:11)) > 6 when p > 13.
Now, we con51der
—Case LIf 271 is even, then consider

2
S = {vl,v1_ 2 VoL 50 Vol g, v1_+4} Using
Lemma 7, the Vo = Vpi 4 geodes1cs cover all the
2
vertices S3, vo — vp;_| 4 geodesics cover all the
vertices Sy, vi — vp;_Lz geodesics cover all the
vertices Sy, and vi — v p— +5 geodesics cover all the
=

vertices 5.

8(Cp({2,4,..

Hence § is a geodetic set and
L) =6

—Case 2: If prl is odd, then consider
S = {vl,v,%]il,v%H,vo,v,,;_Lz, vp;_|+3}. Using
Lemma 7, the vo — v 1, geodesics cover all the
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vertices S4, vo — Vp-1, 4 geodesics cover all the
2

vertices Sy, vi —vp1 , geodesics cover all the
S

1
vertices S3, and v — v, 4 geodesics cover all the
2

vertices S>. Hence S is a geodetic set and
2(Cp({2,4,..., 5 —1,251})) = 6.

4 Conclusion

In this paper, we determined the geodetic number of
circulant graphs G, ({2,4,..., |5 —1,[%]}). We sum up
our calculations in the following theorem.

Theorem 1.If m =2p or m = p where p is a prime number,
then

p,ifm=2p,
3,ifm=5Sorm=71,
5,ifm=11orm=13,
6 ,if m>13.

g(cm(D)) =

where D ={2,4,.... |5 | —1,[%]}.

5 Perspective

In this paper, we find the geodetic set and geodetic
number of circulant graphs C,,({2,4,---, 3| —1,|5]})
where m =2p orm = p..

One can ask the following questions:

—(1) What is the geodetic number of complement of the
circulant graphs C,,({2,4,---,| 5] = 1,[5]})?

—(2) What is the geodetic number of the circulant graphs
Cn({2,4,---,153]—1,1%]}) whenm =2p+1?
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