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Abstract: In this paper, we compute the geodetic set and geodetic number of circulant graphs Cm({2,4, · · · ,⌊m
2 ⌋− 1,⌊m
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1 Introduction

Through out this article, a graph G is a finite simple
connected graph without loops and multiple edges. The
distance between any two vertices v1 and v2 is the length
of the shortest path between v1 and v2. We represent it by
d(v1,v2). The shortest path between two vertices (points)
v1 and v2 is called a v1-v2 geodesic. The set of all vertices
in G that lie on v1 − v2 geodesic is denoted by IG[v1, v2].
For any subset S of G, let I[S] =

⋃

u,v∈S IG[v1, v2]. If

IG[v1, v2] = V (G), then S is called a geodetic set of G.
The minimum number of a geodetic set of G is called the
geodetic number and this number is denoted by g(G). The
geodetic number of a graph was intensively investigated
in [1,2,3,4]. The maximum of the distance between any
two difference vertices x and y in G is called diameter and
is denoted by diam(G). Two vertices v1, v2 of a graph G
are called antipodal in G if d(v1,v2) = diam(G).

Moreover, the geodetic, hull, and Steiner numbers of
powers of paths were investigated by AbuGhneim et al.
[5]. Moreover, for connected graphs, the closed intervals
IG[u,v] were studied extensively by Nebesky [6]. In
addition, power graphs also have applications in quantum
random walks in physics and routing in networks and so
have generated interest in past and current paper [7,8,9].

Let 1 ≤ a1 < a2 < · · · < am ≤ ⌊ n
2
⌋, where m,n,ai are

integers, 1 ≤ i ≤ m, and n ≥ 3. Set S = {a1,a2, · · · ,am}. A
graph G with the vertex set {1,2, · · · ,n} and with the
edge set {{i, j} : |i− j| ≡ at(mod n) for some 1 ≤ t ≤ m}
is called a circulant graph with respect to set S (or with

connection set S), and denotes by Cn(S) or
Cn(a1,a2, · · · ,am). For example, every power of cycle is
Circulant graph, and Circulant graphs play a very
important and crucial role in Networks design [10,11,12]
and have an applications to telecommunication network,
VLSI design as well as parallel and distributed
computing.

The present paper aims to compute the geodetic
number of the circulant graphs
Cm({2,4, · · · ,⌊m

2
⌋− 1,⌊m

2
⌋}).

2 Preliminary Lemmas

Let Cm({2,4, ...,⌊m
2
⌋ − 1,⌊m

2
⌋}) be the circulant graphs

with m = p or m = 2p.
In this section, we present the necessary lemmas to
compute the geodetic number of the circulant graphs
Cm({2,4, ...,⌊m

2
⌋ − 1,⌊m

2
⌋}). We will also present some

crucial lemmas.
To illustrate the idea of the following lemma, a vertex

v in a graph G is called a extreme point if the subgraph
induced by its neighbors is complete. If S is a geodetic,
then S contains the set of extreme points. Now, we give
some lemmas of properties Cm({2,4, ...,⌊m

2
⌋− 1,⌊m

2
⌋}).

Lemma 1.The circulant graphs

Cm({2,4, ...,⌊m
2
⌋− 1,⌊m

2
⌋}) have no extreme point.

Proof.Let L1 = {v0, v1, ..., v p−1
2
} and

L2 = {v p−1
2 +1

, v p−1
2 +2

, , , , vp−1}. We want to prove that
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the circulant graph Cm({2,4, ...,⌊m
2
⌋ − 1,⌊m

2
⌋}) has no

extreme point. We can use the following cases:

–Case 1: If m = 2p where p is a prime number, then
let the three vertices va, vb=a+2 and vc=p+a exist in the
circulant graph C2p({2,4, ..., p− 3, p− 1, p}).
Now, va is adjacent to vb and vc where the two vertices
vb and vc are not adjacent in C2p({2,4, ..., p− 3, p−
1, p}), since c− b = p− 2 /∈ {2,4, ..., p− 3, p− 1, p}.

–Case 2: If m = p where p is a prime number, then we
have two subcases:

–Subcase 2.1: If
p−1

2
is even, then there exist three

vertices va, vb=a+2 and v
c= p−1

2 −1+a
in the circulant

graphs Cp({2,4, ..., p−1
2

− 1, p−1
2
}).

Now, the vertex va is adjacent to vb and vc where the
two vertices vb and vc are not adjacent in

Cm({2,4, ..., p−1
2

− 1, p−1
2
}), since

c− b = p−1
2

− 3 /∈ {2,4, ..., p−1
2

− 1, p−1
2
}.

–Subcase 2.2: If
p−1

2
is odd, then there exist three

vertices va, vb=a+2 and v
c= p−1

2 +a
in the circulant

graphs Cp({2,4, ..., p−1
2

− 1, p−1
2
}).

Now,the vertex va is adjacent to vb and vc where the
two vertices vb and vc are not adjacent in

Cp({2,4, ..., p−1
2

− 1, p−1
2
}), since

c− b = p−1
2

− 2 /∈ {2,4, ..., p−1
2

− 1, p−1
2
}.

Thus, va is not an extreme point in the circulant graph
Cm({2,4, ...,⌊m

2
⌋− 1,⌊m

2
⌋}) for any vertex va.

The following Lemma is well known, see [13].

Lemma 2.The circulant graphs Cn({S}), where

S = {a1, · · · , ak}, is connected if and only if

gcd(a1, ..., ak) = 1.

We have the following lemma to determine the diameter of
the circulsnt grsph Cm({2,4, ...,⌊m

2
⌋− 1,⌊m

2
⌋}).

Lemma 3.The diameter of the circulant graphs

Cm({2,4, ...,⌊m
2
⌋− 1,⌊m

2
⌋}) is 2.

Proof.We have the following two cases:

–Case 1: If m = 2p where p is a prime number, then
we have S1 = {v1,v3, ...,vp,vp+2, ...,v2p−1} and
S2 = {v0,v2, ...,vp−1,vp+1, ...,v2p−2} which are a
complete subgraph. Each vertex in S1 is adjacent to
only one vertex in S2 such that {vi : vi ∈ S1} is
adjacent to {vi+p : vi+p ∈ S2}, then
diam(C2p({2,4, ..., p− 3, p− 1, p})= 2.

–Case 2: If m = p where p is a prime number, then we
have two subcases

–Subcase 2.1: If
p−1

2
is even, then we have

S1 = {v0,v2, ...,v p−1
2 −2

,v p−1
2
},

S2 = {v1,v3, ...,v p−1
2 −3

,v p−1
2 −1

},

S3 = {v p−1
2 +1

,v p−1
2 +3

, ...,vp−4,vp−2} and

S4 = {v p−1
2 +2

,v p−1
2 +4

, ...,vp−3,vp−1}. These sets have

the distances between their vertices as follows:

–Sub-subcase 2.1.1: If two distinct vertices (points)
in S1 are adjacent, S1 is a complete subgraph.

–Sub-subcase 2.1.2: If two distinct vertices (points)
in S2 are adjacent, S2 is a complete subgraph.

–Sub-subcase 2.1.3: If two distinct vertices (points)
in S3 are adjacent, S3 is a complete subgraph.

–Sub-subcase 2.1.4: If two distinct vertices (points)
in S4 are adjacent, S4 is a complete subgraph.

–Sub-subcase 2.1.5: Let vi be a vertex in S1 and v j

be a vertex in S2. Then
If i > j, then vi is adjacent to the vertex v p−1

2 +i
and

v p−1
2 +i

is adjacent to v j so d(vi, v j)≤ 2.

If i < j, then vi is adjacent to the vertex v p−1
2 + j

and

v p−1
2 + j

is adjacent to v j so d(vi, v j)≤ 2.

–Sub-subcase 2.1.6: If vertex vi ∈ S1 is adjacent to
the vertex v p−1

2 +i+1
and v p−1

2
is adjacent to each

vertex v j ∈ S3, d(vi, v j)≤ 2.
–Sub-subcase 2.1.7: If vi ∈ S1 is adjacent to the

vertex v p−1
2

and v p−1
2

is adjacent to each vertex

v j ∈ S4, d(vi, v j)≤ 2.
–Sub-subcase 2.1.8: If vi ∈ S2 is adjacent to the

vertex v p−1
2 −1

and v p−1
2 −1

is adjacent to each

vertex v j ∈ S3, d(vi, v j)≤ 2.
–Sub-subcase 2.1.9: If vi ∈ S2 is adjacent to the

vertex v1 and v1 is adjacent to each vertex v j ∈ S4,
d(vi, v j)≤ 2.

–Sub-subcase 2.1.10: For any two distinct vertices

in S3 and S4, let i = {1,3, ..., p−1
2

− 3, p−1
2

− 1},

j = {2,4, ..., p−1
2

− 2, p−1
2
}. Then for any vertex

v p−1
2 +i

∈ S3 is adjacent to the vertex vi and the

vertex vi is adjacent to each vertex v
j+ p−1

2
∈ S4 for

each i < j. On other hand for each i > j every
element v p−1

2 +i
∈ S3 is adjacent to the vertex v j

and v j is adjacent to each vertex v j ∈ S4, so
d(vi, v j)≤ 2.

–Subcase 2.2: If
p−1

2
is odd, then we have

S1 = {v0,v2, ...,v p−1
2 −3

, v p−1
2 −1

},

S2 = {v1,v3, ...,v p−1
2 −2

,v p−1
2
},

S3 = {v p−1
2 +1

,v p−1
2 +3

, ..., vp−3,vp−1} and

S4 = {v p−1
2 +2

,v p−1
2 +4

, ...,vp−4, vp−2}. Now we have

the following sub-subcases.

–Sub-subcase 2.2.1: If two distinct vertices in S1

are adjacent, S1 is a complete subgraph.
The rest Sub-subcases follow analogously.

Now, before we start to compute the geodetic number of
the circulant graphs Cm({2,4, ...,⌊m

2
⌋−1,⌊m

2
⌋}), consider

this illustrative example to compute the geodetic number
of the circulant graphs Cm({2,4, ...,⌊m

2
⌋ − 1,⌊m

2
⌋}), see
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Figure 1.

Fig. 1: C7(2,3).

3 The geodetic number of the circulant

graphs Cm({2,4, ...,⌊m
2
⌋−1,⌊m

2
⌋})

In this section we determine the geodetic number of the
circulant graphs Cm({2,4, ...,⌊m

2
⌋− 1,⌊m

2
⌋}).

We also assume the vertex set of
Cm({2,4, ...,⌊m

2
⌋ − 1,⌊m

2
⌋}) is {v0,v1, ..., v2p−1} if

m = 2p, and the vertex set is {v0,v1, ...,vp−1} if m = p.

Lemma 4.If m = 2p where p is a prime number, then

g(C2p({2,4, ..., p− 1, p})) = p.

Proof.If m = 2p, then let
S1 = {v1,v3, ...,vp,vp+2, ...,v2p−1} is a complete
subgraph.
Let S2 = {v0,v2, ...,vp−1,vp+1, ...,v2p−2} be a complete
subgraph and each vertex in S1 is adjacent to only one
vertex in S2 such that {vi : vi ∈ S1} is adjacent to
{vi+p : vi+p ∈ S2}, then consider
S = {v3,v5, ...,vp,vp+2, ...,v2p−1, vp+1} geodesics cover
all the vertices of C2p({2,4, ..., p− 3, p− 1, p}).

Now, we discuss the cases for the geodetic number when
m = p.

Lemma 5.If m = p where p is a prime number, then

g(Cp({2,4, ..., p−1
2

− 1, p−1
2
})) = 3 if and only if p = 5 or

p = 7.

Proof.It is clear that when p = 5, C5(2) ∼= C5,
g(C5(2))) = 3. When p = 7 with S = {v0, v1, v6},
g(C7({2, 3}))) = 3.

On the other hand if g(Cp({2,4, ..., p−1
2

− 1, p−1
2
})) = 3.

Then we have the following cases:

–Case 1:If
p−1

2
is even, then consider S = {v1, va, vb}

where v1 is not adjacent to va and vb so
va, vb ∈ {S1, S3} \ {v p−1

2
, v p−1

2 +1
}.

Now, without loss of generality let b ∈ S1 and a ∈ S3.
Thus, v1 − S2 − va, a ∈ S3 \ {v p−1

2 +1
}, then

va = v p−1
2 +5

. Otherwise, not all vertices in S2 are

adjacent to va. Also, v1 − S3 − vb, b ∈ S1 \ {v p−1
2
},

then b = v p−1
2 −2

. Otherwise, not all vertices in S3 are

adjacent to vb. This leads to the vertex v0 = v p−1
2 −2

i.e

p = 5. Otherwise, v0 does not lie on any v1 − v p−1
2 +5

,

v1 − v p−1
2 −2

geodetic.

–Case 2: If
p−1

2
is odd, then consider S = {v0, va, vb}

with v0 is not adjacent to va and vb where
va, vb ∈ {S2, S3} \ {v p−1

2 +1
, v p−1

2
}.

Now, without loss of generality let vb ∈ S2 and
va ∈ S3. So, v0 − S4 − vb, vb ∈ S2 \ {v p−1

2
}, then

vb = v p−1
2 −2

. Otherwise, not all vertices in S4 are

adjacent to vb. Also, v0 − S1 − va, va ∈ S3 \ {v p−1
2 +1

},

then va = v p−1
2 +3

. Otherwise, not all vertex in S3

adjacent to va. This leads to the vertex v1 = v p−1
2 −2

i.e

p = 7. Otherwise, v1 does not lie on any v0 − v p−1
2 −2

,

v0 − v p−1
2 +3

geodetic.

Observation 1.

Based on the proof of Lemma 5, we conclude that if
n = p where p ≥ 5 is a prime number, then we have the
following cases:

–Case 1: If
p−1

2
is even, then every geodetic set of

Cp({2,4, ..., p−1
2

− 1, p−1
2
}) contains the set of

{v1,v p−1
2 +5

, v p−1
2 −2

}.

– Case 2: If
p−1

2
is odd, then every geodetic set of

Cp({2,4, ..., p−1
2

− 1, p−1
2
}) contains the set of

{v0,v p−1
2 +3

, v p−1
2 −2

}.

The following lemma states that for any prime number p≥

11, the geodetic number of Cp({2,4, ..., p−1
2

− 1, p−1
2
}) is

greater than or equal to 5.

Lemma 6.If m = p where p ≥ 11 is a prime number, then

g(Cp({2,4, ..., p−1
2

−1, p−1
2
}))≥ 5.

Proof.Using similar argument to the proof of Lemma 5 ,

we get g(Cp({2,4, ..., p−1
2

− 1, p−1
2
})) ≥ 5. We have two

cases to consider.

–Case 1: If
p−1

2
is even, then the set

{v1,v p−1
2 +5

,v p−1
2 −2

} is a subset of any geodetic set of

Cp({2,4, ..., p−1
2

− 1, p−1
2
}). Let
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S = {v1,v p−1
2 +5

,v p−1
2 −2

,ve}. We want to show that S

cannot be a geodetic set of Cp({2,4, ..., p−1
2

− 1,
p−1

2
}). Now, ve is different from the vertices

{v0,v p−1
2 +3

,v p−1
2 −2

}. Since

diam(Cp({2,4, ..., p−1
2

−1, p−1
2
})) = 2, ve does not lie

on any v1 − v p−1
2 +5

,v1 − v p−1
2 −2

geodetic, i.e.

ve /∈ {S2,S4} by the symmetric of CP({2,4, ...,
⌊m

2
⌋ − 1,⌊m

2
⌋}) we can let ve = v0. This means

I
Cp({2,4,..., p−1

2 −1, p−1
2 })

[v1,v p−1
2 +5

] =

{v1,S2,v p−1
2 +1

,v p−1
2 +3

,v p−1
2 +5

},

I
Cp({2,4,..., p−1

2 −1, p−1
2 })

[v1,

v p−1
2 −2

] = {v1,S4,v p−1
2
,v p−1

2 +2
,v p−1

2 −2
} and

I
Cp({2,4,..., p−1

2 −1, p−1
2 })

[v0,v1] = {v0,

v p−1
2
,v p−1

2 −1
,v p−1

2 +1
,v1}. Therefore, S is not geodetic

set of Cp({2,4, ..., p−1
2

− 1, p−1
2
}).

–Case 2: If
p−1

2
is odd, then the set

{v0,v p−1
2 +3

,v p−1
2 −2

} is a subset of any geodetic set of

Cp({2,4, ..., p−1
2

− 1, p−1
2
}). Let S = {v0,v p−1

2 +3
,

v p−1
2 −2

, ve}. We want to show that S cannot be a

geodetic set of Cp({2,4, ..., p−1
2

− 1, p−1
2
}). Now, ve is

different from the vertices {v0,v p−1
2 +3

, v p−1
2 −2

}.

Since diam(Cp({2,4, ..., p−1
2

− 1, p−1
2
})) = 2, ve does

not lie on any v0 − v p−1
2 +3

, v0 − v p−1
2 −2

geodetic, i.e.

ve /∈ {S1, S4} by the symmetric of

CP({2,4, ..., p−1
2

− 1, p−1
2
}). We can let ve = v1. This

means I
Cp({2,4,..., p−1

2 −1, p−1
2 })

[v0,v p−1
2 +3

] =

{v0, S1, v p−1
2 +1

,v p−1
2 +3

},

I
Cp({2,4,..., p−1

2 −1, p−1
2 })

[v0,v p−1
2 −2

] =

{v0,S4,v p−1
2
,v p−1

2 −2
} and

I
Cp({2,4,..., p−1

2 −1, p−1
2 })

[v0,v1] =

{v0,v p−1
2 +1

,v p−1
2
,v p−1

2 +2
,v1}. Therefore, S is not

geodetic set of Cp({2,4, ..., p−1
2

− 1, p−1
2
}).

Now, we turn our discussion to study the cases for when
the geodetic number is 5 of the circulant graphs

Cp({2,4, ..., p−1
2

− 1, p−1
2
}).

Lemma 7.If m = p where p is a prime number, then

g(Cm({2,4, ..., p−1
2

− 1, p−1
2
})) = 5 if and only if p = 11

or p = 13.

Proof.It is clear that when p = 11, consider
S = {v0,v1,v2,v3,v9} is a geodetic set and
g(C11({2,4, 5}))) = 5. Also when p = 13 consider
S = {v0,v1,v11,v4,v10} is a geodetic set and
g(C11({2,4,5}))) = 5.

On the other hand if g(Cp({2,4, ..., p−1
2

− 1, p−1
2
})) = 5.

Then we have two cases:

–Case 1:If
p−1

2
is even, then consider

S = {v1,v p−1
2 +5

,v p−1
2 −2

,v0,ve} with v0 is not adjacent

to ve where ve ∈ {S2,S4} \ {v p−1
2 −1

, v p−1
2 +2

}.

Now, if the vertex ve ∈ S4 . So, v0 − S1 − ve, then
ve = v p−1

2 +4
. Otherwise, not all vertices in S1 are

adjacent to ve. This leads to the vertex v0 = v p−1
2 +7

,

i.e. p = 13. Otherwise, v0 does not lie on any
v1 − v p−1

2 +5
, v1 − v p−1

2 −2
geodetic.

If the vertex ve ∈ S2 , v0 − S3 − ve, then ve = v p−1
2 −3

.

Otherwise, not all vertices in S3 are adjacent to ve.
Thus to the vertex v2 does not lie on any geodetic set
or v2 = v p−1

2 −2
, i.e. p = 9 which is a contradiction.

–Case 2: If
p−1

2
is odd, then consider

S = {v0,v p−1
2 −2

,v p−1
2 +3

,v1,ve} with v1 is not adjacent

to ve where ve ∈ {S1,S4} \ {v p−1
2 −1

, v p−1
2 +2

}.

Now, if the vertex ve ∈ S4. So, v1 − S2 − ve, then
ve = v p−1

2 +4
. Otherwise, not all vertices in S2 are

adjacent to ve. Thus to the vertex v0 = v p−1
2 +7

, i.e.

p = 13. Otherwise, v0 does not lie on any geodetic set.
If the vertex ve ∈ S1. So, v1 − S3 − ve, then
ve = v p−1

2 −1
. Otherwise, not all vertices in S3 adjacent

to ve. This leads to the vertex v3 = v p−1
2 −2

i.e p = 13,

which is a contradiction.

Finally, we discuss the case when the geodetic number is
6.

Lemma 8.For the circulant graphs

Cm({2,4, ..., p−1
2

− 1, p−1
2
}). If m = p where p is a prime

number greater than 13, then

g(Cp({2,4, ..., p−1
2

− 1, p−1
2
})) = 6.

Proof.By using previous lemma, we get

g(Cp({2,4, ..., p−1
2

− 1, p−1
2
}))≥ 6 when p > 13.

Now, we consider

–Case 1:If
p−1

2
is even, then consider

S = {v1,v p−1
2 −2

,v p−1
2 +5

,v0, v p−1
2 −3

, v p−1
2 +4

}. Using

Lemma 7, the v0 − v p−1
2 −3

geodesics cover all the

vertices S3, v0 − v p−1
2 +4

geodesics cover all the

vertices S1, v1 − v p−1
2 −2

geodesics cover all the

vertices S4, and v1 − v p−1
2 +5

geodesics cover all the

vertices S2. Hence S is a geodetic set and

g(Cp({2,4, ..., p−1
2

− 1, p−1
2
})) = 6.

–Case 2: If
p−1

2
is odd, then consider

S = {v1,v p−1
2 −1

,v p−1
2 +4

,v0,v p−1
2 −2

, v p−1
2 +3

}. Using

Lemma 7, the v0 − v p−1
2 −2

geodesics cover all the
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vertices S4, v0 − v p−1
2 +3

geodesics cover all the

vertices S1, v1 − v p−1
2 −1

geodesics cover all the

vertices S3, and v1 − v p−1
2 +4

geodesics cover all the

vertices S2. Hence S is a geodetic set and

g(Cp({2,4, ..., p−1
2

− 1, p−1
2
})) = 6.

4 Conclusion

In this paper, we determined the geodetic number of
circulant graphs Cm({2,4, ...,⌊m

2
⌋− 1,⌊m

2
⌋}). We sum up

our calculations in the following theorem.

Theorem 1.If m= 2p or m= p where p is a prime number,

then

g(Cm(D)) =











p , i f m = 2p,
3 , i f m = 5 or m = 7,
5 , i f m = 11 or m = 13,
6 , i f m > 13.











where D = {2,4, ...,⌊m
2
⌋− 1,⌊m

2
⌋}.

5 Perspective

In this paper, we find the geodetic set and geodetic
number of circulant graphs Cm({2,4, · · · ,⌊m

2
⌋− 1,⌊m

2
⌋})

where m = 2p or m = p..

One can ask the following questions:

–(1) What is the geodetic number of complement of the
circulant graphs Cm({2,4, · · · ,⌊m

2
⌋− 1,⌊m

2
⌋})?

–(2) What is the geodetic number of the circulant graphs
Cm({2,4, · · · ,⌊m

2
⌋− 1,⌊m

2
⌋}) when m = 2p+ 1?
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