

Applied Mathematics & Information Sciences *An International Journal*

<http://dx.doi.org/10.18576/amis/150208>

Geodetic Number Of Circulant Graphs $C_m({1, 4, ..., \lfloor \frac{m}{2} \rfloor})$ $\left\lfloor \frac{m}{2} \right\rfloor - 1, \left\lfloor \frac{m}{2} \right\rfloor$ $\frac{m}{2}$] })

Manal Al-Labadi

Department of Mathematics, Faculty of Arts and Sciences, University Of Petra, Amman, Jordan

Received: 3 May 2020, Revised: 20 Feb. 2021, Accepted: 24 Feb. 2021 Published online: 1 Mar. 2021

Abstract: In this paper, we compute the geodetic set and geodetic number of circulant graphs $C_m(\{2,4,\dots,\lfloor \frac{m}{2} \rfloor - 1,\lfloor \frac{m}{2} \rfloor\})$ where $m = 2p$ or $m = p$.

Keywords: Circulant graph, Geodetic set; Geodetic number; Power of graph

1 Introduction

Through out this article, a graph *G* is a finite simple connected graph without loops and multiple edges. The distance between any two vertices v_1 and v_2 is the length of the shortest path between v_1 and v_2 . We represent it by $d(v_1, v_2)$. The shortest path between two vertices (points) v_1 and v_2 is called a v_1 - v_2 geodesic. The set of all vertices in *G* that lie on $v_1 - v_2$ geodesic is denoted by $I_G[v_1, v_2]$. For any subset *S* of *G*, let $I[S] = \bigcup_{u,v \in S} I_G[v_1, v_2]$. If $I_G[v_1, v_2] = V(G)$, then *S* is called a geodetic set of *G*. The minimum number of a geodetic set of *G* is called the geodetic number and this number is denoted by *g*(*G*). The geodetic number of a graph was intensively investigated in $[1,2,3,4]$. The maximum of the distance between any two difference vertices *x* and *y* in *G* is called diameter and is denoted by $diam(G)$. Two vertices v_1 , v_2 of a graph G are called antipodal in G if $d(v_1, v_2) = diam(G)$.

Moreover, the geodetic, hull, and Steiner numbers of powers of paths were investigated by AbuGhneim et al. [5]. Moreover, for connected graphs, the closed intervals $I_G[u, v]$ were studied extensively by Nebesky [6]. In addition, power graphs also have applications in quantum random walks in physics and routing in networks and so have generated interest in past and current paper [7, 8, 9].

Let $1 \le a_1 < a_2 < \cdots < a_m \le \lfloor \frac{n}{2} \rfloor$, where m, n, a_i are integers, $1 \le i \le m$, and $n \ge 3$. Set $S = \{a_1, a_2, \dots, a_m\}$. A graph G with the vertex set $\{1, 2, \dots, n\}$ and with the edge set $\{\{i, j\} : |i - j| \equiv a_t \pmod{n} \text{ for some } 1 \le t \le m\}$ is called a circulant graph with respect to set S (or with connection set S), and denotes by $C_n(S)$ or $C_n(a_1, a_2, \dots, a_m)$. For example, every power of cycle is Circulant graph, and Circulant graphs play a very important and crucial role in Networks design [10,11,12] and have an applications to telecommunication network, VLSI design as well as parallel and distributed computing.

The present paper aims to compute the geodetic number of the circulant graphs $C_m(\lbrace 2, 4, \cdots, \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor \rbrace).$

2 Preliminary Lemmas

Let $C_m(\{2,4,\ldots,\lfloor \frac{m}{2} \rfloor -1,\lfloor \frac{m}{2} \rfloor \})$ be the circulant graphs with $m = p$ or $m = 2p$.

In this section, we present the necessary lemmas to compute the geodetic number of the circulant graphs $C_m(\lbrace 2,4,\ldots,\lfloor \frac{m}{2} \rfloor -1,\lfloor \frac{m}{2} \rfloor \rbrace)$. We will also present some crucial lemmas.

To illustrate the idea of the following lemma, a vertex *v* in a graph *G* is called a extreme point if the subgraph induced by its neighbors is complete. If *S* is a geodetic, then *S* contains the set of extreme points. Now, we give some lemmas of properties $C_m(\lbrace 2, 4, ..., \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor \rbrace)$.

Lemma $1. The$	circulant	graphs
$C_m(\lbrace 2,4,\ldots,\lfloor\frac{m}{2}\rfloor-1,\lfloor\frac{m}{2}\rfloor\rbrace)$ have no extreme point.		
<i>Proof.</i> Let $L_1 = \{v_0, v_1, , v_{\frac{p-1}{2}}\}$ and		
$L_2 = \{v_{\frac{p-1}{2}+1}, v_{\frac{p-1}{2}+2}, \ldots, v_{p-1}\}.$ We want to prove that		

[∗] Corresponding author e-mail: manal.allabadi@uop.edu.jo

the circulant graph $C_m(\{2,4,\ldots,\lfloor \frac{m}{2} \rfloor -1,\lfloor \frac{m}{2} \rfloor \})$ has no extreme point. We can use the following cases:

–Case 1: If $m = 2p$ where p is a prime number, then let the three vertices v_a , $v_{b=a+2}$ and $v_{c=p+a}$ exist in the circulant graph $C_{2p}({2,4,..., p-3, p-1, p}).$

Now, v_a is adjacent to v_b and v_c where the two vertices *v*^{*b*} and *v*^{*c*} are not adjacent in $C_{2p}({2, 4, ..., p - 3, p - 1})$ 1, *p*}), since $c - b = p - 2 \notin \{2, 4, ..., p - 3, p - 1, p\}.$ **–Case 2:** If $m = p$ where p is a prime number, then we have two subcases:

- **–Subcase 2.1**: If $\frac{p-1}{2}$ is even, then there exist three vertices v_a , $v_{b=a+2}$ and $v_{c=\frac{p-1}{2}-1+a}$ in the circulant graphs $C_p({2,4,..., \frac{p-1}{2}-1, \frac{p-1}{2}}).$
- Now, the vertex v_a is adjacent to v_b and v_c where the two vertices v_b and v_c are not adjacent in $C_m({2, 4, ..., \frac{p-1}{2} \quad -1, \frac{p-1}{2}}),$ since $c - b = \frac{p-1}{2} - 3 \notin \{2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}\}.$
- **–Subcase 2.2:** If $\frac{p-1}{2}$ is odd, then there exist three vertices v_a , $v_{b=a+2}$ and $v_{c=\frac{p-1}{2}+a}$ in the circulant graphs $C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}}).$
- Now, the vertex v_a is adjacent to v_b and v_c where the two vertices v_b and v_c are not adjacent in $C_p({2, 4, ..., \frac{p-1}{2} \qquad -1, \frac{p-1}{2}}),$ since $c - b = \frac{p-1}{2} - 2 \notin \{2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}\}.$

Thus, v_a is not an extreme point in the circulant graph $C_m(\lbrace 2, 4, ..., \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor \rbrace)$ for any vertex v_a .

The following Lemma is well known, see [13].

Lemma 2.*The circulant graphs* $C_n({S})$ *, where* $S = \{a_1, \dots, a_k\}$ *, is connected if and only if* $gcd(a_1, ..., a_k) = 1.$

We have the following lemma to determine the diameter of the circulsnt grsph $C_m(\lbrace 2,4,\ldots,\lfloor \frac{m}{2} \rfloor -1,\lfloor \frac{m}{2} \rfloor \rbrace)$.

Lemma 3.*The diameter of the circulant graphs* $C_m(\{2,4,...,\lfloor \frac{m}{2} \rfloor -1,\lfloor \frac{m}{2} \rfloor\})$ *is* 2*.*

*Proof.*We have the following two cases:

- **–Case 1:** If $m = 2p$ where p is a prime number, then we have $S_1 = \{v_1, v_3, ..., v_p, v_{p+2}, ..., v_{2p-1}\}$ and $S_2 = \{v_0, v_2, ..., v_{p-1}, v_{p+1}, ..., v_{2p-2}\}$ which are a complete subgraph. Each vertex in *S*¹ is adjacent to only one vertex in S_2 such that $\{v_i : v_i \in S_1\}$ is adjacent to $\{v_{i+p} : v_{i+p} \in S_2\}$, then $diam(C_{2p}({2,4,...,p-3,p-1,p}) = 2.$
- **–Case 2:** If $m = p$ where p is a prime number, then we have two subcases
- **–Subcase 2.1**: If $\frac{p-1}{2}$ is even, then we have S_1 = {*v*₀,*v*₂,...,*v*_{*p*⁻¹</sup>₂₋₂,*v*_{*p*⁻¹₂₂</sup>},}} S_2 = {*v*₁,*v*₃,...,*v*_{*p*^{−1}₂[−]₂,*v*_{*p*^{−1}₂^{}}-₁},}</sub> S_3 = {*v*_{*p*-1</sup>+1},*v*_{*p*-1+3},...,*v*_{*p*-4},*v*_{*p*-2}} and $S_4 = \{v_{\frac{p-1}{2}+2}, v_{\frac{p-1}{2}+4}, ..., v_{p-3}, v_{p-1}\}.$ These sets have

the distances between their vertices as follows:

- –Sub-subcase 2.1.1: If two distinct vertices (points) in S_1 are adjacent, S_1 is a complete subgraph.
- –Sub-subcase 2.1.2: If two distinct vertices (points) in S_2 are adjacent, S_2 is a complete subgraph.
- –Sub-subcase 2.1.3: If two distinct vertices (points) in S_3 are adjacent, S_3 is a complete subgraph.
- –Sub-subcase 2.1.4: If two distinct vertices (points) in *S*⁴ are adjacent, *S*⁴ is a complete subgraph.
- **–Sub-subcase 2.1.5**: Let v_i be a vertex in S_1 and v_j be a vertex in *S*2. Then
- If *i* > *j*, then *v_i* is adjacent to the vertex $v_{\frac{p-1}{2}+i}$ and *v*_{*p*−1}_{+*i*}</sub> is adjacent to *v_j* so $d(v_i, v_j)$ ≤ 2.
- $\frac{-1}{2} + i$ If \overline{i} < *j*, then v_i is adjacent to the vertex $v_{\frac{p-1}{2}+j}$ and v_{p-1} ₂ + *j* is adjacent to *v_j* so $d(v_i, v_j) \leq 2$.
- **–Sub-subcase 2.1.6:** If vertex $v_i \in S_1$ is adjacent to the vertex $v_{\frac{p-1}{2}+i+1}$ and $v_{\frac{p-1}{2}}$ is adjacent to each vertex $v_j \in S_3$, $d(v_i, v_j) \leq 2$.
- **–Sub-subcase 2.1.7:** If $v_i \in S_1$ is adjacent to the vertex v_{p-1} and v_{p-1} is adjacent to each vertex $v_j \in S_4$, $\frac{2}{d(v_i, v_j)} \leq 2$.
- **–Sub-subcase 2.1.8:** If $v_i \in S_2$ is adjacent to the vertex $v_{\frac{p-1}{2}-1}$ and $v_{\frac{p-1}{2}-1}$ is adjacent to each vertex $v_j \in S_3$, $d(v_i, v_j) \leq 2$.
- **–Sub-subcase 2.1.9:** If $v_i \in S_2$ is adjacent to the vertex v_1 and v_1 is adjacent to each vertex $v_i \in S_4$, $d(v_i, v_j) \leq 2.$
- –Sub-subcase 2.1.10: For any two distinct vertices in *S*₃ and *S*₄, let $i = \{1, 3, ..., \frac{p-1}{2} - 3, \frac{p-1}{2} - 1\}$, $j = \{2, 4, ..., \frac{p-1}{2} - 2, \frac{p-1}{2}\}.$ Then for any vertex $v_{\frac{p-1}{2}+i} \in S_3$ is adjacent to the vertex v_i and the vertex *v*_{*i*} is adjacent to each vertex *v*_{*j*+} $\frac{p-1}{2} \in S_4$ for each $i < j$. On other hand for each $i > j$ every element $v_{\frac{p-1}{2}+i} \in S_3$ is adjacent to the vertex v_j and v_j is adjacent to each vertex $v_j \in S_4$, so $d(v_i, v_j) \leq 2.$
- **–Subcase 2.2**: If $\frac{p-1}{2}$ is odd, then we have S_1 = {*v*₀,*v*₂, ...,*v*_{*p*⁻¹₂₋₃, *v*_{*p*⁻¹₂₋₁}</sup>,}} S_2 = {*v*₁,*v*₃,...,*v*_{*p*^{−1}</sup>₂⁻₂,*v*_{*p*^{−1}₂</sup>},}} $S_3 = \{v_{\frac{p-1}{2}+1}, v_{\frac{p-1}{2}+3}, ..., v_{p-3}, v_{p-1}\}\$ and $S_4 = \{v_{\frac{p-1}{2}+2}, v_{\frac{p-1}{2}+4}, ..., v_{p-4}, v_{p-2}\}.$ Now we have the following sub-subcases.
	- –Sub-subcase 2.2.1: If two distinct vertices in *S*¹ are adjacent, S_1 is a complete subgraph. The rest Sub-subcases follow analogously.

Now, before we start to compute the geodetic number of the circulant graphs $C_m(\lbrace 2, 4, ..., \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor \rbrace)$, consider this illustrative example to compute the geodetic number of the circulant graphs $C_m(\lbrace 2, 4, ..., \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor \rbrace)$, see

Figure 1.

Fig. 1: $C_7(2,3)$.

3 The geodetic number of the circulant

graphs $C_m(\lbrace 2, 4, ..., \lfloor \frac{m}{2} \rfloor \rbrace)$ $\frac{m}{2}$] – 1, $\lfloor \frac{m}{2} \rfloor$ $\frac{m}{2}$] })

In this section we determine the geodetic number of the circulant graphs $C_m(\{2,4,\ldots,\lfloor \frac{m}{2} \rfloor -1,\lfloor \frac{m}{2} \rfloor \})$. We also assume the vertex set of $C_m(\{2,4,\ldots,\lfloor \frac{m}{2} \rfloor - 1,\lfloor \frac{m}{2} \rfloor\})$ is $\{v_0,v_1,\ldots,v_{2p-1}\}$ if *m* = 2*p*, and the vertex set is {*v*₀, *v*₁, ..., *v*_{*p*−1}} if *m* = *p*.

Lemma 4.*If* $m = 2p$ where p is a prime number, then $g(C_{2p}({2,4,...,p-1,p})) = p.$

*Proof.*If $m = 2p$, then let $S_1 = \{v_1, v_3, ..., v_p, v_{p+2}, ..., v_{2p-1}\}$ is a complete subgraph.

Let $S_2 = \{v_0, v_2, ..., v_{p-1}, v_{p+1}, ..., v_{2p-2}\}$ be a complete subgraph and each vertex in S_1 is adjacent to only one vertex in S_2 such that $\{v_i : v_i \in S_1\}$ is adjacent to $\{v_{i+p} : v_{i+p} \in S_2\}$, then consider $S = \{v_3, v_5, ..., v_p, v_{p+2}, ..., v_{2p-1}, v_{p+1}\}\$ geodesics cover all the vertices of $C_{2p}({2,4,..., p-3, p-1, p}).$

Now, we discuss the cases for the geodetic number when $m = p$.

Lemma 5.*If* $m = p$ where p is a prime number, then $g(C_p(\{2,4,\ldots,\frac{p-1}{2}-1,\frac{p-1}{2}\})) = 3$ *if and only if* $p = 5$ *or* $p = 7$.

*Proof.*It is clear that when *p* = 5, $C_5(2) \cong C_5$, $g(C_5(2)) = 3$. When $p = 7$ with $S = \{v_0, v_1, v_6\}$, $g(C_7(\{2, 3\})) = 3.$

On the other hand if $g(C_p({2,4,..., \frac{p-1}{2} - 1, \frac{p-1}{2}})) = 3.$ Then we have the following cases:

−Case 1:If $\frac{p-1}{2}$ is even, then consider *S* = {*v*₁, *v*_{*a*}, *v*_{*b*}} where v_1 is not adjacent to v_a and v_b so $v_a, v_b \in \{S_1, S_3\} \setminus \{v_{\frac{p-1}{2}}, v_{\frac{p-1}{2}+1}\}.$

Now, without loss of generality let $b \in S_1$ and $a \in S_3$. Thus, $v_1 - S_2 - v_a$, $a \in S_3 \setminus \{v_{\frac{p-1}{2}+1}\},\$ then $v_a = v_{\frac{p-1}{2}+5}$. Otherwise, not all vertices in *S*₂ are adjacent to *v_a*. Also, *v*₁ − *S*₃ − *v*_{*b*}, *b* ∈ *S*₁ \ {*v*_{*p*⁻¹</sup>},} then *b* = $v_{\frac{p-1}{2}-2}$. Otherwise, not all vertices in S_3 are adjacent to *v_b*. This leads to the vertex *v*₀ = *v*_{*p*⁻¹</sup>-2} i.e $p = 5$. Otherwise, *v*₀ does not lie on any *v*₁ − *v*_{*p*⁻¹} +5^{*n*}, $v_1 - v_{\frac{p-1}{2}-2}$ geodetic.

−Case 2: If $\frac{p-1}{2}$ is odd, then consider *S* = {*v*₀, *v*_{*a*}, *v*_{*b*}} with v_0 is not adjacent to v_a and v_b where $v_a, v_b \in \{S_2, S_3\} \setminus \{v_{\frac{p-1}{2}+1}, v_{\frac{p-1}{2}}\}.$

Now, without loss of generality let $v_b \in S_2$ and $v_a \in S_3$. So, $v_0 - S_4 - v_b$, $v_b \in S_2 \setminus \{v_{p-1}\}$, then $v_b = v_{\frac{p-1}{2}-2}$. Otherwise, not all vertices in *S*₄ are adjacent to *v_b*. Also, *v*₀ − *S*₁ − *v_a*, *v_a* ∈ *S*₃ \ {*v*_{*p*⁻¹₂⁺+1}}, then $v_a = v_{\frac{p-1}{2}+3}$. Otherwise, not all vertex in *S*₃ adjacent to *v_a*. This leads to the vertex *v*₁ = *v*_{*p*⁻¹</sup>-2} i.e $p = 7$. Otherwise, *v*₁ does not lie on any *v*₀ − *v*_{*p*⁻¹-2}, $v_0 - v_{\frac{p-1}{2}+3}$ geodetic.

Observation 1.

Based on the proof of Lemma 5, we conclude that if $n = p$ where $p \geq 5$ is a prime number, then we have the following cases:

- **-Case 1:** If $\frac{p-1}{2}$ is even, then every geodetic set of $C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})$ contains the set of $\{v_1, v_{\frac{p-1}{2}+5}, v_{\frac{p-1}{2}-2}\}.$
- $-$ **Case 2**: If $\frac{p-1}{2}$ is odd, then every geodetic set of $C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})$ contains the set of $\{v_0, v_{\frac{p-1}{2}+3}, v_{\frac{p-1}{2}-2}\}.$

The following lemma states that for any prime number $p \geq$ 11, the geodetic number of $C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})$ is greater than or equal to 5.

Lemma 6.*If* $m = p$ where $p \ge 11$ is a prime number, then $g(C_p(\lbrace 2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2} \rbrace)) \ge 5.$

*Proof.*Using similar argument to the proof of Lemma 5 , we get $g(C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})) \ge 5$. We have two cases to consider.

–Case 1: If
$$
\frac{p-1}{2}
$$
 is even, then the set
{ $v_1, v_{\frac{p-1}{2}+5}, v_{\frac{p-1}{2}-2}$ } is a subset of any geodetic set of
 $C_p({2, 4, ..., \frac{p-1}{2}} - 1, \frac{p-1}{2})$). Let

 $S = \{v_1, v_{\frac{p-1}{2}+5}, v_{\frac{p-1}{2}-2}, v_e\}$. We want to show that *S* cannot be a geodetic set of $C_p({2, 4, ..., \frac{p-1}{2} - 1,})$ $\left(\frac{p-1}{2}\right)$). Now, *v*_e is different from the vertices {*v*0,*v ^p*−¹ ² +3 ,*v ^p*−¹ ² −2 }. Since $diam(C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})) = 2, v_e$ does not lie on any $v_1 - v_{\frac{p-1}{2}+5}$, $v_1 - v_{\frac{p-1}{2}-2}$ geodetic, i.e. $v_e \notin \{S_2, S_4\}$ by the symmetric of $C_P(\{2, 4, \ldots,$ $\lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor$ }) we can let $v_e = v_0$. This means $I_{C_p(\{2,4,\ldots,\frac{p-1}{2}-1,\frac{p-1}{2}\})}[v_1,v_{\frac{p-1}{2}+5}]$ $\begin{array}{ccc} \end{array}$ = $\{v_1, S_2, v_{\frac{p-1}{2}+1}, v_{\frac{p-1}{2}+3}, v_{\frac{p-1}{2}+5}\},\$ $I_{C_p({2,4,\ldots,\frac{p-1}{2}-1,\frac{p-1}{2})}[\nu_1,\nu_2]$ $v_{\frac{p-1}{2}-2}$ = {*v*₁, *S*₄, *v*_{*p*⁻¹</sup>₂, *v*_{*p*⁻¹₂₊₂, *v*_{*p*⁻¹₂⁻-2}}} and $I_{C_p({2,4,\ldots,\frac{p-1}{2}-1,\frac{p-1}{2})}[v_0,v_1]}$ = {*v*₀, *v*_{*p*^{−1}</sup> $\frac{1}{2}$, *v*_{*p*^{−1} $\frac{1}{2}$} +1, *v*₁}. Therefore, *S* is not geodetic} set of $C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}}).$

 $-$ **Case 2**: If $\frac{p-1}{2}$ is odd, then the set $\{v_0, v_{\frac{p-1}{2}+3}, v_{\frac{p-1}{2}-2}\}$ is a subset of any geodetic set of $C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}}).$ Let $S = {v_0, v_{\frac{p-1}{2}+3}},$ $v_{\frac{p-1}{2}-2}$, *v*_{*e*}}. We want to show that *S* cannot be a geodetic set of $C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})$. Now, v_e is different from the vertices $\{v_0, v_{p-1} \atop p-1 \neq 3}, v_{p-1} \atop p-1 \neq 2\}.$ $\frac{-1}{2}+3$, $\frac{p-1}{2}-2$ Since $diam(C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})) = 2, v_e$ does not lie on any $v_0 - v_{\frac{p-1}{2}+3}$, $v_0 - v_{\frac{p-1}{2}-2}$ geodetic, i.e. $v_e \notin \{S_1, S_4\}$ by the symmetric of $C_P({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})$. We can let $v_e = v_1$. This means $I_{C_p({2,4,\ldots,\frac{p-1}{2}-1,\frac{p-1}{2})}}[v_0,v_{\frac{p-1}{2}+3}] =$ { v_0 , S_1 , $v_{\frac{p-1}{2}+1}$, $v_{\frac{p-1}{2}+3}$ }, $I_{C_p(\{2,4,\ldots,\frac{p-1}{2}-1,\frac{p-1}{2}\})} [v_0,v_{\frac{p-1}{2}-2}]$ $\begin{array}{ccc} \end{array}$ = $\{v_0, S_4, v_{\frac{p-1}{2}}, v_{\frac{p-1}{2}-2}\}\$ and $I_{C_p({2,4,\ldots,\frac{p-1}{2}-1,\frac{p-1}{2})}[\nu_0,\nu_1]$ = $\{v_0, v_{\frac{p-1}{2}+1}, v_{\frac{p-1}{2}}, v_{\frac{p-1}{2}+2}, v_1\}$. Therefore, *S* is not geodetic set of $C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}}).$

Now, we turn our discussion to study the cases for when the geodetic number is 5 of the circulant graphs $C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}}).$

Lemma 7.*If* $m = p$ where p is a prime number, then $g(C_m({2,4,..., \frac{p-1}{2}-1, \frac{p-1}{2}})) = 5$ *if and only if* $p = 11$ $or p = 13.$

Proof.It is clear that when $p = 11$, consider $S = \{v_0, v_1, v_2, v_3, v_9\}$ is a geodetic set and $g(C_{11}(\{2,4, 5\}))) = 5$. Also when $p = 13$ consider $S = \{v_0, v_1, v_{11}, v_4, v_{10}\}$ is a geodetic set and $g(C_{11}({2,4,5}))) = 5.$ On the other hand if $g(C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})) = 5$.

 c 2021 NSP Natural Sciences Publishing Cor. Then we have two cases:

 $-$ **Case** 1:If $\frac{p-1}{2}$ is even, then consider $S = \{v_1, v_{\frac{p-1}{2}+5}, v_{\frac{p-1}{2}-2}, v_0, v_e\}$ with *v*₀ is not adjacent to v_e where $v_e \in \{S_2, S_4\} \setminus \{v_{\frac{p-1}{2}-1}, v_{\frac{p-1}{2}+2}\}.$ Now, if the vertex $v_e \in S_4$. So, $v_0 - S_1 - v_e$, then $v_e = v_{\frac{p-1}{2}+4}$. Otherwise, not all vertices in *S*₁ are adjacent to v_e . This leads to the vertex $v_0 = v_{\frac{p-1}{2}+7}$, i.e. $p = 13$. Otherwise, v_0 does not lie on any *v*₁ − *v*_{*p*^{−1}</sup> +5}, *v*₁ − *v*_{*p*^{−1}</sup> −2 geodetic.} If the vertex $v_e \in S_2$, $v_0 - S_3 - v_e$, then $v_e = v_{\frac{p-1}{2} - 3}$. Otherwise, not all vertices in S_3 are adjacent to v_e . Thus to the vertex v_2 does not lie on any geodetic set or $v_2 = v_{\frac{p-1}{2}-2}$, i.e. $p = 9$ which is a contradiction.

 $-$ **Case** 2: If $\frac{p-1}{2}$ is odd, then consider $S = \{v_0, v_{\frac{p-1}{2}-2}, v_{\frac{p-1}{2}+3}, v_1, v_e\}$ with v_1 is not adjacent to v_e where $v_e \in \{S_1, S_4\} \setminus \{v_{\frac{p-1}{2}-1}, v_{\frac{p-1}{2}+2}\}.$ Now, if the vertex $v_e \in S_4$. So, $v_1 - S_2 - v_e$, then $v_e = v_{\frac{p-1}{2}+4}$. Otherwise, not all vertices in *S*₂ are adjacent to v_e . Thus to the vertex $v_0 = v_{\frac{p-1}{2}+7}$, i.e. $p = 13$. Otherwise, v_0 does not lie on any geodetic set. If the vertex $v_e \in S_1$. So, $v_1 - S_3 - v_e$, then $v_e = v_{\frac{p-1}{2}-1}$. Otherwise, not all vertices in *S*₃ adjacent to *v_e*. This leads to the vertex $v_3 = v_{\frac{p-1}{2}-2}$ i.e $p = 13$, which is a contradiction.

Finally, we discuss the case when the geodetic number is 6.

Lemma 8.*For the circulant graphs* $C_m({1, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})$ *. If m* = *p* where *p* is a prime *number greater than* 13*, then* $g(C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})) = 6.$

*Proof.*By using previous lemma, we get $g(C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})) \ge 6$ when $p > 13$. Now, we consider

- $-$ **Case** 1:If $\frac{p-1}{2}$ is even, then consider $S = \{v_1, v_{\frac{p-1}{2}, -2}, v_{\frac{p-1}{2}+5}, v_0, v_{\frac{p-1}{2}, -3}, v_{\frac{p-1}{2}+4}\}.$ Using Lemma 7, the $v_0 - v_{\frac{p-1}{2}-3}$ geodesics cover all the vertices S_3 , $v_0 - v_{p-1}$ geodesics cover all the $\frac{-1}{2}+4$ vertices S_1 , $v_1 - v_{\frac{p-1}{2}-2}$ geodesics cover all the vertices S_4 , and $v_1 - v_{\frac{p-1}{2}+5}$ geodesics cover all the vertices S_2 . Hence S is a geodetic set and $g(C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})) = 6.$
- $-$ **Case** 2: If $\frac{p-1}{2}$ is odd, then consider $S = \{v_1, v_{\frac{p-1}{2}-1}, v_{\frac{p-1}{2}+4}, v_0, v_{\frac{p-1}{2}-2}, v_{\frac{p-1}{2}+3}\}.$ Using Lemma 7, the $v_0 - v_{\frac{p-1}{2}-2}$ geodesics cover all the

vertices S_4 , $v_0 - v_{\frac{p-1}{2}+3}$ geodesics cover all the vertices S_1 , $v_1 - v_{\frac{p-1}{2}-1}$ geodesics cover all the vertices S_3 , and $v_1 - v_{\frac{p-1}{2}+4}$ geodesics cover all the vertices *S*2. Hence *S* is a geodetic set and $g(C_p({2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}})) = 6.$

4 Conclusion

In this paper, we determined the geodetic number of circulant graphs $C_m({2, 4, ..., \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor})$. We sum up our calculations in the following theorem.

Theorem 1.*If* $m = 2p$ or $m = p$ where p is a prime number, *then*

$$
g(C_m(D)) = \begin{cases} p, & if \ m = 2p, \\ 3, & if \ m = 5 \ or \ m = 7, \\ 5, & if \ m = 11 \ or \ m = 13, \\ 6, & if \ m > 13. \end{cases}
$$

 $where D = \{2, 4, ..., \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor \}.$

5 Perspective

In this paper, we find the geodetic set and geodetic number of circulant graphs $C_m(\lbrace 2,4,\cdots,\lfloor \frac{m}{2} \rfloor -1,\lfloor \frac{m}{2} \rfloor \rbrace)$ where $m = 2p$ or $m = p$..

One can ask the following questions:

- $-(1)$ What is the geodetic number of complement of the circulant graphs $C_m(\lbrace 2,4,\cdots,\lfloor \frac{m}{2} \rfloor -1,\lfloor \frac{m}{2} \rfloor \rbrace)$?
- $-(2)$ What is the geodetic number of the circulant graphs $C_m(\lbrace 2, 4, \cdots, \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor \rbrace)$ when $m = 2p + 1$?

References

- [1] G. Chartrand, P. Zhang, Realizable ratios in graph theory: geodesic parameters, *Bull. Inst. Comb. Appl*, 27, 1999.
- [2] G. Agnarsson, M.M. Halldórsson, Coloring powers of planar graphs, *SIAM J. Discret. Math*, 16, 651-662, 2003.
- [3] G. Chartrand, P. Zhang, The geodetic number of an oriented graph, *Eur. J. Comb*, 21, 181-198, 2000.
- [4] B. Effantin, H. Kheddouci, The b-chromatic number of some power graphs, *Discret. Math. Theor. Comput. Sci*, 6, 45-54, 2003.
- [5] O.A AbuGhneim, B. Al-Khamaiseh and H. Al-Ezeh, The geodetic, hull, and Steiner numbers of powers of paths, *Util. Math*, 95, 289-294, 2014.
- [6] . Nebesky, A characterization of the interval function of a connected graph, *' Czech. Math. J*, 44, 173-178, 1994.
- [7] G. Chartrand, F. Harary, and P. Zhang, On the geodetic number of agraph, *Networks*, 39, 1-6, 2002.
- [8] G. Chartrand, F. Harary, F and P. Zhang, *Extremal problems in geodetic graph theory*, In Proceedings of the Twenty-ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing, Boca Raton, FL, USA, 157–168, 2018.
- [9] H. M Mulder, *The Interval Function of a Graph, Centrum Voor Wiskunde en Informatica*, Amsterdam, The Netherlands, 1980.
- [10] A.Brandstädt, V.D Chepoi, F.F Dragan, Perfect elimination orderings of chordal powers of graphs, *Discret. Math*, 158, 273-278, 1996.
- [11] F. Buckley and F. Harary. *Distance in graphs*. Addison-Wesely, Redwood City, CA, 1990.
- [12] P. Manuel, S. Klavžar, A. Xavier, A. Arokiaraj, and E. Thomas, Strong edge geodetic problem in networks, *Open Math*, 15, 1225–1235, 2017.
- [13] P. Meijer., *Connectivities and Diameters of Circulant Graphs*. Ph.D. Thesis, Simon Fraser University, Burnaby, BC, Canada, 1991.

Manal Al-Labadi is Assistant Professor of Mathematical at University Of Petra. Her main research interests are: Algebraic graph theory, Algebra, Functional Analysis and its applications.