

Applied Mathematics & Information Sciences An International Journal

http://dx.doi.org/10.18576/amis/150208

Geodetic Number Of Circulant Graphs $C_m(\{2, 4, ..., \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor\})$

Manal Al-Labadi

Department of Mathematics, Faculty of Arts and Sciences, University Of Petra, Amman, Jordan

Received: 3 May 2020, Revised: 20 Feb. 2021, Accepted: 24 Feb. 2021 Published online: 1 Mar. 2021

Abstract: In this paper, we compute the geodetic set and geodetic number of circulant graphs $C_m(\{2, 4, \dots, \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor\})$ where m = 2p or m = p.

Keywords: Circulant graph, Geodetic set; Geodetic number; Power of graph

1 Introduction

Through out this article, a graph G is a finite simple connected graph without loops and multiple edges. The distance between any two vertices v_1 and v_2 is the length of the shortest path between v_1 and v_2 . We represent it by $d(v_1, v_2)$. The shortest path between two vertices (points) v_1 and v_2 is called a v_1 - v_2 geodesic. The set of all vertices in G that lie on $v_1 - v_2$ geodesic is denoted by $I_G[v_1, v_2]$. For any subset S of G, let $I[S] = \bigcup_{u,v \in S} I_G[v_1, v_2]$. If $I_G[v_1, v_2] = V(G)$, then S is called a geodetic set of G. The minimum number of a geodetic set of G is called the geodetic number and this number is denoted by g(G). The geodetic number of a graph was intensively investigated in [1,2,3,4]. The maximum of the distance between any two difference vertices x and y in G is called diameter and is denoted by diam(G). Two vertices v_1 , v_2 of a graph G are called antipodal in G if $d(v_1, v_2) = diam(G)$.

Moreover, the geodetic, hull, and Steiner numbers of powers of paths were investigated by AbuGhneim et al. [5]. Moreover, for connected graphs, the closed intervals $I_G[u,v]$ were studied extensively by Nebesky [6]. In addition, power graphs also have applications in quantum random walks in physics and routing in networks and so have generated interest in past and current paper [7,8,9].

Let $1 \le a_1 < a_2 < \cdots < a_m \le \lfloor \frac{n}{2} \rfloor$, where m, n, a_i are integers, $1 \le i \le m$, and $n \ge 3$. Set $S = \{a_1, a_2, \cdots, a_m\}$. A graph G with the vertex set $\{1, 2, \cdots, n\}$ and with the edge set $\{\{i, j\} : |i - j| \equiv a_t \pmod{n}$ for some $1 \le t \le m\}$ is called a circulant graph with respect to set S (or with

connection set S), and denotes by $C_n(S)$ or $C_n(a_1, a_2, \dots, a_m)$. For example, every power of cycle is Circulant graph, and Circulant graphs play a very important and crucial role in Networks design [10, 11, 12] and have an applications to telecommunication network, VLSI design as well as parallel and distributed computing.

The present paper aims to compute the geodetic number of the circulant graphs $C_m(\{2,4,\cdots,\lfloor\frac{m}{2}\rfloor-1,\lfloor\frac{m}{2}\rfloor\}).$

2 Preliminary Lemmas

Let $C_m(\{2,4,...,\lfloor \frac{m}{2} \rfloor - 1,\lfloor \frac{m}{2} \rfloor\})$ be the circulant graphs with m = p or m = 2p.

In this section, we present the necessary lemmas to compute the geodetic number of the circulant graphs $C_m(\{2,4,...,\lfloor\frac{m}{2}\rfloor-1,\lfloor\frac{m}{2}\rfloor\})$. We will also present some crucial lemmas.

To illustrate the idea of the following lemma, a vertex v in a graph G is called a extreme point if the subgraph induced by its neighbors is complete. If S is a geodetic, then S contains the set of extreme points. Now, we give some lemmas of properties $C_m(\{2,4,...,\lfloor\frac{m}{2}\rfloor-1,\lfloor\frac{m}{2}\rfloor\})$.

Lemma 1.The	circulant	graphs
$C_m(\{2,4,\ldots,\lfloor\frac{m}{2}\rfloor-1,\lfloor\frac{m}{2}\rfloor\})$	<pre>}) have no extreme</pre>	point.
<i>Proof.</i> Let $L_1 = \{v_0, \dots, v_n\}$	$, v_1, \ldots,$	$v_{\frac{p-1}{2}}$ and
$L_2 = \{ v_{\frac{p-1}{2}+1}, v_{\frac{p-1}{2}+2}, ,, $, v_{p-1} }. We want	to prove that

^{*} Corresponding author e-mail: manal.allabadi@uop.edu.jo

the circulant graph $C_m(\{2,4,...,\lfloor\frac{m}{2}\rfloor-1,\lfloor\frac{m}{2}\rfloor\})$ has no extreme point. We can use the following cases:

-Case 1: If m = 2p where p is a prime number, then let the three vertices v_a , $v_{b=a+2}$ and $v_{c=p+a}$ exist in the circulant graph $C_{2p}(\{2, 4, ..., p-3, p-1, p\})$.

Now, v_a is adjacent to v_b and v_c where the two vertices $(1, p\})$, since $c - b = p - 2 \notin \{2, 4, ..., p - 3, p - 1, p\}$. -Case 2: If m = p where p is a prime number, then we have two subcases:

- -Subcase 2.1: If $\frac{p-1}{2}$ is even, then there exist three vertices v_a , $v_{b=a+2}^2$ and $v_{c=\frac{p-1}{2}-1+a}$ in the circulant graphs $C_p(\{2, 4, \dots, \frac{p-1}{2} - 1, \frac{p-1}{2}\}).$
- Now, the vertex v_a is adjacent to v_b and v_c where the two vertices v_b and v_c are not adjacent in two vertices v_b and v_c are not negative. $C_m(\{2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}\})$, since $c - b = \frac{p-1}{2} - 3 \notin \{2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}\}$. -Subcase 2.2: If $\frac{p-1}{2}$ is odd, then there exist three vertices v_a , $v_{b=a+2}$ and $v_{c=\frac{p-1}{2}+a}$ in the circulant
- graphs $C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})$. Now,the vertex v_a is adjacent to v_b and v_c where the two vertices v_b and v_c are not adjacent in $\begin{array}{l} C_p(\{2,4,...,\frac{p-1}{2} - 1,\frac{p-1}{2}\}),\\ c-b = \frac{p-1}{2} - 2 \notin \{2,4,...,\frac{p-1}{2} - 1,\frac{p-1}{2}\}. \end{array}$ since

Thus, v_a is not an extreme point in the circulant graph $C_m(\{2,4,\ldots,\lfloor\frac{m}{2}\rfloor-1,\lfloor\frac{m}{2}\rfloor\})$ for any vertex v_a .

The following Lemma is well known, see [13].

Lemma 2.The circulant graphs $C_n(\{S\})$, where $S = \{a_1, \dots, a_k\}$, is connected if and only if $gcd(a_1, ..., a_k) = 1.$

We have the following lemma to determine the diameter of the circulant grsph $C_m(\{2, 4, ..., \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor\}).$

Lemma 3.The diameter of the circulant graphs $C_m(\{2, 4, ..., \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor\})$ is 2.

Proof.We have the following two cases:

-Case 1: If m = 2p where p is a prime number, then we have $S_1 = \{v_1, v_3, ..., v_p, v_{p+2}, ..., v_{2p-1}\}$ and $S_2 = \{v_0, v_2, ..., v_{p-1}, v_{p+1}, ..., v_{2p-2}\}$ which are a complete subgraph. Each vertex in S_1 is adjacent to only one vertex in S_2 such that $\{v_i : v_i \in S_1\}$ is adjacent to $\{v_{i+p} : v_{i+p} \in S_2\},\ diam(C_{2p}(\{2,4,...,p-3,p-1,p\}) = 2.$ then

-Case 2: If m = p where p is a prime number, then we have two subcases

-Subcase 2.1: If $\frac{p-1}{2}$ is even, then we have $\{v_0, v_2, \dots, v_{\frac{p-1}{2}-2}, v_{\frac{p-1}{2}}\},\$ S_1 S_2 = $\{v_1, v_3, \dots, v_{\frac{p-1}{2}-3}, v_{\frac{p-1}{2}-1}\},\$ $= \{v_{\frac{p-1}{2}+1}, v_{\frac{p-1}{2}+3}, \dots, v_{p-4}, v_{p-2}\}$ S_3 and $S_4 = \{v_{\frac{p-1}{2}+2}, v_{\frac{p-1}{2}+4}, ..., v_{p-3}, v_{p-1}\}.$ These sets have

the distances between their vertices as follows:

- -Sub-subcase 2.1.1: If two distinct vertices (points) in S_1 are adjacent, S_1 is a complete subgraph.
- -Sub-subcase 2.1.2: If two distinct vertices (points) in S_2 are adjacent, S_2 is a complete subgraph.
- -Sub-subcase 2.1.3: If two distinct vertices (points) in S_3 are adjacent, S_3 is a complete subgraph.
- -Sub-subcase 2.1.4: If two distinct vertices (points) in S_4 are adjacent, S_4 is a complete subgraph.
- -Sub-subcase 2.1.5: Let v_i be a vertex in S_1 and v_j be a vertex in S_2 . Then
- If i > j, then v_i is adjacent to the vertex $v_{\frac{p-1}{2}+i}$ and

 $v_{\frac{p-1}{i+i}}$ is adjacent to v_j so $d(v_i, v_j) \leq 2$.

- If $\hat{i} < j$, then v_i is adjacent to the vertex $v_{\frac{p-1}{2}+j}$ and $v_{\frac{p-1}{2}+i}$ is adjacent to v_j so $d(v_i, v_j) \leq 2$.
- **–Sub-subcase 2.1.6**: If vertex $v_i \in S_1$ is adjacent to the vertex $v_{\frac{p-1}{2}+i+1}$ and $v_{\frac{p-1}{2}}$ is adjacent to each vertex $v_i \in S_3$, $d(v_i, v_j) \leq 2$.
- -Sub-subcase 2.1.7: If $v_i \in S_1$ is adjacent to the vertex $v_{\frac{p-1}{2}}$ and $v_{\frac{p-1}{2}}$ is adjacent to each vertex $v_i \in S_4, \overline{d(v_i, v_j)} \leq \overline{2}.$
- -Sub-subcase 2.1.8: If $v_i \in S_2$ is adjacent to the vertex $v_{\frac{p-1}{2}-1}$ and $v_{\frac{p-1}{2}-1}$ is adjacent to each vertex $v_i \in S_3$, $d(v_i, v_j) \leq 2$.
- -Sub-subcase 2.1.9: If $v_i \in S_2$ is adjacent to the vertex v_1 and v_1 is adjacent to each vertex $v_i \in S_4$, $d(v_i, v_j) \leq 2.$
- -Sub-subcase 2.1.10: For any two distinct vertices in S_3 and S_4 , let $i = \{1, 3, ..., \frac{p-1}{2} - 3, \frac{p-1}{2} - 1\},\$ $j = \{2, 4, ..., \frac{p-1}{2} - 2, \frac{p-1}{2}\}$. Then for any vertex $v_{\frac{p-1}{2}+i} \in S_3$ is adjacent to the vertex v_i and the vertex v_i is adjacent to each vertex $v_{i+\frac{p-1}{2}} \in S_4$ for each i < j. On other hand for each $i^2 > j$ every element $v_{\frac{p-1}{2}+i} \in S_3$ is adjacent to the vertex v_j and v_i is adjacent to each vertex $v_i \in S_4$, so $d(v_i, v_j) \leq 2.$

-Subcase 2.2: If $\frac{p-1}{2}$ is odd, then we have $S_1 = \{v_0, v_2, ..., v_{\frac{p-1}{2}-3}, v_{\frac{p-1}{2}-1}\},\$ $S_2 = \{v_1, v_3, ..., v_{\frac{p-1}{2}-2}, v_{\frac{p-1}{2}}\},\$ $S_{3} = \{v_{\frac{p-1}{2}+1}, v_{\frac{p-1}{2}+3}, \dots, v_{p-3}, v_{p-1}\} \text{ and } S_{4} = \{v_{\frac{p-1}{2}+2}, v_{\frac{p-1}{2}+4}, \dots, v_{p-4}, v_{p-2}\}.$ Now we have the following sub-subcases.

-Sub-subcase 2.2.1: If two distinct vertices in S_1 are adjacent, S_1 is a complete subgraph. The rest Sub-subcases follow analogously.

Now, before we start to compute the geodetic number of the circulant graphs $C_m(\{2, 4, ..., \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor\})$, consider this illustrative example to compute the geodetic number of the circulant graphs $C_m(\{2,4,...,\lfloor\frac{m}{2}\rfloor-1,\lfloor\frac{m}{2}\rfloor\})$, see

Figure 1.

Fig. 1: *C*₇(2,3).

3 The geodetic number of the circulant $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$

graphs $C_m(\{2,4,...,\lfloor \frac{m}{2} \rfloor - 1,\lfloor \frac{m}{2} \rfloor\})$

In this section we determine the geodetic number of the circulant graphs $C_m(\{2,4,...,\lfloor\frac{m}{2}\rfloor-1,\lfloor\frac{m}{2}\rfloor\})$. We also assume the vertex set of $C_m(\{2,4,...,\lfloor\frac{m}{2}\rfloor-1,\lfloor\frac{m}{2}\rfloor\})$ is $\{v_0,v_1,...,v_{2p-1}\}$ if m = 2p, and the vertex set is $\{v_0,v_1,...,v_{p-1}\}$ if m = p.

Lemma 4. If m = 2p where p is a prime number, then $g(C_{2p}(\{2,4,...,p-1,p\})) = p.$

*Proof.*If m = 2p, then let $S_1 = \{v_1, v_3, ..., v_p, v_{p+2}, ..., v_{2p-1}\}$ is a complete subgraph.

Let $S_2 = \{v_0, v_2, ..., v_{p-1}, v_{p+1}, ..., v_{2p-2}\}$ be a complete subgraph and each vertex in S_1 is adjacent to only one vertex in S_2 such that $\{v_i : v_i \in S_1\}$ is adjacent to $\{v_{i+p} : v_{i+p} \in S_2\}$, then consider $S = \{v_3, v_5, ..., v_p, v_{p+2}, ..., v_{2p-1}, v_{p+1}\}$ geodesics cover all the vertices of $C_{2p}(\{2, 4, ..., p-3, p-1, p\})$.

Now, we discuss the cases for the geodetic number when m = p.

Lemma 5.*If* m = p where p is a prime number, then $g(C_p(\{2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}\})) = 3$ if and only if p = 5 or p = 7.

*Proof.*It is clear that when p = 5, $C_5(2) \cong C_5$, $g(C_5(2))) = 3$. When p = 7 with $S = \{v_0, v_1, v_6\}$, $g(C_7(\{2, 3\}))) = 3$.

On the other hand if $g(C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})) = 3$. Then we have the following cases: -Case 1:If $\frac{p-1}{2}$ is even, then consider $S = \{v_1, v_a, v_b\}$ where v_1 is not adjacent to v_a and v_b so $v_a, v_b \in \{S_1, S_3\} \setminus \{v_{\frac{p-1}{2}}, v_{\frac{p-1}{2}+1}\}.$

Now, without loss of generality let $b \in S_1$ and $a \in S_3$. Thus, $v_1 - S_2 - v_a$, $a \in S_3 \setminus \{v_{\frac{p-1}{2}+1}\}$, then $v_a = v_{\frac{p-1}{2}+5}$. Otherwise, not all vertices in S_2 are adjacent to v_a . Also, $v_1 - S_3 - v_b$, $b \in S_1 \setminus \{v_{\frac{p-1}{2}}\}$, then $b = v_{\frac{p-1}{2}-2}$. Otherwise, not all vertices in S_3 are adjacent to v_b . This leads to the vertex $v_0 = v_{\frac{p-1}{2}-2}$ i.e p = 5. Otherwise, v_0 does not lie on any $v_1 - v_{\frac{p-1}{2}+5}$, $v_1 - v_{\frac{p-1}{2}-2}$ geodetic.

-Case 2: If $\frac{p-1}{2}$ is odd, then consider $S = \{v_0, v_a, v_b\}$ with v_0 is not adjacent to v_a and v_b where $v_a, v_b \in \{S_2, S_3\} \setminus \{v_{\frac{p-1}{2}+1}, v_{\frac{p-1}{2}}\}$. Now, without loss of generality let $v_b \in S_2$ and

Now, without loss of generality let $v_b \in S_2$ and $v_a \in S_3$. So, $v_0 - S_4 - v_b$, $v_b \in S_2 \setminus \{v_{\frac{p-1}{2}}\}$, then $v_b = v_{\frac{p-1}{2}-2}$. Otherwise, not all vertices in S_4 are adjacent to v_b . Also, $v_0 - S_1 - v_a$, $v_a \in S_3 \setminus \{v_{\frac{p-1}{2}+1}\}$, then $v_a = v_{\frac{p-1}{2}+3}$. Otherwise, not all vertex in S_3 adjacent to v_a . This leads to the vertex $v_1 = v_{\frac{p-1}{2}-2}$ i.e p = 7. Otherwise, v_1 does not lie on any $v_0 - v_{\frac{p-1}{2}-2}$, $v_0 - v_{\frac{p-1}{2}+3}$ geodetic.

Observation 1.

Based on the proof of Lemma 5, we conclude that if n = p where $p \ge 5$ is a prime number, then we have the following cases:

- -Case 1: If $\frac{p-1}{2}$ is even, then every geodetic set of $C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})$ contains the set of $\{v_1,v_{\frac{p-1}{2}+5},v_{\frac{p-1}{2}-2}\}.$
- Case 2: If $\frac{p-1}{2}$ is odd, then every geodetic set of $C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})$ contains the set of $\{v_0, v_{\frac{p-1}{2}+3}, v_{\frac{p-1}{2}-2}\}$.

The following lemma states that for any prime number $p \ge 11$, the geodetic number of $C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})$ is greater than or equal to 5.

Lemma 6.*If* m = p where $p \ge 11$ is a prime number, then $g(C_p(\{2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}\})) \ge 5.$

*Proof.*Using similar argument to the proof of Lemma 5, we get $g(C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})) \ge 5$. We have two cases to consider.

-Case 1: If
$$\frac{p-1}{2}$$
 is even, then the set $\{v_1, v_{\frac{p-1}{2}+5}, v_{\frac{p-1}{2}-2}\}$ is a subset of any geodetic set of $C_p(\{2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}\})$. Let

$$\begin{split} S &= \{v_1, v_{\frac{p-1}{2}+5}, v_{\frac{p-1}{2}-2}, v_e\}. \text{ We want to show that } S \\ \text{cannot be a geodetic set of } C_p(\{2,4,...,\frac{p-1}{2}-1, \frac{p-1}{2}\}). \text{ Now, } v_e \text{ is different from the vertices } \\ \{v_0, v_{\frac{p-1}{2}+3}, v_{\frac{p-1}{2}-2}\}. & \text{Since } \\ diam(C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})) &= 2, v_e \text{ does not lie } \\ \text{on any } v_1 - v_{\frac{p-1}{2}+5}, v_1 - v_{\frac{p-1}{2}-2} \text{ geodetic, i.e. } \\ v_e \notin \{S_2, S_4\} \text{ by the symmetric of } C_P(\{2,4,..., \lfloor\frac{m}{2}\rfloor - 1, \lfloor\frac{m}{2}\rfloor\}) \text{ we can let } v_e = v_0. \text{ This means } \\ I_{C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})}[v_1, v_{\frac{p-1}{2}+5}] &= \\ \{v_1, S_2, v_{\frac{p-1}{2}+1}, v_{\frac{p-1}{2}+3}, v_{\frac{p-1}{2}+5}\}, \\ I_{C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})}[v_1, v_{\frac{p-1}{2}+2}, v_{\frac{p-1}{2}-2}] &= \\ v_1, S_4, v_{\frac{p-1}{2}-1}, v_{\frac{p-1}{2}+1}, v_1\}. \text{ Therefore, } S \text{ is not geodetic set of } \\ Set of C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}-1,\frac{p-1}{2}\}). \end{split}$$

Now, we turn our discussion to study the cases for when the geodetic number is 5 of the circulant graphs $C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\}).$

Lemma 7. If m = p where p is a prime number, then $g(C_m(\{2, 4, ..., \frac{p-1}{2} - 1, \frac{p-1}{2}\})) = 5$ if and only if p = 11 or p = 13.

*Proof.*It is clear that when p = 11, consider $S = \{v_0, v_1, v_2, v_3, v_9\}$ is a geodetic set and $g(C_{11}(\{2,4,5\}))) = 5$. Also when p = 13 consider $S = \{v_0, v_1, v_{11}, v_4, v_{10}\}$ is a geodetic set and $g(C_{11}(\{2,4,5\}))) = 5$. On the other hand if $g(C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})) = 5$.

© 2021 NSP Natural Sciences Publishing Cor. Then we have two cases:

-Case 1:If $\frac{p-1}{2}$ is even, then consider $S = \{v_1, v_{\frac{p-1}{2}+5}, v_{\frac{p-1}{2}-2}, v_0, v_e\}$ with v_0 is not adjacent to v_e where $v_e \in \{S_2, S_4\} \setminus \{v_{\frac{p-1}{2}-1}, v_{\frac{p-1}{2}+2}\}$. Now, if the vertex $v_e \in S_4$. So, $v_0 - S_1 - v_e$, then $v_e = v_{\frac{p-1}{2}+4}$. Otherwise, not all vertices in S_1 are adjacent to v_e . This leads to the vertex $v_0 = v_{\frac{p-1}{2}+7}$, i.e. p = 13. Otherwise, v_0 does not lie on any $v_1 - v_{\frac{p-1}{2}+5}, v_1 - v_{\frac{p-1}{2}-2}$ geodetic. If the vertex $v_e \in S_2$, $v_0 - S_3 - v_e$, then $v_e = v_{\frac{p-1}{2}-3}$. Otherwise, not all vertices in S_3 are adjacent to v_e . Thus to the vertex v_2 does not lie on any geodetic set or $v_2 = v_{\frac{p-1}{2}-2}$, i.e. p = 9 which is a contradiction.

-Case 2: If $\frac{p-1}{2}$ is odd, then consider $S = \{v_0, v_{\frac{p-1}{2}-2}, v_{\frac{p-1}{2}+3}, v_1, v_e\}$ with v_1 is not adjacent to v_e where $v_e \in \{S_1, S_4\} \setminus \{v_{\frac{p-1}{2}-1}, v_{\frac{p-1}{2}+2}\}$. Now, if the vertex $v_e \in S_4$. So, $v_1 - S_2 - v_e$, then $v_e = v_{\frac{p-1}{2}+4}$. Otherwise, not all vertices in S_2 are adjacent to v_e . Thus to the vertex $v_0 = v_{\frac{p-1}{2}+7}$, i.e. p = 13. Otherwise, v_0 does not lie on any geodetic set. If the vertex $v_e \in S_1$. So, $v_1 - S_3 - v_e$, then $v_e = v_{\frac{p-1}{2}-1}$. Otherwise, not all vertices in S_3 adjacent to v_e . This leads to the vertex $v_3 = v_{\frac{p-1}{2}-2}$ i.e p = 13, which is a contradiction.

Finally, we discuss the case when the geodetic number is 6.

Lemma 8.For the circulant graphs $C_m(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})$. If m = p where p is a prime number greater than 13, then $g(C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})) = 6.$

*Proof.*By using previous lemma, we get $g(C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})) \ge 6$ when p > 13. Now, we consider

- -Case 1:If $\frac{p-1}{2}$ is even, then consider $S = \{v_1, v_{\frac{p-1}{2}-2}, v_{\frac{p-1}{2}+5}, v_0, v_{\frac{p-1}{2}-3}, v_{\frac{p-1}{2}+4}\}$. Using Lemma 7, the $v_0 v_{\frac{p-1}{2}-3}$ geodesics cover all the vertices S_3 , $v_0 v_{\frac{p-1}{2}+4}$ geodesics cover all the vertices S_1 , $v_1 v_{\frac{p-1}{2}-2}$ geodesics cover all the vertices S_4 , and $v_1 v_{\frac{p-1}{2}+5}$ geodesics cover all the vertices S_2 . Hence S is a geodetic set and $g(C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})) = 6$.
- -Case 2: If $\frac{p-1}{2}$ is odd, then consider $S = \{v_1, v_{\frac{p-1}{2}-1}, v_{\frac{p-1}{2}+4}, v_0, v_{\frac{p-1}{2}-2}, v_{\frac{p-1}{2}+3}\}$. Using Lemma 7, the $v_0 v_{\frac{p-1}{2}-2}$ geodesics cover all the

vertices S_4 , $v_0 - v_{\frac{p-1}{2}+3}$ geodesics cover all the vertices S_1 , $v_1 - v_{\frac{p-1}{2}-1}$ geodesics cover all the vertices S_3 , and $v_1 - v_{\frac{p-1}{2}+4}$ geodesics cover all the vertices S_2 . Hence S is a geodetic set and $g(C_p(\{2,4,...,\frac{p-1}{2}-1,\frac{p-1}{2}\})) = 6$.

4 Conclusion

In this paper, we determined the geodetic number of circulant graphs $C_m(\{2,4,...,\lfloor\frac{m}{2}\rfloor-1,\lfloor\frac{m}{2}\rfloor\})$. We sum up our calculations in the following theorem.

Theorem 1. *If* m = 2p or m = p where p is a prime number, then

$$g(C_m(D)) = \begin{cases} p, if m = 2p, \\ 3, if m = 5 \text{ or } m = 7, \\ 5, if m = 11 \text{ or } m = 13, \\ 6, if m > 13. \end{cases}$$

where $D = \{2, 4, \dots, \lfloor \frac{m}{2} \rfloor - 1, \lfloor \frac{m}{2} \rfloor \}$.

5 Perspective

In this paper, we find the geodetic set and geodetic number of circulant graphs $C_m(\{2,4,\cdots,\lfloor\frac{m}{2}\rfloor-1,\lfloor\frac{m}{2}\rfloor\})$ where m = 2p or m = p..

One can ask the following questions:

- -(1) What is the geodetic number of complement of the circulant graphs $C_m(\{2, 4, \dots, \lfloor \frac{m}{2} \rfloor 1, \lfloor \frac{m}{2} \rfloor\})$?
- -(2) What is the geodetic number of the circulant graphs $C_m(\{2,4,\cdots,\lfloor\frac{m}{2}\rfloor-1,\lfloor\frac{m}{2}\rfloor\})$ when m = 2p+1?

References

- G. Chartrand, P. Zhang, Realizable ratios in graph theory: geodesic parameters, *Bull. Inst. Comb. Appl*, 27, 1999.
- [2] G. Agnarsson, M.M. Halldórsson, Coloring powers of planar graphs, SIAM J. Discret. Math, 16, 651-662, 2003.
- [3] G. Chartrand, P. Zhang, The geodetic number of an oriented graph, *Eur. J. Comb*, **21**, 181-198, 2000.
- [4] B. Effantin, H. Kheddouci, The b-chromatic number of some power graphs, *Discret. Math. Theor. Comput. Sci*, 6, 45-54, 2003.
- [5] O.A AbuGhneim, B. Al-Khamaiseh and H. Al-Ezeh, The geodetic, hull, and Steiner numbers of powers of paths, *Util. Math*, 95, 289-294, 2014.
- [6] Nebesky, A characterization of the interval function of a connected graph, 'Czech. Math. J, 44, 173-178, 1994.
- [7] G. Chartrand, F. Harary, and P. Zhang, On the geodetic number of agraph, *Networks*, **39**, 1-6, 2002.

- [8] G. Chartrand, F. Harary, F and P. Zhang, *Extremal problems in geodetic graph theory*, In Proceedings of the Twenty-ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing, Boca Raton, FL, USA, 157–168, 2018.
- [9] H. M Mulder, The Interval Function of a Graph, Centrum Voor Wiskunde en Informatica, Amsterdam, The Netherlands, 1980.
- [10] A.Brandstädt, V.D Chepoi, F.F Dragan, Perfect elimination orderings of chordal powers of graphs, *Discret. Math*, 158, 273-278, 1996.
- [11] F. Buckley and F. Harary. *Distance in graphs*. Addison-Wesely, Redwood City, CA, 1990.
- [12] P. Manuel, S. Klavžar, A. Xavier, A. Arokiaraj, and E. Thomas, Strong edge geodetic problem in networks, *Open Math*, 15, 1225–1235, 2017.
- [13] P. Meijer., Connectivities and Diameters of Circulant Graphs. Ph.D. Thesis, Simon Fraser University, Burnaby, BC, Canada, 1991.

Manal Al-Labadi is Assistant Professor of Mathematical at University Of Petra. Her main research interests are: Algebraic graph theory, Algebra, Functional Analysis and its applications.