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Abstract: In this paper, we study the semilinear equation with a time fractional structural damping

D
β
0|tu(t,x)−2∆Dα

0|tu(t,x)+∆ 2u(t,x) = |u(t,x)|p t > 0, x ∈ Ω ,

where p > 1, 1
2 < α < 1 < β < 2 and Dα

0|t is the Caputo fractional derivative. We obtain the blow- up result under some positive data

when 1 < p< 1+ 2α
N−2α+1 . Whereas, if p > 1+ 2α

N−2α+1 and ‖u0‖L2qc (Ω), qc = N(p−1)/4 is sufficiently small, we prove the existence

of global solution.
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1 Introduction

We consider the following Cauchy problem











D
β
0|tu− 2∆Dα

0|t +∆ 2u = |u|p (t,x) ∈ (0,∞)×Ω ,

∆u(t,x) = u(t,x) = 0 (t,x) ∈ (0,∞)× ∂Ω ,

u(0,x) = u0,ut(t,x)|t=0 = 0 x ∈ Ω ,
(1)

where Ω is a bounded domain Ω ⊂ R
N (1 6 N 6 4),

p > 1, 1
2
< α < 1, 1 < β < 2 and ∆ denotes the Laplacian

operator with respect to the x variable. The operator
Dα

0|tu = I1−α
0|t ut , I1−α

0|t is the Riemann-Liouville fractional

integral of order 1−α which is defined for u ∈ C(0, t),
as follows

I1−α
0|t u =

1

Γ (α)

∫ t

0
(t − τ)−αu(τ)dτ.

The term ∆Dα
0|tu represents a generalized structural

damping. The equation (1) is a generalization of well
known damped elastic system[1]. The integer derivatives
are replaced by a fractional derivatives in the sense of

Caputo.
Our target is to find the critical exponents pc which

solutions cannot exist for all time in the subcritical case.
Whereas, in the critical and supercritical cases, global
small data solutions exist. Moreover, we see how much of
the generalized structural damping will be on the blow-up
phenomenon. As α → 1, the critical exponents pc tend to
1 + 2

N−1
showed by D’Abbicco [2]. The discussion is

based on the semi-group theory, fixed point theorem and
the test function method.
Let us first recall some works related to the problem we
address.

For the semilinear damped wave equation

{

utt −∆u+ ut = |u(t)|p (t,x) ∈ (0,∞)×Ω ,

u(0,x) = u0, ut(t,x)|t=0 = u1(x) x ∈ Ω .

(2)
Todorova and Yordanov [3] investigated the global
existence of mild solutions to (2). In addition, they
proved that the mild solution cannot exist globally when
1 < p 6 1+ 2

N
and

∫

ui > 0, i = 0,1. In fact, these results
are coincided with Fujita critical for ut −∆u = |u|p.

∗ Corresponding author e-mail: khaoula.bouguetof@univ-tebessa.dz

c© 2021 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/150209


172 K. Bouguetof: The critical exponent to Cauchy problem

Luong and Tung [4] considered the following Cauchy
problem
{

utt +ρAut +A2u(t) = f (t,u(t))

u(0,x) = u0 + g(u), ut(t,x)|t=0 + h(u) = u1,
(3)

where A is closed operator. They established the existence
of decay mild solutions to (3) using a suitable measure of
non-compactness on the space of continuous functions on
the half-line.

In [5], Messaoudi considered the nonlinearly damped
semilinear Petrovsky equation
{

utt +∆ 2ut + a|u|q−1ut = |u|p (t,x) ∈ (0,∞)×Ω ,

u(0,x) = u0, ut(t,x)|t=0 = u1.

(4)

He proved that the solution is global if p > m, while if
p > m and the energy is negative, then every solution of
problem (4) blows-up in a finite time.

Erhan et al. [6] addressed a more general case and
treated the following problem:
{

utt +∆ 2ut +D1+α
0|t u = |u|p (t,x) ∈ (0,∞)×Ω ,

u(0,x) = u0, ut(t,x)|t=0 = u1.

(5)

where −1 < α < 0. They also discussed the nonexistence
of global solutions with negative initial energy.

The rest of the paper is organized, as follows: In
section 2, we recall some definitions of fractional order
calculus. The study of the existence and uniqueness of
local mild solution of problem (1) is presented in section
3. In sections 4 and 5, we prove the blow-up and global
existence of solutions to (1).

2 Preliminary

In this section, we present some results and basic
properties of fractional calculus. For more details, we
refer to [7,8].

Let 0 < α < 1, a,b ∈ R and f ∈ L1(a,b). The
Riemann-Liouville integrals of order α are defined as

Iα
a|t f (t) =

1

Γ (α)

∫ t

a
(t − τ)α−1 f (τ) dτ, t > a,

and

Iα
t|b f (t) =

1

Γ (α)

∫ b

t
(τ − t)α−1 f (τ) dτ, t < b.

For 0 < α < 1 and T > 0. If I1−α
a|t

f (t) and I1−α
t|b

f (t) ∈

AC[a,b], then the Riemann-Liouville derivatives of order
α are defined as

Dα
a|t f (t) =

1

Γ (1−α)

d

dt

∫ t

a
(t − τ)−α f (τ) dτ, t > a,

and

Dα
t|b f (t) =−

1

Γ (1−α)

d

dt

∫ b

t
(τ − t)−α f (τ) dτ, t < b.

For 0 < α < 1 and f ∈ AC[a,b]. The Caputo derivatives
of fractional order α are defined as

Dα
a|t f (t) =

1

Γ (1−α)

∫ t

a
(t − τ)−α f

′
(τ) dτ, t > a, (6)

and

Dα
t|b f (t) =−

1

Γ (1−α)

∫ b

t
(τ − t)−α f

′
(τ) dτ, t < b.

(7)

Assume Dα
0|t f ∈ L1(a,b), g ∈ C1(a,b) and g(T ) = 0.

Then we have the following formula of integration by parts

∫ b

a
g(t)Dα

0|t f (t)dt =

∫ b

a
( f (t)− f (0))Dα

t|T g(t)dt. (8)

Proposition 1 ([9])Let 1 < α +β < 2. If ft (a) = 0, then

D
α
a|tD

β
a|t f (t) = D

α+β
a|t f (t).

Let X = L2(Ω) be a Banach space, A = ∆
D(A) ⊂ X → X is the infinitesimal generator of C0

semigroup T (t)(t > 0).

Definition 1.Let u0 ∈ X, Pα(t) and Sα(t) be two operators

defined, as follows:

Pα(t)u0 =
∫ ∞

0
Φα (θ )T (t

αθ )u0 dθ , (9)

and

Sα(t)u0 = α

∫ ∞

0
θΦα(θ )T (t

α θ )u0 dθ , (10)

for t > 0 and Φα is the Wright type function which was

considered by Mainardi [10].

The operators Pα(t) and Sα(t) satisfy the following
properties (see [11])

(1)Let 1 < p 6 q < ∞, and 1
r
= 1

p
− 1

q
< 2

N
, then

‖Pα(t)u0‖Lq(RN) 6 (4πtα )
−N
2r

Γ (1−N/2r)

Γ (1−αN/2r)
‖u0‖Lp(RN).

(11)

(2)Let 1 < p 6 q 6 ∞, if 1
r
= 1

p
− 1

q
< 4

N
, then

‖Sα(t)u0‖Lq(RN)

6 α(4πtα)
−N
2r

Γ (2−N/2r)

Γ (1+α −αN/2r)
‖u0‖Lp(RN). (12)
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Lemma 1 ([11])Assume f ∈ Lq((0,T ),L2(Ω)). Let

w(t) =

∫ t

0
(t − s)α−1Sα(t − s) f (s)ds,

then, for αq > 1, w ∈C([0,T ],L2(Ω)).

Also, we need to calculate the Caputo fractional
derivative of the following function. Let

ϕ1(t) =







(

1− t
T

)η

, 0 < t 6 T, η ≫ 1,

0, t > T

(13)

The following results was proved in [12]

Dα
t|T ϕ1(t)

=
(1−α +η)B(1−α;η − 1)

Γ (1−α)
T−α

(

1−
t

T

)η−α

,

and

Dn+α
t|T ϕ1(t)

=
(n−α +η)Γ (η + n)

Γ (n−α +η)
T−(n+α)

(

1−
t

T

)η−α−n

.

Lemma 2 ([12])Let ϕ1 be displayed as in(13),
for η > p

p−1
θ − 1

∫ T

0
D

θ
t|T ϕ1 =C1T 1−θ ,

and
∫ T

0
ϕ
−p′/p

1 |Dθ
t|T ϕ1|

p′ =C2T 1−p′θ ,

where

θ =

{

α, 2α

}

, C1 =
ηΓ (η −θ )

(η −θ + 1)Γ (η − 2θ + 1)
and

C2 =
η p′

η + 1− p′θ

[

Γ (η −θ ))

Γ (η + 1− 2θ )

]p′

.

Lemma 3 ([4])Let BR(0) =

{

x ∈ R
N : |x| < R

}

for

large R, let ΩR = Ω ∩ BR(0). We introduce ϕ2 the first

eigenfunction of −∆ with λ the first eigenvalue on ΩR











−∆ϕ2(x) = λ ϕ2(x), inΩR,

ϕ2(x)> 0, inΩR,

‖ϕ2‖L∞(ΩR) = 1,

(14)

there exist C1 and C2 independent of R such that

C1R−2
6 λ 6C2R−2. (15)

Throughout this paper, we take β = 2α .

3 The local Cauchy problem

In this section, we apply the Banach fixed point theorem
to prove the local existence of a unique mild solution of
problem (1).
Consider the following inhomogeneous equation
corresponding to (1)











D2α
0|t u− 2∆Dα

0|tu+∆ 2u = f (t,x), (t,x) ∈ (0,∞)×Ω ,

∆u = u = 0, (t,x) ∈ (0,∞)× ∂Ω ,

u(0,x) = u0(x), ut(t,x)|t=0 = u1(x) = 0, x ∈ Ω .

(16)

First, we present the following Lemma that will be used
to give the definition of a mild solution to the problem we
address.

Lemma 4Let 1
2

< α < 1, u0 ∈ L2(Ω) and

v0 = (Dα
0|tu

∣

∣

t=0
−∆u0) ∈ L2(Ω). Then, the problem (16)

admits a unique mild solution u ∈ C([0,T ],L2(Ω)) given

by

u(t,x) = Pα(t)u0(x)+

∫ t

0
(t − s)α−1Sα(t − s)Pα(s)v0ds

+
∫ t

0
(t − s)α−1Sα(t − s)

∫ s

0
(s− τ)α−1Sα(s− τ) f (τ,x)dτds,

(17)

where Pα(t) and Sα(t) were defined as in (9) and (10),

respectively.

Proof.By Proposition 1, the problem (16) re-write to two
abstract Cauchy problems











Dα
0|tv−∆v = f (t,x), (t,x) ∈ (0,∞)×Ω ,

v = 0, (t,x) ∈ (0,∞)× ∂Ω ,

v(0,x) = v0(x), x ∈ Ω ,

(18)

and











Dα
0|tu−∆u = v(t,x), (t,x) ∈ (0,∞)×Ω ,

u = 0, (t,x) ∈ (0,∞)× ∂Ω ,

u(0,x) = u0(x), x ∈ Ω ,

(19)

which means

v0(x) = Dα
0|tu

∣

∣

∣

∣

t=0

−∆u0. (20)

If f ∈ C([0,T ],L2(Ω)) and v0 ∈ L2(Ω), then by [13,11]
the problem (18) has a unique mild solution
v ∈C([0,T ],L2(Ω)) given by

v(t,x) = Pα(t)v0(x)+

∫ t

0
(t − s)α−1Sα(t − s) f (s,x)ds.

(21)
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Similarly, if v ∈C([0,T ],L2(Ω)), then the mild solution of
problem (19) is expressed by

u(t,x) = Pα(t)u0(x)+

∫ t

0
(t − s)α−1Sα(t − s)v(s,x)ds.

(22)

Substituting (21) into (22), we get

u(t,x) = Pα(t)u0(x)+

∫ t

0
(t − s)α−1Sα (t − s)Pα(s)v0ds

+
∫ t

0
(t − s)α−1Sα (t − s)

∫ s

0
(s− τ)α−1Sα (s− τ) f (τ,x)dτds.

(23)

Definition 1Let 1
2
< α < 1, u0 ∈ L2(Ω) and v0 ∈ L2(Ω).

We say that u is a mild solution of (1), if

u ∈C([0,T ],L2(Ω)) and satisfies

u(t,x) = Pα(t)u0(x)+
∫ t

0
(t − s)α−1Sα(t − s)Pα(s)v0ds

+
∫ t

0
(t − s)α−1Sα(t − s)

∫ s

0
(s− τ)α−1Sα(s− τ)|u(τ,x)|pdτds, (24)

where Pα(t), Sα(t) were defined as (9), (10) and v0 was

specified in (20).

Theorem 1.Let 1
2
< α < 1 and u0 ∈ L2(Ω). Then there

exists Tmax > 0 such that problem (1) has a unique mild

solution u ∈C([0,Tmax),L
2(Ω)).

Proof.Let

E =C([0,T ),L2(Ω)).

For T > 0, E is a Banach space endowed with the norm

‖u‖E = sup
t∈(0,T )

‖u(t)‖L2(Ω),

and

BE(R) =

{

u ∈ E : ‖u‖E 6 R

}

,

for c0 > 1 and R = 2c0(‖u0‖L2(Ω)+T α‖v0‖L2(Ω)). Define

the operator G as

Gu(t) = Pα(t)u0(x)+

∫ t

0
(t − s)α−1Sα(t − s)Pα(t)v0(x)ds

+

∫ t

0
(t − s)α−1Sα(t − s)

∫ s

0
(s− τ)α−1Sα(s− τ)|u|p(τ,x)dτds. (25)

For each u ∈ BE(R). Then G(u) ∈ C([0,T ),L2(Ω))(see
[11]).

First, we prove G maps BE(R) into itself. Using (11)
and (12), we have

‖G(u)(t)‖L2(Ω)

=
∥

∥Pα(t)u0(x)+

∫ t

0
(t − s)α−1Sα (t − s)Pα(t)v0(x)ds

+
∫ t

0
(t − s)α−1Sα (t − s)

∫ s

0
(s− τ)α−1Sα (s− τ)|u|p(τ)dτds

∥

∥

L2(Ω)

6
∥

∥Pα(t)u0(x)
∥

∥

L2(Ω)

+
∫ t

0
(t − s)α−1

∥

∥Sα (t − s)Pα(t)v0(x)ds
∥

∥

L2(Ω)

+
∫ t

0
(t − s)α−1

∥

∥Sα (t − s)

∫ s

0
(s− τ)α−1Sα (s− τ)|u|p(τ)dτds

∥

∥

L2(Ω)

6 ‖u0‖L2(Ω)+
1

Γ (1+α)
T α‖v0‖L2(Ω)

+
1

Γ (α)2

∫ t

0
(t − s)α−1

∫ s

0
(s− τ)α−1‖ |u(τ)|p‖L2(Ω)dτds

6
R

2
+

1

Γ (2α +1)
T 2α Rp.

We choose T small enough such that

1

Γ (2α + 1)
T 2α Rp−1

6
1

2
.

Second, we show that G is a contraction map. For u,v ∈
BE(R), we have

‖G(u)(t)−G(v)(t)‖L2(Ω)

=
∥

∥

∫ t

0
(t − s)α−1Sα (t − s)

∫ s

0
(s− τ)α−1Sα (s− τ)

(

|u|p(τ)−|v|p(τ)
)

dτds
∥

∥

L2(Ω)

6

∫ t

0
(t − s)α−1

∫ s

0
(s− τ)α−1

∥

∥Sα (s− τ)
(

|u|p(τ)−|v|p(τ)
)

dτds
∥

∥

L2(Ω)

6

∫ t

0
(t − s)α−1

∫ s

0
(s− τ)α−1

∥

∥

(

|u|p(τ)−|v|p(τ)
)

dτ
∥

∥

L1(Ω)
ds

6
1

Γ (2α +1)
T 2α Rp−1‖u−v‖E .

Due to following inequality

| |u(t)|p −|v(t)|p |6C(p)|u(t)−v(t)|(|u(t)|p−1 + |v(t)|p−1).

We choose T such that

1

Γ (2α + 1)
T 2α Rp−1 < 1.

Therefore, G is a strict contraction on BE(R). According
to the Banach fixed point theorem, problem (1) admits a
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unique mild solution u ∈C([0,Tmax),L
2(Ω)), where

Tmax = sup

{

T > 0 | there exists a mild solution

u ∈C([0,T ),L2(Ω)) to (1)

}

.

Next, we give a blow-up result of our problem (1).

4 Blowing up solutions

Theorem 2.Assume u0 ∈ L2(Ω) and u0(x)> 0. If

1 < p < 1+
2α

N − 2α + 1
,

then any solution to (1) blows up in a finite time.

Proof.We prove the nonexistence of global (weak)
solutions to (1) using the test function method [14].

The weak local solution u ∈ Lp((0,T ),L2(Ω)) is given
by

∫ T

0

∫

Ω
uD2α

t|T ϕ − 2

∫ T

0

∫

Ω
u∆Dα

t|T ϕ +

∫ T

0

∫

Ω
u∆ 2ϕ

=
∫ T

0

∫

Ω
|u|pϕ +

∫ T

0

∫

Ω
u0D2α

t|T ϕ − 2

∫ T

0

∫

Ω
u0∆Dα

t|T ϕ ,

(26)

for each ϕ ∈ C2([0,T ]× Ω) compactly supported and
ϕ(T, .) = ϕt(T, .) = 0. We say the solution u is global if
(26) holds for any T > 0. Let

ϕ(t,x) = ϕ1(t)ϕ2(x).

Equality (26) actually reads

∫ T

0

∫

ΩR

uϕ2D2α
t|T ϕ1 − 2

∫ T

0

∫

ΩR

u∆ϕ2Dα
t|T ϕ1

+

∫ T

0

∫

ΩR

uϕ1∆ 2ϕ2

=

∫ T

0

∫

ΩR

|u|pϕ +I +J , (27)

where

I =

∫ T

0

∫

ΩR

u0ϕ2D2α
t|T ϕ1 =CT 1−2α

∫

ΩR

u0ϕ2,

and

J = 2

∫ T

0

∫

ΩR

u0(−∆)ϕ2Dα
t|T ϕ1 = λCT 1−α

∫

ΩR

u0ϕ2.

Under the condition u0 > 0, Eq.(27) becomes
∫ T

0

∫

ΩR

|u|pϕ 6

∫ T

0

∫

ΩR

uϕ2D2α
t|T ϕ1 +2λ

∫ T

0

∫

ΩR

uϕ2Dα
t|T ϕ1

+λ 2
∫ T

0

∫

ΩR

uϕ2ϕ1

= I1 +I2 +I3. (28)

Using the Young inequality with parameters
p and p′ = p

p−1
, we have

I1 6

∫ T

0

∫

ΩR

|u|ϕ1/pϕ−1/pϕ2D2α
t|T ϕ1

6
1

6p

∫ T

0

∫

ΩR

|u|pϕ +
6p′−1

p′

∫ T

0

∫

ΩR

ϕ2ϕ
−p′

p

1

∣

∣D2α
t|T ϕ1

∣

∣

p′

,

(29)

I2 6 2λ
∫ T

0

∫

ΩR

|u|ϕ1/pϕ−1/pϕ2Dα
t|T ϕ1

6CR−2
∫ T

0

∫

ΩR

|u|ϕ1/pϕ−1/pϕ2Dα
t|T ϕ1

=
∫ T

0

∫

ΩR

|u|ϕ1/pCR−2ϕ−1/pϕ2Dα
t|T ϕ1

6
1

6p

∫ T

0

∫

ΩR

|u|pϕ +C
6p′−1

p′
R−2p′

∫ T

0

∫

ΩR

ϕ2ϕ
−p′

p

1

∣

∣Dα
t|T ϕ1

∣

∣

p′
,

(30)

and

I3 6 λ 2
∫ T

0

∫

ΩR

|u|ϕ1/pϕ−1/pϕ2ϕ1

6CR−4

∫ T

0

∫

ΩR

|u|ϕ1/pϕ−1/pϕ2ϕ1

=

∫ T

0

∫

ΩR

|u|ϕ1/pCR−4ϕ−1/pϕ2ϕ1

6
1

6p

∫ T

0

∫

ΩR

|u|pϕ +C
6p′−1

p′
R−4p′

∫ T

0

∫

ΩR

ϕ2ϕ1.

(31)

Taking into account the above mentioned relations (29),
(30) and (31) in (28), we find
(

1−
1

2p

)

∫ T

0

∫

Ω
|u|pϕ 6C

∫ T

0

∫

Ω
ϕ2ϕ

−p′

p

1

∣

∣D2α
t|T ϕ1

∣

∣

p′

+R−2p′
∫ T

0

∫

Ω
ϕ2ϕ

−p′

p

1

∣

∣Dα
t|T ϕ1

∣

∣

p′

+R−4p′
∫ T

0

∫

Ω
ϕ2ϕ1. (32)

We take R = T and we introduce the following scaled
variables

τ =
t

T
and ξ =

|x|

T
, T ≫ 1.

It appears that
∫ T

0

∫

Ω
|u|pϕ 6CT 1−2α p′+N +CT1−(2+α)p′+N +CT 1−4p′+N .

(33)

Therefore, if a solution of (1) exists globally, then taking
T →+∞, we get

lim
T→∞

∫ T

0

∫

Ω
|u|pϕ = 0.

Consequently, u ≡ 0. This leads to a contradiction.
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We are now in a position to state and prove the global
existence of solutions of (1) in this section.

5 Global existence

Theorem 3.Let 1
2
< α < 1. If p > 1 + 2α

N−2α+1
and

‖u0‖L2qc (Ω) sufficiently small, where qc =
N(p−1)

4
, then the

mild solution of (1) exists globally.

Proof.We apply the contraction mapping principle to
prove the global solution of (1).

From p > 1+ 2α
N−2α+1

, we see that

1

p− 1
− 1 6

N

4
, (34)

for 1
r
= 1

2qc
− 1

2
< 2

N
. We can deduce

‖Pα(t)u0‖L2(Ω)

6 (4πtα)
−N
2r

Γ (1−N/2r)

Γ (1−αN/2r)
‖u0‖L2qc (Ω) < ∞.

Let

Y =

{

u ∈C((0,∞),L2(Ω)) : sup
t>0

‖u(t)‖L2(Ω) 6 R

}

.

We define the operator G as

G(u)(t) = Pα(t)u0(x)+
∫ t

0
(t − s)α−1Sα (t − s)Pα(s)v0ds

+
∫ t

0
(t − s)α−1Sα (t − s)

∫ s

0
(s− τ)α−1Sα (s− τ)|u(s,x)|pds,

for each u ∈ Y. It is easy to see that the operator G is well
defined on Y . According to (12), we get

∥

∥

∥

∥

G(u)(t)−G(v)(t)

∥

∥

∥

∥

L2(Ω)

=

∥

∥

∥

∥

∫ t

0
(t − s)α−1Sα (t − s)

∫ s

0
(s− τ)α−1Sα (s− τ)

[

|u|p(τ)−|v|p(τ)]dτds

∥

∥

∥

∥

L2(Ω)

6

∫ t

0
(t − s)α−1

∫ s

0
(s− τ)α−1

∥

∥Sα (s− τ)
[

|u|p(τ)−|v|p(τ)]
∥

∥

L2(Ω)dτds

6C

∫ t

0
(t − s)α−1

∫ s

0
(s− τ)α−1−α N

4

∥

∥|u|p(τ)−|v|p(τ)
∥

∥

L1(Ω)dτds

6CRp−1
∫ t

0
(t − s)α−1sα−α N

4

∥

∥u(τ)−v(τ)
∥

∥

L2(Ω)ds

6CRp−1t2α−α N
4

∫ 1

0
(1−w)α−1wα−α N

4 dw
∥

∥u(τ)−v(τ)
∥

∥

L2(Ω)

6CRp−1t2α−α N
4

∫ 1

0
(1−w)α−1wα− α

2 dw
∥

∥u(τ)−v(τ)
∥

∥

L2(Ω)

6CRp−1 Γ (α)Γ (α
2 +1)

Γ (3α/2+1)

∥

∥u−v
∥

∥

Y
.

If we choose R small enough such that CRp−1 < 1
2
, then

we get

∥

∥

∥

∥

G(u)−G(v)

∥

∥

∥

∥

Y

<
1

2

∥

∥u− v
∥

∥

Y
.

6 Conclusion

In this paper, we addressed fractional damping elastic
system in a Banach space. The model is based on the
properties of fractional derivatives and a judicious choice
of the test function. We proved that the mild solutions
cannont exist globally when 1 < p < 2α

N−2α+1
+ 1 and

u0 > 0. If p > 2α
N−2α+1

+ 1, then the non-trivial solutions
exist all time under some conditions.
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