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Abstract: In this paper, we adopted a new insight of testing for Nadarajaha and Haghighi (NH) lifetime products under Type-I hybrid

censoring scheme. Hence, NH is an expansion of the exponential distribution, and it provides a more reasonable estimate than the

generalized exponential, Weibull, and the gamma distributions, particularly when the observations contain zero values. We built this

model and preset some statistical inferences of the model parameters with classical and Bayes methods under different types of loss

functions using gamma priors for NH distribution parameters. Next, we consider the point and asymptotic confidence interval estimators

with maximum likelihood, and the Bayes estimators are discussed. The joint lifetime data is analyzed for illustration purposes. The

Monte Carlo simulation study is built to stand on accuracy of these estimators.

Keywords: Bayesian, Gibbs, Joint Type-I hybrid censoring, Maximum likelihood estimation, MCMC, Nadarajaha and Haghighi

distribution.

1 Introduction

The problem of determining the relative merits of
manufactured products, specially manufactured products
from different production lines, has been considered in
the last few years. Studying the reliability of these
products needs to implement some life testing for the
joint set of product units known with a jointly censoring
scheme. More precisely, consider that the two lines of
manufactured products Γ1 and Γ2 have the same facility.
From line Γ1, we randomly select a sample of size κ1 as
well as κ2 from the line Γ2, respectively. The total sample
is placed under life testing, so the samples are collected
from two lines. The failure time and the type of unit are
recorded over all steps test. Then, the observed data
obtained from these testing are called joint samples
because they are obtained from different lines. However,
under some restrictions of times and cost, the
experimenter may be a terminate test after a fixed number
of failures occur. This problem was discussed by different
authors, for example, [1] and [2]. The inference with the
exact likelihood and bootstrap algorithms discussed with
[3], [4] and [5]. For Rayleigh lifetime distributions, see
[6], for accelerated Rayleigh life model, [7] and for
compound Rayleigh lifetime distributions, see [8]. NH
distribution which is used as an alternative to the

generalized exponential, Weibull, and the gamma
distributions. The main interest is that the model has zero
modes; this feature might explain constant hazard rate
functions. Moreover, NH distribution is a particular case
of the three-parameter generalized power Weibull
distribution; see [9] for more details. In 2013, NH
distribution was extended by Lemonte [10], using the idea
of [11], which is a particular case of the exponential
distribution and the generalized exponential distribution,
which can be used in modeling censored data. The
real-life data obtained from the life testing experiments
are censored or complete. Censored data appears when
some but not all failure times are observed. Furthermore,
the data are used when the failure time of all units under
test is observed. The oldest commonly censoring schemes
in life test experiments are called Type-I censoring and
Type-II censoring schemes. The test time is pre-fixed in
the Type-I censoring scheme, but the number of failure
units is pre-fixed in the Type-II censoring scheme. These
two types of censoring do not allow removing units from
the test other than the final point. The progressive
censoring scheme has the property that units can be
removed at any step of the experiment, see [12]. Also,
Childs et al. [13] investigated a new approach for
analysing the exact likelihood based on hybrid censored
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samples from the exponential distribution. Moreover,
Algarni et al. [14] analysed joint Type-I hybrid censoring
for estimating parameters from Weibull probability
density function. Górny et al. [15] suggested uniformly
distribution to study Type-I hybrid censoring. In addition,
Chakrabarty et al. [16] studied this type of data under
warranty. In practice, the experimenter has to run the
experiment under a mixture of Type-I and Type-II
censoring schemes known as the hybrid censoring scheme
(HCS). There are different types of hybrid censoring
schemes described, as follows: Before the experiment
runs, the ideal test time and a fair number of failure units
needing statistical inference are pre-fixed and denoted by
(m,η). In Type-I HCS, the experiment is removed at the
min (Tm,η). However, in Type-II HCS, the experiment is
terminated at max (Tm,τ). Also, these two types of
censoring schemes (Type-I HCS and Type-II HCS) are
generalized in progressive hybrid cases that allow the
removal of units from the test over the experiment’s total
time. For more details of hybrid censoring scheme, see
[17], and [18]. Different life models, such as Weibull,
gamma, and generalized exponential distributions, are
used to analyze the lifetime data. The NH distribution has
the property that the random variable can take the values
of zero. It is the better fit for the data that contain zero
values other than the other lifetime distributions. NH
distribution with random variable T has probability
distribution (PDF) given by

g(t) =β θ (1+θ t)β−1 exp

{

1− (1+θ t)β

}

,

t > 0, (β ,θ )> 0, (1)

where θ is the scale, and β is the shape parameters. Also,
the corresponding cumulative probability (CPD), survival
function S(.) and hazard failure rate function H(.) are
respectively given by

G(t) = 1− exp

{

1− (1+θ t)β

}

, t > 0, (β ,θ )> 0, (2)

S(t) = exp

{

1− (1+θ t)β

}

, t > 0, (β ,θ )> 0, (3)

and

H(t) = β θ (1+θ t)β−1, t > 0, (β ,θ )> 0, (4)

note that for NH distribution

(1+θ t)g(t) = β θ [1− lnḠ(t)]Ḡ(t) (5)

where

Ḡ(t) = 1−G(t). (6)

The NH distribution presented the extension exponential
distribution and equal to an exponential distribution with
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Fig. 1: Plots of the density function (a), the cumulative

probability (b), the survival and hazard failure rate functions(c)

and (d) with parameters θ = 1 and β = 0.1,0.5,1.
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Fig. 2: Plots of the density function (a), the cumulative

probability (b), the survival and hazard failure rate functions(c)

and (d) with parameters θ = 1 and β = 0.1,0.5,1.

β = 1. Hence, this distribution is a special case of
Gurvich [19] where G(t) = 1− exp(− f (λ t)), and f (λ t)
is a monotonically increasing function of t with the only
limitation f (λ t) ≥ 0. Also, the NH distribution has a
decreasing probability function, and its mode is at zero.
The properties of this distribution were presented by [20].
The distribution also provides increasing and decreasing
shape as well as constant hazard rates. This paper aims to
develop statistical inference methods for industrial
products that come from different production lines under
the same facility and its unit’s life distributed with NH
lifetime distribution. The joint Type-I HCS is built, and
the observed sample is used to construct the maximum
likelihood estimates of model parameters. Also, Bayes
estimation is adopted under the MCMC technique. The
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Fig. 3: Plots of the density function (a), the cumulative

probability (b), the survival and hazard failure rate functions(c)

and (d) with parameters θ = 1 and β = 0.1,0.5,1.
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Fig. 4: Plots of the density function (a), the cumulative

probability (b), the survival and hazard failure rate functions(c)

and (d) with parameters θ = 1 and β = 0.1,0.5,1.

results of point and interval estimation are discussed
through the analysis of the set of data. Moreover, the
quality of these estimators is assessed and compared
using the Monte Carlo simulation study. The results are
measured with mean squared error and probability
coverage. Figure 1-4 shows the plots of the the properties
of the NH distribution. It shows that the density
distribution has a decreasing probability function. For
smaller values of β , the density becomes faster flat. As β
increases, the density has an infinite mode at zero. The
cumulative probability increases faster as β increases–see
Figure 2, and reaches 1 quickly. The density allows for
decreasing survival and hazard failure rate functions–see
Figure 3 and 4 where hazard function reaches 1 quickly
as β increases.

The paper is organized, as follows: The joint likelihood
function of jointly Type-I HCS is formulated in Section 2.
The point and interval MLE are discussed in Section 3.
Bayesian approach under MCMC methods is adopted in
Section 4. A numerical example of jointly Type-I HC data
is analysed in Section 5. Finally, results are assessed with
Monte Carlo studying in Section 6.

2 Joint Type-I HCS Model

Let, κ1 + κ2 be a random sample selected from the two
lines of production, κ1 from the line Γ1 and κ2 from the
line Γ2 is put under test. The priors, integers m and time η
are selected. The joint sample has identical distributed
(i.d) lifetimes T1,T2, . . .Tκ1

and T ∗
1 ,T

∗
2 , . . .T

∗
κ2

respectively. These samples are distributed with PDFs and
CDFs given respectively by g j(.) and G j(.), j = 1,2.
After the test begins, the lifetime and the type of the
failure unit is recorded until the minimum time (Tm,η) is
observed. Then, the joint lifetime sample (T1,T2, . . .Tκ) is
constructed from the sample
{T1,T2, . . .Tκ1

,T ∗
1 ,T

∗
2 , . . .T

∗
κ2
}, where k = k1 + k2 and

k =

{

m, Tm ≤ η
k < m, Tm > η .

(7)

Therefore, the joint Type-I HC sample presented by T =
{(T1,ρ1),(T2,ρ2),dots,(Tk,ρk)} and the value of ρi, i =
1,2, . . . ,k the the value (1 or 0) depends on T or T∗ failure.
Then, we propose that number of failure from the line Γ1

is defined by m1 = ∑k
i=1 ρi and from the from the line Γ2 is

defined by m2 = ∑k
i=1(1−ρi). The likelihood function of

joint observed sample t = {(t1,ρ1),(t2,ρ2), . . . ,(tk,ρk)} is
given by

f1,2,...,k(t) =
κ1!κ2![S1(ζ )]

κ1−m1 [S2(ζ )]
κ2−m2

(κ1 −m1)(κ2 −m2)

×

[

k

∏
i=1

[g1(ti)]
ρi [g2(ti)]

1−ρi

]

, (8)

where

ζ =

{

tm, Tm ≤ η
η , Tm > η ,

(9)

where S j(.), j = 1,2 denotes reliability functions. The NH
distribution under two lines Γ1 and Γ2 distributed with CDF
given by

G(t) = 1− exp

{

1− (1+θi jt)
θi j

}

, i, j = 1,2, (10)

where G(t) is the cumulative probability distribution.
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3 ML Estimation

From the distribution given by (10) and observed joint
Type-I HCS data t = {(t1,ρ1),(t2,ρ2), . . . ,(tk,ρk)}, the
function (8) without normalized constant reduces to

L(β1,β2,θ1,θ2|t) = (β1θ1)
m1(β2θ2)

m2

exp

{

(β1 − 1)
k

∑
i=1

ρi log(1+θ1ti)−
k

∑
i=1

ρi(1+θ1ti)
β1

+(β2 − 1)
k

∑
i=1

(1−ρi) log(1+θ2ti)

−
k

∑
i=1

(1−ρi) log(1+θ2ti)
β2

− (κ1 −m1)(1+θ1ζ )β1 − (κ2 −m2)(1+θ2ζ )β2

}

. (11)

Then, the log-likelihood is given by

ℓ(β1,β2,θ1,θ2|t) = m1 log(β1θ1)+m2 log(β2θ2)

+ (β1 − 1)
k

∑
i=1

ρi log(1+θ1ti)

−
k

∑
i=1

ρi(1+θ1ti)
β1 +(β2 − 1)

k

∑
i=1

(1−ρi) log(1+θ2ti)

−
k

∑
i=1

(1−ρi) log(1+θ2ti)
β2 − (κ1 −m1)(1+θ1ζ )β1

− (κ2 −m2)(1+θ2ζ )β2 . (12)

3.1 Point estimation

After taking the first partial derivatives of (12) with
respect to parameters vector ω = (β1,β2,θ1,θ2), the
likelihood equations are presented by

m1

β1

+
k

∑
i=1

ρi(1+θ1ti)−

k

∑
i=1

ρi(1+θ1ti)
β1 log(1+θ1ti)

− (κ1 −m1)(1+θ1ζ )β1 log(1+θ1ζ ) = 0, (13)

m2

β2

+
k

∑
i=1

(1−ρi)(1+θ2ti)

−
k

∑
i=1

(1−ρi)(1+θ2ti)
β2 log(1+θ2ti)

− (κ2 −m2)(1+θ2ζ )β2 log(1+θ2ζ ) = 0, (14)

m1

θ1

+(β1 − 1)
k

∑
i=1

ρiti

1+θ1ti

−β1

k

∑
i=1

ρiti(1+θ1ti)
β1−1−

(κ1 −m1)β1ζ (1+θ1ζ )β1−1 = 0, (15)

and

m2

θ2

+(β2 − 1)
k

∑
i=1

(1−ρi)ti
1+θ2ti

−β2

k

∑
i=1

(1−ρi)ti(1+θ2ti)
β2−1

− (κ2 −m2)β2ζ (1+θ2ζ )β2−1 = 0. (16)

The equations from (13) to (14) show that the likelihood
equations reduce to four of non-linear equations which can
be solved with iteration method such as, Newton Raphson

to obtain β̂1, β̂2, θ̂1 and θ̂2.
Remark: If m1 = 0 in (13) and (15), then β1 and θ1 do

not exist. Also, if m2 = 0 in (14) and (16), then β2 and θ2

do not exist, see [21].

3.2 Interval estimation

The Fisher information matrix is defined as the
expectation of minus second partial derivative of a
log-likelihood function as

∏=−E

(

∂ 2ℓ(β1,β2,θ1,θ2|t)

∂ωi∂ω j

)

, i, j = 1,2,3,4. (17)

In practice, the expectation of minus second partial
derivative is more difficult so, the approximate
information matrix is used as the approximation form to
Fisher information matrix as

∏0
=−E

(

∂ 2ℓ(β1,β2,θ1,θ2|t)

∂ωi∂ω j

)
∣

∣

∣

∣

ω=ω̂

, i, j = 1,2,3,4.

(18)

Hence, the approximate confidence intervals of model
parameters ω = (β1,β2,θ1,θ2) is obtained under

approximate normality distribution of ω̂ = (β̂1, β̂2, θ̂1, θ̂2)
under the large sample approximation

ω̂ → N(ω ,∏
−1

0
(ω̂)), (19)

where ∏−1
0 (ω̂) is the approximate information matrix

presented by (18). Then, 100(1 − 2α)% approximate
confidence intervals of ω = (β1,β2,θ1,θ2) are given by















β̂1 ± zαε11

β̂2 ± zαε22

θ̂1 ± zαε33

θ̂2 ± zαε44 ,

(20)
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where the values ε11, ε22, ε33 and ε44 are the rote of the
diagonal of approximate information matrix and the value
zγ is the percentile of the normal (0,1) with right-tail
probability α .

4 Bayes Estimation

Bayesian approach that presents the point and interval
estimates of model parameters depend on the prior
information, and the information satisfies by the data set.
The prior information is formulated as independent
gamma prior given by

Ω ∗(ωi) ∝ωai−1
i exp(−biωi),

ωi > 0, (ai,bi)> 0, i = 1,2,3,4, (21)

and the information is presented by the likelihood function
given by (11) to present the posterior distribution under
given joint Type-I HCS, as follows:

Ω(ωi|t)

=
L(ωi|t)Ω

∗(ωi)
∫ ∞

0 L(ωi|t)Ω ∗(ωi)dωi
. (22)

Then, the Bayes estimate of any function h(β1,β2,θ1,θ2)
under posterior distribution (22) is given under squared
error loss function (SEL) by

Eωi|t(h(ωi))

=

∫ ∞
0 h(ωi)L(ωi|t)Ω

∗(ωi)dωi
∫ ∞

0 L(ωi|t)Ω ∗(ωi)dωi
. (23)

The ratio (23) of two integrals in general is needed to
approximate. Several methods can be used to approximate
this integral and the important one called MCMC
algorithms is described, as follows: The posterior
distribution (22) under (11) and (21) can be formulated by

Ω(β1,β2,θ1,θ2|t) ∝ β m1+a1−1
1 θ m1+a2−1

1 β
m2+a3−1
2

θ m2+a4−1
2 exp

{

− b1β1 − b2θ1 − b3β2 − b4θ2

+(β1 − 1)
k

∑
i=1

ρi log(1+θ1ti)−
k

∑
i=1

ρi(1+θ1ti)
β1

+(β2 − 1)
k

∑
i=1

(1−ρi) log(1+θ2ti)

−
k

∑
i=1

(1−ρi)(1+θ2ti)
β2 − (κ1 −m1)(1+θ1ζ )β1

− (κ2 −m2)(1+θ2ζ )β2

}

. (24)

Then, the full conditional posterior distribution of
parameters vector ω = (β1,β2,θ1,θ2) is given by

Ω1(β1|θ1, t) ∝ β m1+a1−1
1

exp

{

−β1(b1 −
k

∑
i=1

ρi log(1+θ1ti))−
k

∑
i=1

ρi(1+θ1ti)
β1

− (κ1 −m1)(1+θ1ζ )β1

}

=

exp

{

−

(

k

∑
i=1

ρi(1+θ1ti)
β1 +(κ1 −m1)(1+θ1ζ )β1

)}

×Gamma

(

m1 + a1,b1 −
k

∑
i=1

ρi log(1+θ1ti)

)

, (25)

Ω2(β2|θ2, t) ∝ β m2+a3−1
2

exp

{

− b3β2 +(β2 − 1)
k

∑
i=1

(1−ρi) log(1+θ2ti)

−
k

∑
i=1

(1−ρi)(1+θ2ti)
β2 − (κ2 −m2)(1+θ2ζ )β2

}

=

exp

{

−
k

∑
i=1

(1−ρi)(1+θ2ti)
β2 − (κ2 −m2)(1+θ2ζ )β2

}

×Gamma

(

m2 + a3,b3 −
k

∑
i=1

(1−ρi) log(1+θ2ti)

)

,

(26)

from joint posterior distribution of model parameters, the
conditional posterior PDF’s

Ω3(θ1|β1, t) ∝ exp

{

(β1 − 1)
k

∑
i=1

ρi log(1+θ1ti)

−
k

∑
i=1

ρi(1+θ1ti)
β1 − (κ1 −m1)(1+θ1ζ )β1

}

×Gamma(m1+ a2,b2) (27)

and

Ω4(θ2|β2, t) ∝ θ−1
2 exp

{

+(β2 − 1)
k

∑
i=1

(1−ρi)

× log(1+θ2ti)−
k

∑
i=1

(1−ρi)(1+θ2ti)
β2 − (κ2 −m2)

× (1+θ2ζ )β2

}

×Gamma(m2+ a4,b4). (28)

Then, the conditional distribution of parameters (25) to
(28) reduces to four functions more similar to normal
populations. The joint posterior probability for the
parameters β1,β2,θ1, and θ2 given data is shown in (24).
Where, the conditional posterior distribution shows that
β2 is based on the parameter θ1 and contains two parts
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exponential distribution multiply by gamma distribution
with shape m2 + a3, and scale
b3 − ∑k

i=1(1 − ρi) log(1 + θ2ti). Also, the conditional
distribution of θ1 given β1 in (27) and the data is
combined between two distributions. The first is
exponential distribution and the other is gamma with
parameters m1 + a2, and b2. Hence, this process can be
seen in the conditional distributions of β2 and θ2. Hence,
the Metropolis-Hasting (MH) [22] under Gibbs
algorithms, as follows:

Step 1: Put ω(0) = (β
(0)
1 ,β

(0)
2 ,θ

(0)
1 ,θ

(0)
2 ) and I = 1.

Step 2: Generate θ
(I)
1 from (25).

Step 3: Generate β
(I)
2 from (27).

Step 4: Generate β
(I)
2 from (26).

Step 5: Generate θ
(I)
2 from (28).

Step 6: Record the vector ω(I+1) = (β
(I)
1 ,β

(I)
2 ,θ

(I)
1 ,θ

(I)
2 ).

Step 7: Put I = I + 1.
Step 8: Steps from 2–7 are repeated N times.
Step 9: If N∗ is the MCMC number that is needed to
achieved the stationary distribution (burn-in), then the
Bayes MCMC point estimate of ω is given by

ω̂B =
1

N −N∗

N

∑
i=N∗−1

ω(i), (29)

and the corresponding posterior variance of ω is given by

V̂ (ω) =
1

N −N∗

N

∑
i=N∗−1

(ω(i)− ω̂B)
2. (30)

Step 10: The corresponding credible 100(1 − 2α)%
interval of ω is given by

(ωα(N−N∗),φ(1−α)(N−N∗)). (31)

where ω(I) denotes ordered value of ω(I) and

ω = (β1,β2,θ1,θ2). In MCMC algorithms, it is difficult
to estimate several parameters because the evaluation at
each step. Thus, several techniques technique can be used
to estimate the unknown parameters, such as jumping.
These tools can be found in Aykroyd, [23], who explained
the method. Also, Gelman et al. [24] described a new tool
conceited with the variance of the proposed new value
during the loop of MCMC algorithms. The jumper of the
estimations of the unknown parameters are used to
generate sample from the posterior distribution and then
the chain is in equilibrium. Figure 5 shows the Gibbs
algorithms jumping rules, over which the samples can be
generated to approximate a target distribution. It indicates
the parameter θ1 is proposed at each step and the
parameter θ2 is proposed at steps 1, 3, 5,..., etc. The
parameter β1 is proposed at steps 1, 4, 7,..., etc. and the
parameter β2 is proposed at steps 1, 5, 9,..., etc. More
precisely, the parameters θ1 is proposed and evaluated at
each step, where β2 is proposed after 4 steps. This
procedure, as shown in Figure 5, accelerates obtaining the
target solution.

Fig. 5: Diagrammatic representation of the the procedure of

Gibbs algorithms.

5 Illustrative Example

In this section, the estimation procedure developed in this
article has been discussed through numerical example.
The proposed methodology is studied through extensive
simulations and it evaluates the performance of several
methods provided above. Then, we simulate a set of data
with n = 60(κ1 = κ2 = 30) and the effect sample size
m = 40. The data is generated from NH distribution with
parameters vectors ω = (3.0,0.5,3.0,1.0) with test time
η = 1.0 and it is summarized in Table 1. The expectation
is computed based on the unknown parameters
distributions. The number of iterations is 10000 to
estimate the mean for unknown parameters. Table 1

Table 1: The generated joint Type-I HCS data of NH

distributions.
Lifetime 0.0082 0.0106 0.0168 0.0173 0.0195 0.0227 0.0260 0.0332 0.0373 0.0488

Cause 0 0 0 0 1 0 0 0 0 1

Lifetime 0.0488 0.0537 0.0546 0.0632 0.0767 0.1348 0.1357 0.1402 0.1511 0.1517

Cause 0 1 1 1 0 0 0 0 0 1

Lifetime 0.1591 0.1642 0.1681 0.1845 0.1895 0.2155 0.2158 0.2250 0.2354 0.2380

Cause 1 1 0 1 0 0 0 1 1 0

Lifetime 0.2394 0.2398 0.2543 0.2877 0.2938 0.2982 0.2983 0.2989 0.3109 0.3380

Cause 1 0 1 0 1 0 0 1 0 0

shows the sample obtained from NH distribution where 0
indicates the sample collected from line Γ1 and 1 indicates
the sample collected from line Γ2. Table 2 shows the
results of the comparison between ML CIs and MCMC
CIs with confidence level of 95%. The line Γ2 achieves a
better results than line Γ1. Table 2 presents slight
difference between the expectation of these methods. The
results of Gibbs algorithms are illustrated in Figures 6-9.
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Table 2: MLEs, Bays estimate and 95% approximate intervals

estimate.

Pa.s (.)ML (.)MCMC 95% CIML 95% CIMCMC

β1 = 3.0 4.6940 2.6521 (0.4171, 7.4572) (0.5684, 63245)

θ1 = 0.5 0.3511 0.6215 (0.00214, 2.147) (0.1214, 2.2310)

β2 = 3.0 2.849 2.7123 (1.2453, 6.2143) (1.4218, 7.0001)

θ2 = 1.0 1.227 1.2324 (0.2147, 3.1254) (0.2524, 3.3002)
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Fig. 6: Simulation and histogram number of β1 generated by

MCMC method.
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Fig. 7: Simulation and histogram number of θ1 generated by

MCMC method.
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Fig. 8: Simulation and histogram number of β2 generated by

MCMC method.
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Fig. 9: Simulation and histogram number of θ2 generated by

MCMC method.

6 Simulation Studies

The developed results discussed in this paper for the ML
and Bayes estimators are compared and assessed through
building simulation studies. Thus, we adopt different
combinations of sample size (κ1 + κ2) and the effected
sample size m as well as different censoring time η .
Then, for the two samples of the model’s parameters, we
measure the estimators average ω̄ and estimators mean
square error (MSE) described by

E(ω̂) =
1

κ

κ

∑
i=1

ω̂(i), (32)

and

MSE =
1

κ

κ

∑
i=1

(

ω̄(i)− ω̄

)2

, (33)

where ω = (β1,β2,θ1,θ2) is the parameters vector. For

Table 3: The average of ω̂ and MSE of ω = {1.0,1.5,2.0,2.5}.

(κ1,κ2) (m,η) Pa.s (.)ML (.)MCMCP0
(.)MCMCP1

E(ω̂) MSEs E(ω̂) MSEs E(ω̂) MSEs

(30,30) (30,0.4) β1 1.841 0.421 1.782 0.399 1.421 0.231

β2 2.011 0.624 1.999 0.607 1.840 0.400

θ1 2.412 0.821 2.377 0.798 2.311 0.542

θ2 2.823 0.990 2.799 0.910 2.669 0.711

(30,30) (50,0.4) β1 1.642 0.328 1.615 0.301 1.400 0.202

β2 1.852 0.542 1.810 0.514 1.777 0.350

θ1 2.321 0.699 2.311 0.684 2.300 0.498

θ2 2.784 0.841 2.790 0.830 2.615 0.600

(50,50) (50,0.4) β1 1.671 0.314 1.609 0.302 1.395 0.198

β2 1.815 0.511 1.803 0.507 1.751 0.332

θ1 2.301 0.670 2.297 0.661 2.289 0.481

θ2 2.760 0.822 2.765 0.813 2.607 0.597

(50,50) (80,0.4) β1 1.555 0.277 1.541 0.269 1.315 0.101

β2 1.785 0.480 1.777 0.461 1.707 0.300

θ1 2.289 0.600 2.271 0.602 2.225 0.401

θ2 2.710 0.741 2.720 0.725 2.599 0.560

(30,30) (30,0.8) β1 1.790 0.370 1.730 0.348 1.390 0.200

β2 1.960 0.580 1.954 0.561 1.802 0.350

θ1 2.380 0.782 2.340 0.756 2.280 0.504

θ2 2.790 0.949 2.782 0.912 2.631 0.640

(30,30) (50,0.8) β1 1.607 0.270 1.590 0.266 1.375 0.162

β2 1.801 0.511 1.780 0.502 1.740 0.311

θ1 2.284 0.657 2.290 0.644 2.298 0.463

θ2 2.725 0.807 2.714 0.801 2.599 0.554

(50,50) (50,0.8) β1 1.625 0.274 1.611 0.264 1.364 0.161

β2 1.800 0.482 1.811 0.472 1.722 0.308

θ1 2.250 0.642 2.266 0.635 2.245 0.457

θ2 2.714 0.800 2.707 0.792 2.592 0.571

(50,50) (80,0.8) β1 1.514 0.251 1.514 0.244 1.300 0.098

β2 1.752 0.443 1.753 0.441 1.694 0.261

θ1 2.263 0.570 2.245 0.568 2.201 0.385

θ2 2.701 0.713 2.710 0.700 2.544 0.532

interval estimation, we use the probability coverage (PC)
as well as average interval length (AIL). In our paper, the
two set of parameters vector are given by
ω1 = (1.0,1.5,2.0,2.5) and ω2 = (0.5,0.8,1.0,1.5). In
Bayesian approach, we selected the prior parameters as
P0 = {a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 =
0.0001, a3 = 0.0001, b3 = 0.0001, a4 = 0.0001, b4 =
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Table 4: The PCs and AILs of ω = {1.0,1.5,2.0,2.5}.

(κ1,κ2) (m,η) Pa.s (.)ML (.)MCMCP0
(.)MCMCP1

PCs AILs PCs AILs PCs AILs

(30,30) (30,0.4) β1 0.88 3.002 0.89 2.987 0.90 2.911

β2 0.87 4.014 0.89 3.985 0.89 3.924

θ1 0.89 4.875 0.89 4.825 0.89 4.762

θ2 0.85 5.129 0.87 5.103 0.90 5.005

(30,30) (50,0.4) β1 0.89 2.985 0.90 2.977 0.90 2.870

β2 0.90 3.879 0.89 3.865 0.91 3.900

θ1 0.89 4.811 0.90 4.801 0.90 4.735

θ2 0.89 5.095 0.90 5.083 0.92 4.887

(50,50) (50,0.4) β1 0.89 2.970 0.90 2.964 0.92 2.831

β2 0.91 3.871 0.91 3.849 0.91 3.872

θ1 0.89 4.803 0.90 4.795 0.90 4.701

θ2 0.88 5.087 0.91 5.069 0.90 4.869

(50,50) (80,0.4) β1 0.90 2.940 0.91 2.936 0.96 2.810

β2 0.91 3.843 0.92 3.835 0.91 3.814

θ1 0.90 4.780 0.90 4.762 0.92 4.680

θ2 0.92 5.044 0.93 5.041 0.91 4.813

(30,30) (30,0.8) β1 0.89 2.950 0.91 2.939 0.91 2.870

β2 0.89 3.986 0.89 3.964 0.89 3.901

θ1 0.90 4.841 0.89 4.811 0.92 4.724

θ2 0.88 5.101 0.90 5.009 0.91 4.975

(30,30) (50,0.8) β1 0.90 2.944 0.93 2.939 0.95 2.822

β2 0.91 3.852 0.90 3.847 0.92 3.760

θ1 0.90 4.781 0.90 4.762 0.92 4.700

θ2 0.89 5.061 0.91 5.054 0.90 4.832

(50,50) (50,0.8) β1 0.91 2.942 0.92 2.925 0.92 2.801

β2 0.91 3.833 0.91 3.828 0.93 3.800

θ1 0.92 4.789 0.91 4.772 0.95 4.685

θ2 0.89 5.053 0.93 5.044 0.97 4.827

(50,50) (80,0.8) β1 0.93 2.904 0.92 2.902 0.95 2.774

β2 0.91 3.803 0.92 3.811 0.91 3.784

θ1 0.92 4.751 0.93 4.746 0.92 4.642

θ2 0.92 5.013 0.93 5.009 0.90 4.797

Table 5: The average of ω̂ and MSE of ω = {0.5,0.8,1.0,1.5}.

(κ1,κ2) (m,η) Pa.s (.)ML (.)MCMCP0
(.)MCMCP1

E(ω̂) MSEs E(ω̂) MSEs E(ω̂) MSEs

(30,30) (30,0.4) β1 0.745 0.167 0.721 0.155 0.654 0.102

β2 0.982 0.199 0.973 0.191 0.885 0.145

θ1 1.482 0.368 1.472 0.359 1.400 0.298

θ2 1.824 0.412 1.811 0.107 1.784 0.387

(30,30) (50,0.4) β1 0.714 0.141 0.700 0.131 0.622 0.097

β2 0.954 0.171 0.947 0.166 0.852 0.117

θ1 1.460 0.341 1.451 0.318 1.385 0.271

θ2 1.813 0.398 1.801 0.399 1.764 0.359

(50,50) (50,0.4) β1 0.707 0.132 0.702 0.118 0.613 0.079

β2 0.942 0.154 0.938 0.160 0.847 0.114

θ1 1.440 0.327 1.435 0.314 1.366 0.258

θ1 1.800 0.379 1.811 0.381 1.748 0.330

(50,50) (80,0.4) β1 0.713 0.112 0.715 0.109 0.607 0.055

β2 0.929 0.142 0.931 0.151 0.836 0.107

θ1 1.427 0.314 1.412 0.302 1.351 0.224

θ2 1.792 0.344 1.780 0.361 1.722 0.321

(30,30) (30,0.8) β1 0.761 0.151 0.721 0.147 0.647 0.098

β2 0.977 0.181 0.968 0.180 0.875 0.129

θ1 1.483 0.351 1.466 0.348 1.401 0.282

θ2 1.813 0.401 1.803 0.100 1.771 0.376

(30,30) (50,0.8) β1 0.698 0.130 0.701 0.125 0.614 0.078

β2 0.953 0.155 0.942 0.147 0.808 0.103

θ1 1.449 0.328 1.439 0.322 1.371 0.262

θ2 1.809 0.381 1.813 0.372 1.749 0.339

(50,50) (50,0.8) β1 0.690 0.114 0.712 0.109 0.607 0.061

β2 0.928 0.139 0.925 0.139 0.826 0.101

θ1 1.433 0.314 1.440 0.307 1.351 0.246

θ2 1.785 0.358 1.810 0.348 1.725 0.311

(50,50) (80,0.8) β1 0.725 0.102 0.711 0.099 0.611 0.048

β2 0.914 0.124 0.918 0.135 0.830 0.098

θ1 1.418 0.304 1.400 0.297 1.328 0.213

θ2 1.760 0.331 1.782 0.328 1.711 0.309

0.0001}, P1 = {a1 = 2, b1 = 2, a2 = 3, b2 = 2, a3 =

Table 6: The PCs and ALs of ω = {0.5,0.8,1.0,1.5}.

(κ1,κ2) (m,η) Pa.s (.)ML (.)MCMCP0
(.)MCMCP1

PCs AILs PCs AILs PCs AILs

(30,30) (30,0.4) β1 0.88 1.899 0.90 1.875 0.90 1.652

β2 0.87 2.423 0.90 2.415 0.91 2.241

θ1 0.90 3.125 0.90 3.001 0.92 2.985

θ2 0.89 3.583 0.89 3.520 0.90 3.324

(30,30) (50,0.4) β1 0.89 1.830 0.90 1.809 0.92 1.600

β2 0.89 2.295 0.90 2.280 0.91 2.201

θ1 0.90 2.990 0.91 2.974 0.92 2.715

θ2 0.91 3.501 0.90 3.503 0.94 3.280

(50,50) (50,0.4) β1 0.90 1.811 0.93 1.802 0.97 1.570

β2 0.89 2.282 0.90 2.277 0.92 2.181

θ1 0.91 2.976 0.91 2.964 0.92 2.680

θ2 0.91 3.482 0.93 3.491 0.90 3.261

(50,50) (80,0.4) β1 0.92 1.762 0.91 1.754 0.92 1.420

β2 0.89 2.235 0.92 2.228 0.92 2.127

θ1 0.90 2.944 0.91 2.933 0.93 2.651

θ2 0.93 3.470 0.90 3.465 0.91 3.232

(30,30) (30,0.8) β1 0.89 1.870 0.90 1.861 0.91 1.641

β2 0.87 2.411 0.90 2.402 0.90 2.232

θ1 0.90 3.111 0.90 2.981 0.89 2.972

θ2 0.90 3.560 0.90 3.507 0.91 3.302

(30,30) (50,0.8) β1 0.90 1.817 0.92 1.808 0.92 1.591

β2 0.91 2.282 0.90 2.277 0.93 2.187

θ1 0.90 2.975 0.91 2.970 0.92 2.702

θ2 0.92 3.485 0.92 3.475 0.96 3.241

(50,50) (50,0.8) β1 0.91 1.790 0.93 1.782 0.97 1.539

β2 0.91 2.275 0.90 2.262 0.92 2.149

θ1 0.91 2.959 0.91 2.964 0.92 2.671

θ2 0.91 3.470 0.93 3.465 0.91 3.226

(50,50) (80,0.8) β1 0.92 1.748 0.92 1.742 0.92 1.403

β2 0.92 2.221 0.95 2.214 0.92 2.112

θ1 0.91 2.925 0.93 2.917 0.93 2.639

θ2 0.93 3.459 0.90 3.449 0.94 3.211

4, b3 = 2.5, a4 = 4, b4 = 1.5} and P2 = {a1 = 2, b1 =
2, a2 = 3, b2 = 2, a3 = 4, b3 = 2.5, a4 = 4, b4 = 1.5}
respectively. In the simulation study, we generate 1000
random samples of NH distribution for each sample,
compute the point and interval estimate, and the
corresponding tools. We chose the sample size (κ1,κ2) by
(30,30) and (50,50), while m and time η are selected by
(30,0.4), (50,0.4), (80,0.4), (30,0.8), (50,0.8), (80, 0.8).
For MCMC approach, we run the posterior distribution
10000 times with 1000 iterations as burn-in. The results
of E(ω̂), MSEs, PCs, and AILs of estimates are
computed and presented in Tables 3-6. Table 6 shows the
results of parameters estimation using MLEs and MCMC
methods. The results of MLEs are slightly larger than the
corresponding results of MCMC methods. Also, the
results of MCMCp1

of parameters are closer to the true
value and the corresponding MSEs decrease except for
some cases of the parameter θ2. The reason might be that
the true value of θ2 is bigger than other parameters.
Hence, from Table 5, the estimation of the parameters are
closer to the true value. It is not surprising since the
parameter β2 in Table 5 is smaller than β2 in Table 3.
According to Table 3, the results of estimation, in the case
κ = 30,κ = 30,m = 30,η = 0.4, are larger than the case
κ = 30,κ = 30,m = 50,η = 0.4, because the number of
failures increases. Also, Table 7 shows the results of PCs
and AILs. The results of PCs using MLEs are smaller
than MCMC methods, while the results of AILs are closer
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in Table 6. Finally, as the integers m and η , increase the
corresponding results of PCs slightly increase.

7 Conclusion

In this paper, new approach was introduced to estimate
NH distribution under joint two groups of population. The
proposed method provides knowledge concerning dealing
with different types of set data. Where, the problem of
determining the quality of the products with different
product lines under the same facility required some tests
about the product life to define the relative merits of these
products. Moreover, we considered the products whose
life is distributed with NH distribution. Then, the lifetime
data under a hybrid Type-I censored scheme was
collected to be used in the operation of statistical
inference about the unknown distribution. The theoretical
results under ML and Bayes estimation were developed
and measured with numerical computation. From the
numerical results, we can report the following results.

–The results have shown that joint Type-I HCS presents
a suitable scheme for modeling two populations.

–The results of classical MLE, as well as Bayes
estimation under population P0, are more closed to
others, since the hyper-parameters start close to the
zero.

–The estimation results under informative priors P1 and
P2 are better than MLE or non-informative Byes prior
P0.

–The quality of the point and interval estimation are
better for increasing sample size κ1 +κ2 or effecting
sample size m.

–The results perform better for the large value of
censoring time η .

–The results showed that the proposed methods are
more valid for different model parameters and
suitable for joint different populations.
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