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Abstract: In this paper, we adopted a new insight of testing for Nadarajaha and Haghighi (NH) lifetime products under Type-I hybrid
censoring scheme. Hence, NH is an expansion of the exponential distribution, and it provides a more reasonable estimate than the
generalized exponential, Weibull, and the gamma distributions, particularly when the observations contain zero values. We built this
model and preset some statistical inferences of the model parameters with classical and Bayes methods under different types of loss
functions using gamma priors for NH distribution parameters. Next, we consider the point and asymptotic confidence interval estimators
with maximum likelihood, and the Bayes estimators are discussed. The joint lifetime data is analyzed for illustration purposes. The
Monte Carlo simulation study is built to stand on accuracy of these estimators.

Keywords: Bayesian, Gibbs, Joint Type-I hybrid censoring, Maximum likelihood estimation, MCMC, Nadarajaha and Haghighi

distribution.

1 Introduction

The problem of determining the relative merits of
manufactured products, specially manufactured products
from different production lines, has been considered in
the last few years. Studying the reliability of these
products needs to implement some life testing for the
joint set of product units known with a jointly censoring
scheme. More precisely, consider that the two lines of
manufactured products I7 and I, have the same facility.
From line I, we randomly select a sample of size kj as
well as Kk, from the line I3, respectively. The total sample
is placed under life testing, so the samples are collected
from two lines. The failure time and the type of unit are
recorded over all steps test. Then, the observed data
obtained from these testing are called joint samples
because they are obtained from different lines. However,
under some restrictions of times and cost, the
experimenter may be a terminate test after a fixed number
of failures occur. This problem was discussed by different
authors, for example, [1] and [2]. The inference with the
exact likelihood and bootstrap algorithms discussed with
[3], [4] and [5]. For Rayleigh lifetime distributions, see
[6], for accelerated Rayleigh life model, [7] and for
compound Rayleigh lifetime distributions, see [8]. NH
distribution which is used as an alternative to the

generalized exponential, Weibull, and the gamma
distributions. The main interest is that the model has zero
modes; this feature might explain constant hazard rate
functions. Moreover, NH distribution is a particular case
of the three-parameter generalized power Weibull
distribution; see [9] for more details. In 2013, NH
distribution was extended by Lemonte [10], using the idea
of [11], which is a particular case of the exponential
distribution and the generalized exponential distribution,
which can be used in modeling censored data. The
real-life data obtained from the life testing experiments
are censored or complete. Censored data appears when
some but not all failure times are observed. Furthermore,
the data are used when the failure time of all units under
test is observed. The oldest commonly censoring schemes
in life test experiments are called Type-I censoring and
Type-II censoring schemes. The test time is pre-fixed in
the Type-I censoring scheme, but the number of failure
units is pre-fixed in the Type-II censoring scheme. These
two types of censoring do not allow removing units from
the test other than the final point. The progressive
censoring scheme has the property that units can be
removed at any step of the experiment, see [12]. Also,
Childs et al. [13] investigated a new approach for
analysing the exact likelihood based on hybrid censored
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samples from the exponential distribution. Moreover,
Algarni et al. [14] analysed joint Type-I hybrid censoring
for estimating parameters from Weibull probability
density function. Gorny et al. [15] suggested uniformly
distribution to study Type-I hybrid censoring. In addition,
Chakrabarty et al. [16] studied this type of data under
warranty. In practice, the experimenter has to run the
experiment under a mixture of Type-I and Type-II
censoring schemes known as the hybrid censoring scheme
(HCS). There are different types of hybrid censoring
schemes described, as follows: Before the experiment
runs, the ideal test time and a fair number of failure units
needing statistical inference are pre-fixed and denoted by
(m,n). In Type-1 HCS, the experiment is removed at the
min (7;,,7m). However, in Type-II HCS, the experiment is
terminated at max (7,,,7). Also, these two types of
censoring schemes (Type-I HCS and Type-II HCS) are
generalized in progressive hybrid cases that allow the
removal of units from the test over the experiment’s total
time. For more details of hybrid censoring scheme, see
[17], and [18]. Different life models, such as Weibull,
gamma, and generalized exponential distributions, are
used to analyze the lifetime data. The NH distribution has
the property that the random variable can take the values
of zero. It is the better fit for the data that contain zero
values other than the other lifetime distributions. NH
distribution with random variable 7 has probability
distribution (PDF) given by

g(t) =BO(1+ et)ﬁlexp{1 - +et)/3},
t>0,(B,0)>0, (1)

where 0 is the scale, and f is the shape parameters. Also,
the corresponding cumulative probability (CPD), survival
function S(.) and hazard failure rate function H(.) are
respectively given by

G(1) = 1exp{1(1+9t)/3},t>o, (B,6) >0, (2)

S(z)exp{1(1+et)ﬁ},t>o, (B,0)>0, (3)

and
H(t)=pO(1+6:)P~1 1>0,(8,0)>0, (4
note that for NH distribution
(1+61)g(r) = BO[1 —InG(1)]G(t) ©)
where

G(t) =1-G(@). (6)

The NH distribution presented the extension exponential
distribution and equal to an exponential distribution with

a(t) 1 T
0.8
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Fig. 1: Plots of the density function (a), the cumulative
probability (b), the survival and hazard failure rate functions(c)
and (d) with parameters 6 = 1 and § =0.1,0.5, 1.

Fig. 2: Plots of the density function (a), the cumulative
probability (b), the survival and hazard failure rate functions(c)
and (d) with parameters 6 = 1 and § =0.1,0.5, 1.

B = 1. Hence, this distribution is a special case of
Gurvich [19] where G(1) = 1 —exp(—f(At)), and f(Ar)
is a monotonically increasing function of ¢ with the only
limitation f(Ar) > 0. Also, the NH distribution has a
decreasing probability function, and its mode is at zero.
The properties of this distribution were presented by [20].
The distribution also provides increasing and decreasing
shape as well as constant hazard rates. This paper aims to
develop statistical inference methods for industrial
products that come from different production lines under
the same facility and its unit’s life distributed with NH
lifetime distribution. The joint Type-I HCS is built, and
the observed sample is used to construct the maximum
likelihood estimates of model parameters. Also, Bayes
estimation is adopted under the MCMC technique. The
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Fig. 3: Plots of the density function (a), the cumulative
probability (b), the survival and hazard failure rate functions(c)
and (d) with parameters 6 = 1 and 8 =0.1,0.5, 1.

Fig. 4: Plots of the density function (a), the cumulative
probability (b), the survival and hazard failure rate functions(c)
and (d) with parameters 6 = 1 and 8 =0.1,0.5, 1.

results of point and interval estimation are discussed
through the analysis of the set of data. Moreover, the
quality of these estimators is assessed and compared
using the Monte Carlo simulation study. The results are
measured with mean squared error and probability
coverage. Figure 1-4 shows the plots of the the properties
of the NH distribution. It shows that the density
distribution has a decreasing probability function. For
smaller values of 3, the density becomes faster flat. As 3
increases, the density has an infinite mode at zero. The
cumulative probability increases faster as § increases—see
Figure 2, and reaches 1 quickly. The density allows for
decreasing survival and hazard failure rate functions—see
Figure 3 and 4 where hazard function reaches 1 quickly
as f3 increases.

The paper is organized, as follows: The joint likelihood
function of jointly Type-I HCS is formulated in Section 2.
The point and interval MLE are discussed in Section 3.
Bayesian approach under MCMC methods is adopted in
Section 4. A numerical example of jointly Type-I HC data
is analysed in Section 5. Finally, results are assessed with
Monte Carlo studying in Section 6.

2 Joint Type-1 HCS Model

Let, k1 + k» be a random sample selected from the two
lines of production, k7 from the line I7 and k, from the
line I is put under test. The priors, integers m and time 1
are selected. The joint sample has identical distributed
(id) lifetimes T,7,...T¢, and T{,T5,...Tg
respectively. These samples are distributed with PDFs and
CDFs given respectively by g;(.) and G;(.),j = 1,2.
After the test begins, the lifetime and the type of the
failure unit is recorded until the minimum time (7;,,,7) is
observed. Then, the joint lifetime sample (77,73,...Tx) is

constructed from the sample
{1, 1, ... T, T]', TS, ... T, }, where k = ki + kp and
_ m, Tn<n
k{k<m, Tn>n )

Therefore, the joint Type-I HC sample presented by T =
{(T1,p1),(T2,p2),dots, (Tx, px) } and the value of p;, i =
1,2,...,k the the value (1 or 0) depends on T or T* failure.
Then, we propose that number of failure from the line I;
is defined by m; = ):le pi and from the from the line I5 is
defined by my = Y'*_, (1 — p;). The likelihood function of

joint observed sample t = {(¢1,p1), (©2,02);-- -, (t, Px) } is
given by

_ K81 (O] M [Sa ()]

Ji2,.x(t) (<1 — 1) (0 —m»)
k
x [H[gmri)]f’f[gz(n)]lpf L ®
i=1
where
_ tma Tm S n
c—{n, e ©)

where S;(.), j = 1,2 denotes reliability functions. The NH
distribution under two lines I and I distributed with CDF
given by

G(t) = lexp{l —(1+ eij;)ﬂf.f}, i,j=1,2, (10)

where G(t) is the cumulative probability distribution.
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3 ML Estimation

From the distribution given by (10) and observed joint

Type-I HCS data t = {(l‘] ,P1 ), (l‘z,pz), cey (tk,pk)}, the
function (8) without normalized constant reduces to

L(B1, B2, 61, 62[t) = (B161)™ (B262)"™

k k
exp{(ﬁl — 1)Zp,~log(1 + 01t)) Z (1+ Glt,
i=1

+(B2—1) ) (1 —pi)log(1+ 62t;)

M»

i=1

(I —pi)log(1+ Gztl)ﬁ

M»

i=1

(k1 —m)(1 4+ 6,0)P —(Kz—mZ)(1+9zC)BZ}- an

Then, the log-likelihood is given by
£(B1, B2, 61, 6:]t)

k
+(Bi— 1)) pilog(1+611:)

i=1

=m log(ﬁl 91) +m210g(ﬁ292)

k
) pill+611) By (B—1) Z 1—p;)log(1+ 6ot;)

(1—p;)log(1 4 61)P — (i

M* ZM»

—m)(1+6,5)P
i=1

— (ke —my) (14 6,0)P2. (12)

3.1 Point estimation

After taking the first partial derivatives of (12) with
respect to parameters vector @ = (f1,,,6,,6,), the
likelihood equations are presented by

+ (14 611
[31 ;P 1) —

Zpi(l + 911‘,’)B] log(l + 91t,')
i=1
— (ki —m)(1+6,0)Prlog(14+6,6) =0,  (13)

o k
ﬁ—+z 1—pi)(1+ 6217)
i=1

(1 — p,)( + ezll')Bz log(l + Gzll')

M»

I

— (ly—m) (14 6:,0)Plog(1+6,8) =0,  (14)

—+ (B —

piti
0, Z 14641

- B Zpiti(l +018;)P 1 —

i=1
(k1 —m)BiS(1+ 6151 =0, (15)
and

m2 i Pz 1
9 1+ 65t

—ﬁzZ(l

i=1
— (1 —m) Bl (1+6:0)P 1 = 0. (16)

The equations from (13) to (14) show that the likelihood
equations reduce to four of non-linear equations which can
be solved with iteration method such as, Newton Raphson
to obtain ﬁ], ﬁz, él and éz.

Remark: If m; = 0 in (13) and (15), then 31 and 6; do
not exist. Also, if mp; =0 in (14) and (16), then 3, and 6,
do not exist, see [21].

— p)ti(1 4 63,) P!

3.2 Interval estimation

The Fisher information matrix is defined as the
expectation of minus second partial derivative of a
log-likelihood function as

e E<92€(B1,Bz,91,92|t)

N 8wi8a)j

>, i,j=12,3,4. (17)

In practice, the expectation of minus second partial
derivative 1is more difficult so, the approximate
information matrix is used as the approximation form to
Fisher information matrix as

1~ —E(azaﬁ"ﬁ%elveﬂt))

8a)l-8a)j

, L, j=1,2,34.
0=0

(18)

Hence, the approximate confidence intervals of model

parameters ® = (fi,5,,01,0,) is obtained under

approximate normality distribution of @ = ( BB, 61, 6,)
under the large sample approximation

& - N(o,[]," (@), (19)

where [], (@) is the approximate information matrix
presented by (18). Then, 100(1 — 2ct)% approximate
confidence intervals of ® = (B, B2, 6, 6,) are given by

@ 1 £2a€11

@2 + Za €22 (20)
01 20 €33

6 +tz08
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where the values €11, &>, €3 and €44 are the rote of the
diagonal of approximate information matrix and the value
7y is the percentile of the normal (0,1) with right-tail
probability «.

4 Bayes Estimation

Bayesian approach that presents the point and interval
estimates of model parameters depend on the prior
information, and the information satisfies by the data set.
The prior information is formulated as independent
gamma prior given by

Q* (o) <!

1

w; > 0, (a,',

exp(—b;w;),
b)>0,i=1,23,4, (1)

and the information is presented by the likelihood function
given by (11) to present the posterior distribution under
given joint Type-I HCS, as follows:

Q(wt)
_ L(wi|t)Q* ()
o f(;OL((D,'“)Q*((D,')d(D,'.

(22)

Then, the Bayes estimate of any function i(f;, 32, 6,6>)
under posterior distribution (22) is given under squared
error loss function (SEL) by

Ege(h(ay))
_ Jo (o) L(wi]t)
Jo L(wi|t)Q

The ratio (23) of two integrals in general is needed to
approximate. Several methods can be used to approximate
this integral and the important one called MCMC
algorithms is described, as follows: The posterior
distribution (22) under (11) and (21) can be formulated by

.Q*((x),')da),'
*(wi)da)i

(23)

m1+a1 191m1+a271ﬁ£712+a371

(ﬁ15ﬁ2761792|t)

9£n2+a4fl CXP{ —b1B1 —b20) — b3 — b46,

(ﬁll)ipzlogHGm Xk‘, (1+6,5)P
+(ﬁz—1)12k:1(1—Pz)log(1+92tz)
le}(lpz)(HGzti)Bz(Klm,)(1+e,g)ﬁl
(k2 )1+ 62007 . ()

Then, the full conditional posterior distribution of
parameters vector @ = (B, B2, 01, 6,) is given by
(ﬁ1|91 ml+a1 1
k
eXp{ Bi (b1 — Zpllog 1+61)) Z 14 611,)P
l :
(- m) 1+ 00 -
k
exp{ — (Zp,(] + 91t,')[31 + (k1 —my)(1+ Glg)ﬂl) }
i=1

k
— ZPilOg(l + 9]1})) , (25)

X Gamma (m] +ay,b
i=1

Qz(ﬁ2|92,t) o £n2+a3*l

k
exp{—b3ﬁ2—|— 2—1 Z ]—p, log +92t,~)
i=1

k
Z 1—pi) 1+92ti)ﬁ2(K2m2>(1+92C)B2}
i=1
k
exp{ Z 1—p;) 1+92ti)ﬁ2—(’<2—m2)(1+92C)ﬁ2}

k
X Gamma (I’)’Lz + a3, bz — Z(l — pz) log(l + 92[[)) ,
i=1
(26)

from joint posterior distribution of model parameters, the
conditional posterior PDF’s

k
m(elml,t)o«exp{ (B =) Y ploz(1 +611)

k
=Y pi(1+0i8)Pr — (kg —my) (1 + 91C)ﬁ‘}
i=1
x Gamma(my + ay, by) 27
and

k
2_1 Zl—Pz

i=1

.Q4(92|ﬁ2,t) o< 9{] exp{

(1= pi)(1+ 6,t:)P

M»

x log(1 + 01;) — — (1 — my)

Il
—_

i

x (1+92§)ﬁz} x Gamma(my + ay, by). (28)

Then, the conditional distribution of parameters (25) to
(28) reduces to four functions more similar to normal
populations. The joint posterior probability for the
parameters 1, 32,01, and 6, given data is shown in (24).
Where, the conditional posterior distribution shows that
B, is based on the parameter 6; and contains two parts
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exponential distribution multiply by gamma distribution
with shape my -+ as, and scale
by — f-‘:l(l — pi)log(1 + 6:t;). Also, the conditional
distribution of 6; given B; in (27) and the data is
combined between two distributions. The first is
exponential distribution and the other is gamma with
parameters m; + a», and b,. Hence, this process can be
seen in the conditional distributions of 3, and 6,. Hence,
the Metropolis-Hasting (MH) [22] under Gibbs
algorithms, as follows:

Step 1: Put 0(®) = (ﬁfo),ﬁz(o), 950), 92(0)) and 1= 1.

Step 2: Generate 951) from (25).

Step 3: Generate ﬁz(l) from (27).

Step 4: Generate ﬁz(l) from (26).

Step 5: Generate Bzm from (28).

Step 6: Record the vector o*!) = (Bl(l) , BZ(I), 91(1) , 92(1)).
Step 7: PutI =1+ 1.

Step 8: Steps from 2—7 are repeated N times.

Step 9: If N* is the MCMC number that is needed to
achieved the stationary distribution (burn-in), then the
Bayes MCMC point estimate of @ is given by

1 N

vk

A

g o, (29)

and the corresponding posterior variance of ® is given by
1 N

B N—N* i:NZ*—l

V(o) (0 — dp)?. (30)
Step 10: The corresponding credible 100(1 — 2a)%
interval of @ is given by

(@a(N-N*)> D1 —a) (N—N¥))- (31

where @) denotes ordered value of o and
o = (B1,B2,61,6,). In MCMC algorithms, it is difficult
to estimate several parameters because the evaluation at
each step. Thus, several techniques technique can be used
to estimate the unknown parameters, such as jumping.
These tools can be found in Aykroyd, [23], who explained
the method. Also, Gelman et al. [24] described a new tool
conceited with the variance of the proposed new value
during the loop of MCMC algorithms. The jumper of the
estimations of the unknown parameters are used to
generate sample from the posterior distribution and then
the chain is in equilibrium. Figure 5 shows the Gibbs
algorithms jumping rules, over which the samples can be
generated to approximate a target distribution. It indicates
the parameter O; is proposed at each step and the
parameter 6, is proposed at steps 1, 3, 5,..., etc. The
parameter f3; is proposed at steps 1, 4, 7,..., etc. and the
parameter f3, is proposed at steps 1, 5, 9,..., etc. More
precisely, the parameters 6 is proposed and evaluated at
each step, where B, is proposed after 4 steps. This
procedure, as shown in Figure 5, accelerates obtaining the
target solution.

8,
By #; 1
L £ 5 & B
BB s B B

Yy

bl A

secee o

Iterations

Fig. 5: Diagrammatic representation of the the procedure of
Gibbs algorithms.

5 Illustrative Example

In this section, the estimation procedure developed in this
article has been discussed through numerical example.
The proposed methodology is studied through extensive
simulations and it evaluates the performance of several
methods provided above. Then, we simulate a set of data
with n = 60(k; = k» = 30) and the effect sample size
m = 40. The data is generated from NH distribution with
parameters vectors @ = (3.0,0.5,3.0,1.0) with test time
N = 1.0 and it is summarized in Table 1. The expectation
is computed based on the unknown parameters
distributions. The number of iterations is 10000 to
estimate the mean for unknown parameters. Table 1

Table 1: The generated joint Type-I HCS data of NH
distributions.

Lifetime  0.0082 0.0106 0.0168 0.0173 0.0195 0.0227 0.0260 0.0332 0.0373  0.0488
Cause 0 0 0 0 1 0 0 0 0 1

Lifetime  0.0488  0.0537 0.0546 0.0632 0.0767 0.1348 0.1357 0.1402 0.1511  0.1517
Cause 0 1 0 0 0

Lifetime  0.1591  0.1642 0.1681  0.1845 0.1895 0.2155 0.2158 0.2250 0.2354  0.2380
Cause 1 0 1 0 0 0 1 1 0

Lifetime  0.2394 0.2398 0.2543  0.2877 0.2938 0.2982 0.2983 0.2989 03109 0.3380
Cause 1 0 1 0 1 0 0 1 0 0

shows the sample obtained from NH distribution where 0
indicates the sample collected from line I and 1 indicates
the sample collected from line I>. Table 2 shows the
results of the comparison between ML CIs and MCMC
ClIs with confidence level of 95%. The line I achieves a
better results than line Ij. Table 2 presents slight
difference between the expectation of these methods. The
results of Gibbs algorithms are illustrated in Figures 6-9.
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Table 2: MLEs, Bays estimate and 95% approximate intervals
estimate.

| Pa.s ‘ (‘)ML | (')MCMC | 95% Clmr | 95% CIMCMC
Bi1=3.0 | 46940 | 2.6521 | (0.4171,7.4572) | (0.5684, 63245)
6 =0.5 | 0.3511 | 0.6215 | (0.00214, 2.147) | (0.1214, 2.2310)
Br=3.0 | 2.849 | 27123 | (1.2453,6.2143) | (1.4218,7.0001)
6, =10 | 1.227 1.2324 | (0.2147, 3.1254) | (0.2524, 3.3002)

0 0 20 w0 40 s0 0

0 a0 s sm oo 15 20 25 30

Fig. 6: Simulation and histogram number of f; generated by
MCMC method.

Fig. 7: Simulation and histogram
MCMC method.

number of 6 generated by

10 15 20 25 30

W w0 % w0 w0 e

o mw  wm  wm w0 1000 0s 10 15 20 25 a0

Fig. 8: Simulation and histogram
MCMC method.

number of f, generated by

00 05 10 15 20 25 30

W w0 a0 s &0

o ww  wm  wm w0 1000

Fig. 9: Simulation and histogram number of 6, generated by
MCMC method.

6 Simulation Studies

The developed results discussed in this paper for the ML
and Bayes estimators are compared and assessed through
building simulation studies. Thus, we adopt different
combinations of sample size (k] + k») and the effected
sample size m as well as different censoring time 1.
Then, for the two samples of the model’s parameters, we
measure the estimators average @ and estimators mean
square error (MSE) described by

Ly A0
PPN

i=1

E(0) = (32)

and

(33)

I (o0 o)
MSEEZ(LO a))

i=1

where ® = (P, B2, 61,0,) is the parameters vector. For

Table 3: The average of @ and MSE of 0 = {1.0,1.5,2.0,2.5}.

(K1, k) (m,m)  Pas (ML (memcy, (-Imemey,
E(®) MSEs E(®) MSEs E(®) MSEs
(30,30) (30,04) B 1.841 0421 1.782 0399 1421 0231
B 2011  0.624 1999 0.607 1.840 0.400
G 2412 0.821 2377 0.798 2311 0.542
6, 2823 099 2799 0910 2.669 0.711
(30,30)  (50,04) B 1.642 0.328 1.615 0.301 1.400 0.202
B 1.852  0.542  1.810 0514  1.777  0.350
0, 2321 0.699 2311  0.684 2300 0.498
6, 2784 0.841 2790 0.830 2.615 0.600
(50,50)  (50,04) By 1.671 0314 1.609 0302 1395 0.198
B 1.815 0511 1.803  0.507 1.751 0.332
G 2301 0.670 2297 0.661 2289 0.481
6, 2760 0.822 2765 0813 2607 0.597
(50,50)  (80,04) By 1.555 0.277 1.541 0.269 1315 0.101
B> 1.785 0.480 1.777 0461 1.707 0.300
0, 2289  0.600 2271 0.602 2225 0.401
6, 2710 0.741 2720 0.725 2599 0.560
(30,30)  (30,0.8) B 1.790 0370 1.730 0348 1.390  0.200
B 1.960  0.580 1.954 0.561 1.802 0.350
6, 2380 0.782 2340 0.756 2280 0.504
6, 27790 0949 2782 0912 2631 0.640
(30,30)  (50,0.8) By 1.607 0.270 1.590 0.266 1.375 0.162
B> 1.801 0.511 1.780 0.502 1.740 0.311
0, 2284 0.657 2290 0.644 2298 0.463
6, 27725 0.807 2714 0.801 2599 0.554
(50,50)  (50,0.8) B 1.625 0274 1.611 0264 1364 0.161
B 1.800 0.482 1.811 0472 1.722 0.308
G 2250 0.642 2266 0.635 2245 0.457
6, 2714 0.800 2707 0.792 2592 0.571
(50,50)  (80,0.8) By 1.514 0.251 1.514 0.244 1300 0.098
B 1.752 0443 1753 0441 1.694 0.261
0, 2263 0570 2245 0568 2201 0.385
6, 27701 0.713 2710 0.700 2.544 0.532

interval estimation, we use the probability coverage (PC)
as well as average interval length (AIL). In our paper, the
two set of parameters vector are given by
o' = (1.0,1.5,2.0,2.5) and ®* = (0.5,0.8,1.0,1.5). In
Bayesian approach, we selected the prior parameters as
Py = {a; = 0.0001, b; = 0.0001, a; = 0.0001, b, =
0.0001, a3 = 0.0001, b3 = 0.0001, a4 = 0.0001, by =
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Table 4: The PCs and AILs of o = {1.0,1.5,2.0,2.5}.

(ki) (mn)  Pas (ML (Imemey, (Imemey,
PCs AlLs PCs AlLs PCs AlLs
(30,30) (30,04) B 0.88 3.002 089 2987 090 20911
B 0.87 4.014 0.89 3985 0.89 3.924
6, 0.80 4875 0.89 4.825 0.89 4.762
6 085 5129 0.87 5103 090 5.005
(30,30) (50,04) By 0.80 2985 090 2977 090 2.870
B 090 3879 0.89 3.865 091 3.900
6, 0.89 4811 090 4.801 090 4.735
6, 0.89 5.095 090 5.083 092 4.887
(50,50) (50,04) By 0.89 2970 090 2964 092 2.831
B 091 3871 091 3849 091 3.872
6 0.80 4.803 090 4.795 090 4.701
6 088 5087 091 5069 090 4.869
(50,50) (80,04) By 090 2940 091 2936 096 2810
B 091 3843 092 3835 091 3814
6, 090 4780 090 4762 092 4.680
6, 092 5.044 093 5.041 091 4813
(30,30) (30,0.8) By 0.89 2950 091 2939 091 2.870
B, 0.89 3986 0.89 3964 0.89 3.901
6 090 4.841 0.89 4811 092 4.724
6, 0.88 5.101 090 5.009 091 4975
(30,30) (50,0.8) By 090 2944 093 2939 095 2.822
B 091 3852 090 3.847 0.92 3.760
6, 090 4781 090 4762 092 4.700
6, 0.80 5.061 091 5.054 090 4.832
(50,50)  (50,0.8) B 091 2942 092 2925 092 2801
B 091 3.833 091 3.828 093 3.800
6, 092 4789 091 4772 095 4.685
6 0.89 5053 093 5044 097 4827
(50,50) (80,0.8) By 093 2904 092 2902 095 2774
B 091 3803 092 3811 091 3.784
6, 092 4751 093 4746 092 4.642
6, 092 5.013 093 5.009 090 4.797

Table 5: The average of @ and MSE of w = {0.5,0.8,1.0,1.5}.

(ki,k2)  (m,m)  Pas (v (Imemey, ()memey,
(30,30)  (30,0.4) Bi 0.745 0.167 0.721 0.155 0.654 0.102
B 0982 0.199 0973 0.191 0.885 0.145
6, 1.482 0368 1472 0359 1400 0.298
6 1.824 0412 1.811 0.107 1.784 0.387
(30,30) (50,04) By 0.714  0.141  0.700 0.131  0.622  0.097
B 0954 0.171 0947 0.166 0.852 0.117
6, 1.460 0341 1451 0318 1.385 0.271
6, 1.813 0398 1.801 0399 1.764 0.359
(50,50)  (50,0.4) Bi 0.707 0.132 0.702 0.118 0.613 0.079
B 0942 0.154 0938 0.160 0.847 0.114
6, 1.440 0327 1435 0314 1366 0.258
0, 1.800 0.379 1.811 0.381 1.748  0.330
(50,50) (80,0.4) By 0.713 0.112 0.715 0.109 0.607 0.055
B 0929 0.142 0931 0.151 0.836 0.107
6, 1.427 0314 1412 0302 1351 0.224
6, 1.792 0344 1.780 0.361 1.722 0.321
(30,30)  (30,0.8) Bi 0.761 0.151 0.721 0.147 0.647 0.098
B 0977 0.181 0968 0.180 0.875 0.129
6, 1.483  0.351 1.466  0.348 1401 0.282
6 1.813 0401 1.803 0.100 1.771 0.376
(30,30) (50,0.8) By 0.698 0.130 0.701 0.125 0.614 0.078
B 0953 0.155 0942 0.147 0.808 0.103
6, 1.449 0328 1439 0322 1371 0.262
6, 1.809 0.381 1.813 0372 1.749 0.339
(50,50)  (50,0.8) Bi 0.690 0.114 0.712 0.109 0.607 0.061
B 0928 0.139 0925 0.139 0.826 0.101
6, 1.433 0314 1440 0307 1.351 0.246
6 1.785 0358 1.810 0.348 1.725 0.311
(50,50)  (80,0.8) By 0.725 0.102 0.711  0.099 0.611 0.048
B 0914 0.124 0918 0.135 0.830 0.098
6 1.418 0304 1400 0.297 1328 0.213
6, 1.760 0331 1.782 0328 1.711  0.309

0.0001}, P1 = {a1

:25b1:25a2:3;b2:2;a3:

Table 6: The PCs and ALs of @ ={0.5,0.8,1.0,1.5}.

(ki k) (mn)  Pas (ML (Imemey, (Imemcy,
PCs AlLs PCs AlLs PCs AlLs
(30,30) (30,04) B 088 1.899 090 1.875 090 1.652
B 0.87 2423 090 2415 091 2241
6, 090 3.125 090 3.001 092 2985
6 0.89 3583 0.89 3520 090 3.324
(30,30) (50,04) By 0.89 1.830 090 1.809 092 1.600
B 089 2295 090 2280 091 2.201
6, 090 2990 091 2974 092 2715
6, 091 3.501 090 3.503 094 3.280
(50,50)  (50,04) By 090 1.811 093 1.802 097 1.570
B 089 2282 090 2277 092 2.181
6, 091 2976 091 2964 092 2.680
6 091 3482 093 3491 090 3.261
(50,50) (80,04) By 092 1762 091 1.754 092 1.420
B 089 2235 092 2228 092 2127
0, 090 2944 091 2933 093 2.651
6 093 3470 090 3.465 091 3.232
(30,30)  (30,0.8) By 089 1.870 090 1.861 091 1.641
B, 087 2411 090 2402 090 2232
6, 090 3.111 090 2981 0.89 2972
6, 090 3.560 090 3.507 091 3.302
(30,30) (50,0.8) By 090 1.817 092 1.808 092 1.591
B 091 2282 090 2277 093 2.187
6, 090 2975 091 2970 092 2.702
6, 092 3485 092 3475 096 3.241
(50,50)  (50,0.8) B 091 1.790 093 1.782 097 1.539
B 091 2275 090 2262 092 2.149
6, 091 2959 091 2964 092 2.671
6 091 3470 093 3465 091 3.226
(50,50) (80,0.8) By 092 1.748 092 1.742 092 1.403
B 092 2221 095 2214 092 2112
6, 091 2925 093 2917 093 2.639
6, 093 3459 090 3449 094 3211

4, b3 = 2.5, a4 = 4, b4 = 15} and P2 = {al = 2, b] =
2, a2:3, b2:2, a3:4, b3:2.5, 614:4, b4: 15}
respectively. In the simulation study, we generate 1000
random samples of NH distribution for each sample,
compute the point and interval estimate, and the
corresponding tools. We chose the sample size (kj, k») by
(30,30) and (50,50), while m and time 1) are selected by
(30,0.4), (50,0.4), (80,0.4), (30,0.8), (50,0.8), (80, 0.8).
For MCMC approach, we run the posterior distribution
10000 times with 1000 iterations as burn-in. The results
of E(®), MSEs, PCs, and AILs of estimates are
computed and presented in Tables 3-6. Table 6 shows the
results of parameters estimation using MLEs and MCMC
methods. The results of MLEs are slightly larger than the
corresponding results of MCMC methods. Also, the
results of MCMC,,, of parameters are closer to the true
value and the corresponding MSEs decrease except for
some cases of the parameter 6,. The reason might be that
the true value of 0, is bigger than other parameters.
Hence, from Table 5, the estimation of the parameters are
closer to the true value. It is not surprising since the
parameter 3, in Table 5 is smaller than 3, in Table 3.
According to Table 3, the results of estimation, in the case
kK = 30,k = 30,m = 30,n = 0.4, are larger than the case
Kk =30,k = 30,m = 50, = 0.4, because the number of
failures increases. Also, Table 7 shows the results of PCs
and AlLs. The results of PCs using MLEs are smaller
than MCMC methods, while the results of AILs are closer
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in Table 6. Finally, as the integers m and 7, increase the
corresponding results of PCs slightly increase.

7 Conclusion

In this paper, new approach was introduced to estimate
NH distribution under joint two groups of population. The
proposed method provides knowledge concerning dealing
with different types of set data. Where, the problem of
determining the quality of the products with different
product lines under the same facility required some tests
about the product life to define the relative merits of these
products. Moreover, we considered the products whose
life is distributed with NH distribution. Then, the lifetime
data under a hybrid Type-I censored scheme was
collected to be used in the operation of statistical
inference about the unknown distribution. The theoretical
results under ML and Bayes estimation were developed
and measured with numerical computation. From the
numerical results, we can report the following results.

—The results have shown that joint Type-I HCS presents
a suitable scheme for modeling two populations.

—The results of classical MLE, as well as Bayes
estimation under population PO, are more closed to
others, since the hyper-parameters start close to the
Zero.

—The estimation results under informative priors P; and
P, are better than MLE or non-informative Byes prior
Py.

—The quality of the point and interval estimation are
better for increasing sample size k7 + k» or effecting
sample size m.

—The results perform better for the large value of
censoring time 1.

—The results showed that the proposed methods are
more valid for different model parameters and
suitable for joint different populations.
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