
Appl. Math. Inf. Sci. 15, No. 5, 547-553 (2021) 547

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/150502

On the Numerical Solution of the Nonlocal Elliptic

Problem With a p-Kirchhoff-Type Term

M. S. Daoussa Haggar1 and M. Mbehou2,∗

1Department of Mathematics, University of Ndjamena, Chad
2Department of Mathematics, University of Yaounde I, Yaounde, Cameroon

Received: 7 Dec. 2020, Revised: 2 Jun. 2021, Accepted: 12 Jul. 2021

Published online: 1 Sep. 2021

Abstract: This work is devoted to the study of the finite element method for a class of nonlocal elliptic problems associated with p-

Kirchhoff-type operator. The convergence and a priori error estimates for the discrete formulation are established. Moreover, the finite

element formulation is nonlinear, it can then be solved by Newton-Raphson’s iterative but the main issue is that the Jacobian matrix

of the Newton-Raphson method is full due to the presence of the nonlocal term thereby making computation expensive. To avoid this

difficulty, the new formulation whose Jacobian matrix is sparse is given. Finally, the predictions observed theoretically are validated by

means of numerical experiments.
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1 Introduction

Let Ω be a bounded open subset in R
d , d = 2,3 with

smooth boundary ∂Ω . Consider the following problem
with nonlocal nonlinearity:

{

−a(‖∇u‖p
p)∆pu = f in Ω ,

u = 0 on ∂Ω ,
(1)

where ∆p is the p-Laplace operator:

∆pu = div(|∇u|p−2∇u)

and ‖ · ‖p denotes the Lp-norm, 1 < p < ∞. The functions
a(·) and f are given functions and will be defined in the
next section. Due to the presence of an integral over Ω in
(1), the equation is not pointwise identity and therefore is
called a nonlocal problem.
The boundary value problem (1) is the stationary version
of the problem











ut − a(‖∇u‖p
p)∆pu = f in Ω × (0,T ) ,

u(x, t) = 0 on ∂Ω × (0,T ) ,

u(x,0) = u0(x) in Ω .

(2)

During the past few years, there has been active ongoing
research on the study of problems associated with the
p-Laplace operator, which appears in a variety of physical
fields (see for instance [1–3]). In particular, a lot of
attention has been devoted to nonlocal problems. One of
the justifications of such models lies in the fact that in
reality the measurements are not made pointwise but
through some local average. Some interesting features of
nonlocal problems and more motivation are described
in [4–7] and in the references therein. There are also some
closed problems solved by the folowing authors [8–10].
In the literature, the focus has been on proving
well-posedness of the solution. In [11, 12], Correa and
Nascimento have established existence results by
considering several classes of a and f of the following
elliptic problems

{

−a(‖∇u‖p
p)∆pu = f (x,u) in Ω ,

u = 0 on ∂Ω .
(3)

Chipot and Savitska [13] have discussed the existence and
uniqueness of solutions for problem (2) and also the
asymptotic behavior of the solution for large time. They
have also investigated the stationary case (1).
However, there are few studies on the numerical solution
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of such problems which are focused in the case p = 2.
In [14], Kumar and Kumar studied the finite element
method for problem (3). Peradze [15] proposed and
analyzed the spectral method for one-dimensional
Kirchhoff string problem.
This paper is concerned with the finite element method
for solving the problem (1) with p ∈ (1,∞). Since the
resultant formulation leads to a system of nonlinear
problem, a new formulation is presented. Optimal error
estimates are also discussed. The layout of this paper is as
follows: In Section 2, the finite element formulation and
error analysis of the problem are discussed. Section 3
deals with the new reformulation which is an equivalent
problem and some numerical results to illustrate our
theoretical analysis.

2 Finite element approximation and error

analysis

2.1 Variational formulation

Throughout this paper, W m,p(Ω) is the usual Sobolev
space ( m ∈ N and 1 < p ≤ ∞) with norm ‖ · ‖m,p.

W
m,p
0 (Ω) is the closure of C ∞

0 (Ω) in W m,p(Ω).
W−m,q(Ω) denote the topological dual space of W

m,p
0 (Ω)

where q is the conjugate of p. That is 1
p
+ 1

q
= 1. For

notions on Sobolev spaces, we refer to [16, 17].
Let us consider problem (1) under the following
hypotheses.

f ∈W−1,q(Ω),
1

p
+

1

q
= 1, 1 < p < ∞. (4)

a is continuous and there exists m; M, 0 < m ≤ a(s)≤ M for all s ∈ R. (5)

a is increasing. (6)

Lemma 1.If a is increasing then

s > 0 7→ a(sp)sp−1 is increasing. (7)

Proof. Let s1, s2 ∈R
+ such that s1 < s2

a(sp
2)s

p−1
2 −a(sp

1)s
p−1
1 = s

p
2 (a(s

p
2)−a(sp

1))+a(sp
1)(s

p−1
2 − s

p−1
1 )≥ 0.

A weak formulation for (1) reads as follows: Find u ∈V ≡

W
1,p
0 (Ω) such that

a(‖∇u‖p
p)

∫

Ω
|∇u|p−2∇u ·∇vdx = 〈 f ,v〉 ∀v ∈V, (8)

where 〈·, ·〉 denotes the pairing between W−1,q(Ω) and
W 1,p(Ω).
Chipot & Saviska [13] proved the following result.

Theorem 1.Suppose that (4), (5) and (7) hold. Then

problem (8) admits a unique solution and there exists a

constant C > 0 such that

‖∇u‖p ≤C.

Let Th be a regular triangulation of Ω with elements K, in
following classical finite element method theory [18, 19].
Thus let h = maxK∈Th

{hK} denote the mesh size, where
hK = diam(K) = max{‖x− y‖, x, y ∈ K}, and Sh be the

finite dimensional subspace of C(Ω ), which consists of
piecewise polynomials of degree one on Th.

Vh = {vh ∈ Sh, vh = 0 on ∂Ω}.

Let Πh : C(Ω)→ Sh be an interpolation operator. Then we
have the following lemma.

Lemma 2(cf. Ref. [18]). For m ∈ {0,1},

(a) for q,s ∈ [1,∞], provided W 2,s(Ω)⊂W m,q(Ω)

‖w−Πhw‖m,q ≤Ch2−m+d(1/q−1/s)‖w‖2,s ∀w ∈W
2,s
0 (Ω),

(9)

(b) for q > d

‖w−Πhw‖m,q ≤Ch1−m‖w‖1,q ∀w ∈W
1,q
0 (Ω), (10)

where C is a positive constant that does not depend on h.

The finite element approximation associated to problem
(8) is as follows.
Find uh ∈Vh such that

a(‖∇uh‖
p
p)

∫

Ω
|∇uh|

p−2∇uh ·∇vhdx = 〈 f ,vh〉 ∀vh ∈Vh.

(11)

Lemma 3.Problem (11) admits a unique solution uh ∈ Vh

which satisfies:

‖∇uh‖p ≤C, (12)

where C is a constant which does not depend on h.

The following lemmas will be useful throughout this work.

Lemma 4(cf. Ref. [20, 21]). For all p ∈ (1,∞) and τ ≥
0, there exists positive constants C1 = C1(p,d) and C2 =
C2(p,d) such that for all ξ , η ∈ R

d with d ≥ 1 we have

||ξ |p−2ξ −|η|p−2η| ≤C1|ξ −η|1−τ (|ξ |+ |η|)p−2+τ , (13)

(|ξ |p−2ξ −|η|p−2η) · (ξ −η) ≥C2|ξ −η|2+τ (|ξ |+ |η|)p−2−τ .
(14)

Lemma 5(cf. Ref. [21]). For all p ∈ (1,∞) there exists and

ε0 such that for all x,y,z ≥ 0 and for all ε ∈ (0,ε0)

(x+y)p−2yz ≤ ε(x+y)p−2y2+C(ε−1)(x+z)p−2z2. (15)

Lemma 6(cf. Ref. [13]). Let a,b be the nonnegative

numbers. Then for all p ∈ (1,∞),

|ap − bp| ≤ p|a− b|(a+ b)p−1.
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Lemma 7.For all p ∈ (1,∞) and for all ξ ,η ∈R
d ,

|η |p ≥ |ξ |p + p|ξ |p−2ξ · (η − ξ ), (16)

1

2
(|η |+ |ξ |)≤ (|η − ξ |+ |ξ |)≤ 2(|η |+ |ξ |). (17)

Remark.As consequence of relation (17), we have

K1(|η |+ |ξ |)p−2 ≤ (|η −ξ |+ |ξ |)p−2 ≤ K2(|η |+ |ξ |)p−2,
(18)

where

K1 =

{

2p−2 if 1 < p < 2

( 1
2
)p−2 if p ≥ 2

and K2 =

{

( 1
2
)p−2 if 1 < p < 2

2p−2 if p ≥ 2.
(19)

We will also assume that

a is Lipschitz continuous with the Lipschitz constantL.
(20)

2.2 Error analysis

In this section, we present one of the main results of this
paper.

Theorem 2(Convergence rate). Assume that the

hypotheses (4)-(6) and (20) hold. Let u be the unique

solution of problem (8) and uh the unique solution of

problem (11). Then there exists a positive constant C

which does not depend on h such that:

(a) if p ∈ (1,2) and u ∈W 2,p(Ω), then

‖u− uh‖
2
1,p ≤Chp. (21)

(b) If p ∈ [2,∞) and u ∈W 2,p(Ω)∩W 1,∞(Ω), then

‖u− uh‖
p
1,p ≤Ch2. (22)

To prove Theorem 2, the following lemma will be useful.

Lemma 8.Assume that the hypotheses (4)-(6) and (20)

hold. Let u be the unique solution of problem (8) and uh

the unique solution of problem (11). Then there exists a

positive constant C which does not depend on h such that

for any vh ∈Vh

∫

Ω
(|∇u|+ |∇(u− uh)|)

p−2|∇(u− uh)|
2dx ≤ (23)

C

{

∫

Ω
(|∇u|+ |∇(u− vh)|)

p−2|∇(u− vh)|
2dx +‖∇(u− vh)‖

2
p

}

.

Proof. Let us denote u− uh by E = u− uh ≡ (u− vh) +
(vh − uh) for all vh ∈ vh, from (8) and (11), we have

a(‖∇uh‖
p
p)

∫

Ω
(|∇u|p−2∇u−|∇uh |

p−2∇uh) ·∇Edx

+(a(‖∇u‖p
p)−a(‖∇uh‖

p
p))

∫

Ω
|∇u|p−2∇u ·∇Edx

= a(‖∇uh‖
p
p)

∫

Ω
(|∇u|p−2∇u−|∇uh |

p−2∇uh) ·∇(u− vh)dx

+(a(‖∇u‖p
p)−a(‖∇uh‖

p
p))

∫

Ω
|∇u|p−2∇u ·∇(u− vh)dx

+a(‖∇u‖p
p)

∫

Ω
|∇u|p−2∇u ·∇(vh −uh)dx (24)

−a(‖∇uh‖
p
p)

∫

Ω
|∇uh|

p−2∇uh ·∇(vh −uh)dx

= a(‖∇uh‖
p
p)

∫

Ω
(|∇u|p−2∇u−|∇uh |

p−2∇uh) ·∇(u− vh)dx

+(a(‖∇u‖p
p)−a(‖∇uh‖

p
p))

∫

Ω
|∇u|p−2∇u ·∇(u− vh)dx.

Applying the lower bound of a(·) (5), the relation (14) with
τ = 0 and the relation (17), we obtain

a(‖∇uh‖
p
p)

∫

Ω
(|∇u|p−2∇u−|∇uh|

p−2∇uh) ·∇Edx

≥ mC2K1

∫

Ω
(|∇u|+ |∇E|)p−2|∇E|2dx.

On the other hand, by the relation (16),

1

p
(‖∇u‖p

p −‖∇uh‖p
p)≤

∫

Ω
|∇u|p−2∇u ·∇Edx. (25)

Since a(·) is increasing, without loss of generality, we
assume that (a(‖∇u‖p

p) − a(‖∇uh‖p
p)) ≥ 0 (if

(a(‖∇u‖p
p)− a(‖∇uh‖p

p)) ≤ 0, we interchange the role of

u and uh), then

0 ≤
1

p
(a(‖∇u‖p

p)− a(‖∇uh‖p
p))(‖∇u‖p

p −‖∇uh‖p
p)

≤ (a(‖∇u‖p
p)− a(‖∇uh‖p

p))

∫

Ω
|∇u|p−2∇u ·∇Edx.

Therefore, the left hand side of (24) is lower bounded by

LHS ≥ mC2K1

∫

Ω
(|∇u|+ |∇E|)p−2|∇E|2dx. (26)

Using the upper bound of a(·) (5), the relation (13) with
τ = 0 the relation (17)and Lemma 5

a(‖∇uh‖p
p)

∫

Ω
(|∇u|p−2∇u−|∇uh |p−2∇uh) ·∇(u− vh)dx

≤ MC1K2

∫

Ω
(|∇u|+ |∇E|)p−2|∇E||∇(u− vh)|dx

≤ MC1K2ε

∫

Ω
(|∇u|+ |∇E|)p−2 |∇E|2dx (27)

+MC1K2C(ε−1)

∫

Ω
(|∇u|+ |∇(u− vh)|)p−2|∇(u− vh)|2dx.
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By the Lipschitz continuity of a(·) and Holder’s inequality,

(a(‖∇u‖p
p)− a(‖∇uh‖p

p))

∫

Ω
|∇u|p−2∇u ·∇(u− vh)dx

≤ L|‖∇u‖p
p −‖∇uh‖p

p|‖∇u‖p−1
p ‖∇(u− vh)‖p

≤ L(

∫

Ω
||∇u|p −|∇uh|p|dx)‖∇u‖p−1

p ‖∇(u− vh)‖p (28)

≤ pL(

∫

Ω
(|∇u|+ |∇uh|)p−1|∇E|dx)‖∇u‖p−1

p ‖∇(u− vh)‖p

≤ pL

(

∫

Ω
(|∇u|+ |∇uh|)pdx

)1/2

× (

∫

Ω
(|∇u|+ |∇uh|)p−2|∇E|2dx)1/2‖∇u‖p−1

p ‖∇(u− vh)‖p

≤ K
1/2

2 pL

(

∫

Ω
(|∇u|+ |∇uh|)pdx

)1/2

(
∫

Ω
(|∇u|+ |∇E|)p−2|∇E|2dx)1/2‖∇u‖p−1

p ‖∇(u− vh)‖p

≤
mC2K1

2

∫

Ω
(|∇u|+ |∇E|)p−2|∇E|2dx

+C(‖∇u‖2
p + ‖∇uh‖2

p)‖∇u‖2p−2
p ‖∇(u− vh)‖2

p.

Combining (27) and (28) the right hand side of (24) can be
bounded as follows

RHS ≤ (MC1K2ε +
mC2K1

2
)
∫

Ω
(|∇u|+ |∇E|)p−2|∇E|2dx

+MC1K2C(ε−1)

∫

Ω
(|∇u|+ |∇(u− vh)|)p−2|∇(u− vh)|2dx

(29)

+C(‖∇u‖2
p+ ‖∇uh‖2

p)‖∇u‖2p−2
p ‖∇(u− vh)‖2

p.

From (26) and (29), with appropriate choice of ε , we end
up with

∫

Ω
(|∇u|+ |∇E|)p−2|∇E|2dx (30)

≤C

∫

Ω
(|∇u|+ |∇(u− vh)|)p−2|∇(u− vh)|2dx

+C(‖∇u‖2
p+ ‖∇uh‖2

p)‖∇u‖2p−2
p ‖∇(u− vh)‖2

p.

Proof of Theorem 2. Taking vh = Πhu in (23), we have

∫

Ω
(|∇u|+ |∇(u− uh)|)

p−2|∇(u− uh)|
2dx

≤C

{

∫

Ω
(|∇u|+ |∇(u−Πhu)|)p−2|∇(u−Πhu)|2dx

(31)

+‖∇(u−Πhu)‖2
p

}

.

For the case p ∈ (1,2), we proceed as follows.

∫

Ω
(|∇u|+ |∇(u−Πhu)|)p−2|∇(u−Πhu)|2dx

≤
∫

Ω
|∇(u−Πhu)|pdx = ‖∇(u−Πhu)‖p

p. (32)

‖∇(u−uh)‖
2
p =

(

∫

Ω
|∇(u−uh)|

pdx

)2/p

=

(

∫

Ω
(|∇u|+ |∇E|)(2−p)p/2(|∇u|+ |∇E|)(p−2)p/2|∇E|pdx

)2/p

≤

(

(

∫

Ω
(|∇u|+ |∇E|)pdx)(2−p)/2(

∫

Ω
(|∇u|+ |∇E|)p−2|∇E|2dx

)p/2

)2/p

≤C(‖∇u‖p,‖∇uh‖p)

∫

Ω
(|∇u|+ |∇E|)p−2|∇E|2dx. (33)

Combining (32) and (33) and using (31), we arrive at

‖∇(u− uh)‖
2
p ≤C(‖∇(u−Πhu)‖p

p + ‖∇(u−Πhu)‖2
p)

and we conclude the error bound (21) by Lemma 2.
In the case p ∈ [2,∞),

∫

Ω
|∇(u− uh)|

pdx ≤
∫

Ω
(|∇u|+ |∇E|)p−2|∇E|2dx, (34)

and
∫

Ω
(|∇u|+ |∇(u−Πhu)|)p−2|∇(u−Πhu)|2dx (35)

≤C(‖∇u‖p)(‖∇(u−Πhu)‖2 + ‖∇(u−Πhu)‖p
p).

Again combining (34) and (35) and using (31), we arrive
at

‖∇(u− uh)‖
p
p ≤C(‖∇(u−Πhu)‖2 + ‖∇(u−Πhu)‖p

p)

and the desired estimated (22) follows immediately by
applying Lemma 2.

3 Numerical method

3.1 Nonlinear iterative process

Let Np be the dimension and {ϕ j}
Np

j=1 the canonical basis

of Vh associated with the nodes of Th. The solution uh ∈Vh

of problem (11) can be written as

uh =
Np

∑
j=1

U jϕ j,

where U j are degrees of freedom.
When this expression is substitute into (11), we obtain the
following nonlinear algebraic problem: Find the vector
U = [U1, · · ·,UNp ] which satisfies the system of Np

nonlinear equations

A(U) = F, (36)

where the entries Ai(U) and Fi are given by

Ai(U) = a(‖∇uh‖
p
p)

∫

Ω
|∇uh |

p−2∇uh·∇ϕidx and Fi = 〈 f ,ϕi〉, 1 ≤ i ≤ Np.

The nonlinear system (36) is generally large sized and
hence it is important to develop efficient iterative methods
for its numerical solution [22]. It is known that the
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Newton-Raphson iterative method is attractive for solving
nonlinear algebraic equations since it is fast convergent,
achieves the desired tolerance in a small number of
iterations, and thus preserves the finite element order of
convergence. But using Newton’s method directly to
solve (36), the sparsity of Jacobian matrices is lost due to
the presence of nonlocal term in the equation. Indeed, any
element of the Jacobian matrix JA takes the form

∂Ai

∂U j
(uh) = p/2a′(‖∇uh‖

p
p)

×

(

∫

Ω
|∇uh|

p−2∇uh·∇ϕ jdx

)(

∫

Ω
|∇uh|

p−2∇uh·∇ϕidx

)

+a(‖∇uh‖
p
p)

{

(p−2)/2

∫

Ω
|∇uh|

p−4(∇uh·∇ϕ j)(∇uh·∇ϕi)dx

+1/2

∫

Ω
|∇uh|

p−2∇ϕ j·∇ϕidx

}

and from the first term of the equation above, the sparsity
of the Jacobian matrix is lost (see also Figure 1). To avoid
this lost, we adopt and extend the technique presented in
[23].
The modified method is defined as follows: find x ∈R and
uh ∈Vh such that

{

‖∇uh‖
p
p − x = 0, ∀vh ∈Vh

a(x)
∫

Ω |∇uh|
p−2∇uh·∇vh dx = 〈 f ,vh〉.

(37)

Problem (37) can be written in the following nonlinear
system

B(U,x) = b, (38)

where

Bi(uh,x) = a(x)
∫

Ω
|∇uh|

p−2∇uh·∇ϕi dx, bi = 〈 f ,ϕi〉,

BNp+1(uh,x) = ‖∇uh‖
p
p − x and bNp+1 = 0 1 ≤ i ≤ Np.

To see the sparsity of the Jacobian matrix JB(U) for (38),
we define

Si j :=
∂Bi

∂U j

(uh,x) =

a(x)

{

(p− 2)/2

∫

Ω
|∇uh|

p−4(∇uh·∇ϕ j)(∇uh·∇ϕi)dx

+1/2

∫

Ω
|∇uh|

p−2∇ϕ j ·∇ϕidx

}

(39)

Ci1 :=
∂Bi

∂x
(uh,x) = a′(x)

∫

Ω
|∇uh|

p−2∇uh·∇ϕi dx, (40)

D1 j :=
∂BNp+1

∂U j

(uh,x) = p/2

∫

Ω
|∇uh|

p−2∇uh·∇ϕ j dx,

(41)

δ11 :=
∂BNp+1

∂x
(uh,x) =−1 1 ≤ i, j ≤ Np. (42)

Table 1: Convergence results for p = 1.5 and p = 3 respectively

p = 1.5 p = 3

h ‖u−uh‖1,r Rate ‖u−uh‖1,r Rate

1/5 3.907e-3 9.742e-3

1/10 2.403e-3 0.70 6.571e-3 0.57

1/15 1.804e-3 0.71 5.103e-3 0.62

1/20 1.454e-3 0.74 4.204e-3 0.67

1/25 1.234e-3 0.73 3.657e-3 0.63

Therefore, JB(U) takes the form

JB(U) :=

(

S C

D −1

)

,

where S = (Si j)1≤i, j≤Np is sparse and C = (Ci1)1≤i≤Np ,

D = (D1 j)1≤ j≤Np are full.
The following result which establishes the relation
between (11) and (37) can easily be proven.

Theorem 3. If (uh,x) is a solution of (37), then uh is a

solution to (11). Conversely, If uh is a solution of (11), then

(uh,‖∇uh‖
p
p) is a solution of (37).

3.2 Numerical tests

We perform numerical experiments with known exact
solution in order to check the convergence rate of the
method. We solve the problem (1) in Ω = (0,1)2 and
specify the right hand side according to the exact solution
u(x,y) = xy(1 − x)(1 − y). The numerical convergence
rate is computed by solving (37) using first order
(P1-FEM) Lagrange polynomials on a sequence of
uniform meshes with parameter
h = 1/5, 1/10, 1/15, 1/20, 1/25. The error has been

calculated using the W
1,p
0 -norm. As expected Table 1

shows the convergence rate of 0.7 ≈ 3/4 for
p = 3/2 ∈ (1,2) and also shows the convergence rate of
0.6 ≈ 2/3 for p = 3 ∈ (2,∞) which are in accordance
with the theoretical analysis.
Figure 1 shows the graphical representation of the
Jacobian matrices JA and JB respectively for
h = 1/10, 1/15. In these figures, the numbers on the
vertical and horizontal lines represent the row and column
numbers of the Jacobian matrix respectively. The number
nz denotes the number of nonzero elements.
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Fig. 1: Jacobian matrices JA and JB respectively.

4 Conclusion

A finite element method for a class of nonlinear nonlocal
diffusion problems associated with p-Kirchhoff-type
operator was presented. From the observation that the
Jacobian matrix for the corresponding nonlinear system is
full, the new equivalent problem whose Jacobian matrix is
sparse was proposed. The numerical experiments have
supported the theoretically obtained result. Finally, it is
worth pointing out that the techniques used in this article
might be applicable to other problems.
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