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Abstract: In this paper, we consider a depleted stationary diffusion layer adjacent to the ion-exchange membrane. The 
main goal is to study the structure of the diffusion layer over time. A one-dimensional non-stationary mathematical model 
of the transport of a binary electrolyte in a diffusion layer in a potentiostatic mode is investigated using the Nernst-Planck 
and Poisson equations. For the first time, it is shown that the left boundary of the space charge region is established 
quickly, approaching a certain straight line  asymptotically. Using this fact, a new asymptotic solution is 
constructed. The original feature of the proposed asymptotic method is that it is based not only on asymptotic 
simplifications in the equations, but also on replacing the exact description of the structure of the diffusion layer with an 
approximate one. 
Keywords: Мathematical modeling, Diffusion layer, Ion-exchange membrane, Nernst-Planck-Poisson equations, 
Asymptotic solution. 
 
 
 

1 Introduction  

In 1947, Levich determined that when a prelimiting current 
fluxes through the electrode/solution system, the entire 
solution region can be divided into two regions: the 
electroneutrality region and the space charge region. The 
next step was taken by Rubinstein and Shtilman in [1], in 
which they theoretically described the process of 
transporting binary electrolyte ions through a diffusion 
layer near the ion exchange membrane using the Nernst-
Planck equations, and the Poisson equation (NPP), which 
sets the ratio between the local electric potential and the ion 
concentration. This work became the basis for further 
researches [2-7], developing the idea of the role of the 
space charge in the formation of «overlimiting current». 
The boundary value problems associated with the NPP 
equations are difficult to solve numerically, because a small 
parameter is present in the Poisson equation in 
dimensionless form (with natural normalization) [8]. 
Articles [9-10] are devoted to the study of non-stationary 
problems. In these works, the main attention is paid to the 
overlimiting potentiodynamic mode and the analysis of the 
time of establishing a stationary mode depending on the 
parameters of the problems. In studies [11-13], the authors 

obtained asymptotic solutions to the problem when using 
prelimiting currents in the stationary case. In this paper, a 
new asymptotic solution of the non-stationary problem is 
obtained. It is based on a simplified representation of the 
structure of the boundary layer of the cation-exchange 
membrane (CEM). This approach for solving this problem 
allows you to significantly reduce the computational 
complexity of the solution, and for an arbitrarily small 
parameter value. 

In study [14], the mechanism of transport of NaCl 
ions in the boundary layer of the ion-exchange membrane is 
studied, considering the reaction of water dissociation and 
the effects of concentration polarization. Articles [15-19] 
addresses the main mechanism of excessive transport of salt 
ions in ion-exchange membrane systems in dilute solutions. 
Scientific investigation [20] is devoted to the mathematical 
description of the transport of salt ions and ions (

) using the Nernst-Planck and Poisson model, which 
considers the deviation from local electroneutrality in a 
depleted diffusion boundary layer. 
With increasing current density, energy costs increase. 
However, in the mode of overlimiting current, there are 
phenomena that do not occur at low current densities. The 
main phenomena that occur when using currents exceeding 

constxc =

+H
-OH



 412                                                                                                                             Gudza V. A et al: Numerical and asymptotic Study of …  
 

 
 
© 2021 NSP 
Natural Sciences Publishing Cor. 
 

the limiting currents ( ) are electro convection [21-
25] and water splitting [26-29]. The study [30] generalizes 
various phenomena that can occur during the transport of 
multivalent ions through cation-exchange membranes under 
conditions of intense concentration polarization and 
identifies the main factors that affect these phenomena. 

Scientific articles [31-35] are devoted to the 
development of mathematical models for the potentiostatic 
mode, where the electric mode is set via a potential 
difference between two equipotential planes covering the 
electrode/membrane. 

The development of the diffusion layer theory and 
the determination of its parameters are of great interest for 
understanding transport processes in heterogeneous systems 
and for engineering calculations [36]. 

 
2 Problem Statements 
 

A non-stationary one-dimensional mathematical model of 
binary electrolyte mass transport is described by the 
following equations in dimensional form [37, 38]: 
 

,                                                      

                                                                            (1)
 

                                                                          

                                                                            (2) 

,
          

                                              

                                                                               (3) 

Equation (2) – Poisson equation for electric field 
potential, equations (1) and (3) are Nernst-Planck 
equations: (1) – material balance equations, (3) – equation 
of fluxes of sodium ions  at  and chlorine  at 

, charge numbers of cations  and anions 

,  – permittivity of the solution,  – Faraday 
number,  – universal gas constant,  – solution 

temperature,  – potential,  – electric 

field strength, , ,  – concentration, flux, 
diffusion coefficient of the i-th ion. 

Let's assume that  – a space variable, and 
 – corresponds to the core of the flux (the depth of 

the solution), and  – the conditional interphase 
boundary "solution/CEM ",  – time (Fig.1a): 

 

 
 
 

 
 

 
 
Fig.1: a) scheme of the diffusion layer (scale may vary), b) 
and c) plots of the function . 

 
In Figure 1, region I is the electroneutrality region, region II 
is the space charge region (the boundary layer near CEM). 
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The width of region II at  is 0 and increases over 

time to a value , where . 
The curvilinear boundary of the region between regions I 
and II for the construction of an asymptotic solution is 
further approximated by a straight line , which is 
shown as a dotted line in Figure 1. Figures 1b and 1c show 
graphs  near the diffusion layer that confirm the 
scheme of Figure 1a. 

For certainty, we will consider the membrane to be 
ideally selective cation-exchange. The concentration of ions 
in the depth of the solution is considered constant. For the 
right border ( ), a constant value is set for cations, 
determined by the exchange capacity of the CEM, and for 
anions, the condition of impermeability (ideal selectivity) is 
set. The potential jump  is 
considered constant, independent of time (potentiostatic 
mode). In the depth of the solution ( ), the 
electroneutrality condition is considered fulfilled, and the 
potential value is assumed to be zero. Let's take the initial 
conditions as coinciding with the conditions on the left 
border ( ). Thus, the boundary conditions have the 
form: 

For : 
 

,   ,                                                                           
                                                                                          (4)

 For : 
,   

 
,
   

                                           

(5) 
For : 

,   ,   ,                                                 
(6) 

where  is the concentration of sodium ions on the 
membrane. 
 
3 Method and Algorithm of Solution 
 

3.1 Results of Numerical Analysis 
 

The numerical solution of problem (1-6) was carried out by 
the finite element method in the COMSOL Multiphysics 
5.5 environment using the Chemical Species Transport, 
Classical PDEs (from Mathematics) modules and their 
submodules Transport of Diluted Species, Poisson's 
Equation. During the study, many calculations were carried 
out with various parameter values. Below, for certainty, are 
the results of calculations for typical values of the potential 

, concentration of sodium ions 

at  and , at  seconds 

in increments of  seconds. The other parameters are 
well-known and taken from the reference list. 
 

Figure 2a show that CEM has an area of rapid change in 
concentration, and there is a border layer near the border 

. Thickness of the border layer increases and 
stabilizes over time, which is associated with the release of 
the cation transport process to a stationary mode. Time to 
enter stationary mode with an error of 1% is 4 seconds for 
the selected parameters. The maximum thickness of the 
border layer is approximately . The 
concentration distribution outside the border layer becomes 
linear fairly quickly (4 seconds). The distribution of anion 
concentrations (Fig. 2b) also becomes linear over time and 
constantly remains equal to the concentration of cations 
with great accuracy everywhere ( ) 

except in the border layer, where . 
Therefore, the boundary layer is a space charge region, and 
outside the boundary layer, the local electroneutrality 
condition is fulfilled with great accuracy. 
Plots of the electric field strength and cation flux are shown 
in Figure 3. 
The plot of the electric field strength (Fig. 3a) is convex 
and the values of the strength increase  slowly in the 
region of electroneutrality from the values of the order 

 and then sharply in the region of space charge, 

reaching values of the order . The flux  (Fig. 
3b) is an increasing function that gradually approaches a 
constant value. As time increases, the flux values  
gradually become zero. 
3.2 The Construction of Asymptotic Solutions. 
Transition to a Dimensionless Form 

To switch to a dimensionless form, use the 
following characteristic values:  – channel width, which 

can vary from  to ,  – 

thermal potential,  – concentration, which can vary from 

 to ,  – 

limiting diffusion current,  – Debay length. 
Using the following transition formulas to a 

dimensionless view [38]: 
 
 
 
 

 
 

0=t
cxH - ee lnHHxc +=

cxx =

21 CC -

Hx =

jjj rttH D=- ),0(),(

0=x

0=x

0=x
( ) 01 ,0 СtС = ( ) 02 ,0 CtС = ( ) 0,0 =tj

Hx =
( ) mCtHС 11 , =

0),(22
0

2 =÷÷
ø

ö
çç
è

æ
-

¶
¶ tHEСz

RT
F

x
C ( ) jj rtH D=,

0=t
( ) )(0, 01 xСxС = ( ) )(0, 02 xСxС = ( ) 00, =xj

mC1

VtH r 1.0),( -=D= jj
0=х 3

10 /1.0 mmolC = 100 ££ t
1.0

Hx =

m6105 -×

),(),( 21 xtCxtС =
),(),( 21 xtCxtС >>

t

22 /10 mV
25 /10 mV 1j

2j

H

m3105.0 -× m3105 -×
F
RT

=0j

0С
33 /10 mmol- 3/10 mmol

H
FCDI 00

lim
2

=

Dl



 414                                                                                                                             Gudza V. A et al: Numerical and asymptotic Study of …  
 

 
 
© 2021 NSP 
Natural Sciences Publishing Cor. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

,  ,  ,  ,  

,  ,
 

,  ,  ,

,   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,   

 
we obtain a system of one-dimensional non-stationary 
Nernst-Planck and Poisson equations in dimensionless form 
(the index "u" is omitted for simplicity of writing): 

,   
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    a) 

 
       b) 

Fig. 2: Concentration profiles: a) cations, b) anions. 

 
     a) 

 
       b) 

Fig. 3: a) electric field strength , b)  flux graph. 
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,
   

 
                      

(8) 

,                               (9) 

 
Boundary conditions in dimensionless form: 
For

 
: 

,  ,  
 For :

 
  ,              ,

  

 
The initial conditions for : 

,  ,   
 
3.3 The Application of the Method of Boundary 
Layer Functions 
 

The structure of the diffusion layer (region II) is shown in 
Figure 1. This drawing shows that the entire left boundary 
of the space charge region is curved. It must be determined 
during the splicing of asymptotic solutions. However, 
Figures 2a and 3a show that this boundary can be 
approximated with great accuracy by a vertical asymptote. 
In this regard, the vertical asymptote can be taken as the left 
boundary of the quasi-equilibrium region with high 
accuracy . Thus, for an asymptotic solution, we 

assume that the region  in 
the prelimiting case is approximately divided into two 
rectangular subdomains after the transition to the 
dimensionless form. From the numerical solution, it follows 
that in the region of the boundary layer, the solution does 
not depend on the current density, so this region can be 
considered a quasi-equilibrium region. In region I, the 
electroneutrality condition is met with great accuracy, so 
this region can be considered an electroneutrality region. 

From the numerical results obtained, it follows that 
an approximate analytical solution can be found by the 
method of boundary-layer functions [39]. Obviously, this 
method will give a poor approximation to the solution in 
the vicinity of the curved boundary. At the same time, as 
will be shown below, it will give a fairly accurate 
approximation in the rest of the area. 

We will look for a solution in the form of the sum 
of the regular and border layer parts. Moreover, , 

, : 

 

               (10) 

 

where , ,  is the regular part, and 

, ,  are border-layer 

functions [39]. 
In the future, we will substitute the representation 

(10) in equations (7)-(9) and perform transformations 
according to the method of border-layer functions  
a) Transformation of equation (9) according to the method 
of boundary layer functions: 

,      

or 

,     

 We equate the regular and border layer functions separately 
on the left and right with the same degrees of small 
parameter: 

,    
 

,    
 

Where, given , we get  

b) Transformation of equation (4) according to the method 
of boundary layer functions: 

,  
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c) Transformation Poisson equation (5) according to the 
method of boundary layer functions: 

 

 

After the completed transformations, we write the equations 
for regular functions: 

,                            

(11) 

                       (12) 

,          (13) 

and for border-layer functions: 
,
  

             (14) 

,  

              (15)
 3.4 Solving a System of Equations for Regular 

Functions 
To solve the system of equations (11-13), we express the 
flux from (11) and substitute it in (13). Then we get: 

                     

(16) 

Furthermore, we divide the first equation (16) for , by 

, and the second, for , by  and add them. 

Then, considering (12), we obtain for  the 
well-known convective diffusion equation [4]: 

                                   (17) 

where  is the diffusion coefficient of the 

electrolyte. 
For further calculations, we will introduce a new 

function . 

To get an equation for the electric field strength, 

multiply the first equation (8) by , and the second by , 
and sum them. Then considering (12), we get the transport 
equation for the electric field strength. Integrating this 
equation by , we get: 

 

We integrate the resulting equation again from 0 to 
an arbitrary point . Then, considering the boundary 
conditions for , we obtain: 

 

Similarly, we get 

 

 
Where ,  are functions arising from 

integration over a variable . Using boundary conditions 

for , it is easy to find . 

3.5 Solving a System of Equations for Boundary 
Layer Functions 
Put 

    

 Then, from (14-15), we get a system of equations: 

                            (18) 
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Suppose , then we get: 

 

Integrating this equation, we find 

 

where the constant  is defined from the boundary 
condition. Find the function  by integrating this 
equation: 

 

Then we find  and : 

 

 
 
3.6 The Representation of the Solution as a Sum 
of Regular and Boundary Layer Parts 
 

Summing up the results described in paragraphs 3.3 and 
3.4, we get a general view of the asymptotic solution: 

 

 

 

 

 

The resulting representations are unknown ,  and the 

boundary value is unknown: . To find them, it is 

enough to solve the boundary value problem for  

and then determine  and . To determine the constants 

 and , we will use the boundary conditions. Then, 
after a series of transformations, we get:

 

               (19) 

                                                                                       (20) 

It follows from these equations that if  and 

 do not depend on , then  does not depend 
on . Paragraph 3.6 describes the algorithm for searching 

for unknowns ,  and . 
 

3.7 Algorithm for Numerical Implementation of 
an Asymptotic Solution 
 

To find an asymptotic solution, it is substantial to solve the 
system of equations (19-20) with respect to  and 

. This system of equations does not have an exact 
analytical solution, so it is necessary to use approximate 
methods that are stable with respect to rounding errors. As 
such, a combination of the method of dividing a segment in 
half and successive approximations is proposed, similar to 
the method [31]. 
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The numerical solution algorithm can be divided 
into the following stages: 

1) select a segment  so that . 

2) define  

3) from equation (16), we define : 

 

where  is the 

coefficient of relative reduction of the boundary 
concentration taking into account the space charge to the 
boundary concentration with the condition of 
electroneutrality 
4) solve the boundary value problem: 

                                  (21)
 

                                      (22) 

                                (23)
 

                                    (24) 
This problem can be solved by the Fourier method or 
numerically, for example, by the finite difference method. 
At this stage, the initial approximation is being searched for 

, so it is sufficient to calculate the first 
approximation, or at least the first two approximations. 
5) calculate all functions of the current approximation 

, … 

6) calculate the potential jump for the resulting 

concentration  and number  using the 
formula (17): 

 

7) compare the calculated value  with the specified 

one . If they match the specified accuracy, we assume 
that we have received a solution. Otherwise, go to 
paragraph 8. 

8) determine which of the intervals  or 

 is the solution, then denote the segment with the 

solution as  and go to paragraph 2. 
As an example, let us consider one step of the 

method at  and compare the numerical and 

asymptotic solutions for the cation concentration. Let 

, then from  get 

Therefore, . We get the initial 

approximation  by solving the boundary value 
problem (21-24) using the Fourier method, leaving the first 
two terms of the series in the resulting solution: 

 

Thus, 

 

Similarly, , you can find and compare other 
functions you are looking for. 
 

3.8 Comparison of Numerical and Asymptotic 
Solutions 
 

To evaluate the accuracy of the constructed asymptotic 
solution and estimate the limits of its applicability, the 
relative error of the obtained solution was analyzed. The 
relative error was calculated for the function  

according to the formula , where  and 

 the results of the numerical (described in paragraph 2) 
and asymptotic solutions. 

Table 1 show that there is a fairly good 
consistency between the numerical and asymptotic 
solutions everywhere except in the vicinity of the left 
boundary of the quasi-equilibrium region of the space 
charge (in the Table, it is highlighted in bold). This is due 
to the approximation of the curved border (in Figure 1a – a 
solid line separating regions I and II) by the linear border 
(in Figure 1a – a dotted line). The relative error of the 
asymptotic solution also stabilizes over time because of the 
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transport process entering the stationary mode (Fig. 2a). It 
decreases and does not exceed 6%. 

 
 

4 Discussion and Examples 
 

In this paper, the non-stationary 1:1 transport of the 
electrolyte in the depleted layer of the cation-exchange 
membrane in the potentiostatic prelimiting mode is 
investigated. A mathematical model is presented and the 
basic laws of 1:1 salt ion transport are investigated. 
Calculations have confirmed that the diffusion layer 
consists of an electroneutrality region and a small boundary 
layer near the cation exchange membrane, where a space 
charge region occurs. It is shown for the first time that the 
left boundary of the space charge region is established 
quickly, approaching a certain straight line asymptotically 

. An asymptotic solution is constructed using 
this fact. The original feature of the proposed asymptotic 
method is that it is based not only on asymptotic 
simplifications in the equations, but also on replacing the 
exact structure of the diffusion layer with an approximate 
one. The problem can be solved asymptotically and without 
the assumption of simplifying the boundary of the region of 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

electroneutrality and space charge, but this requires finding 
this boundary analytically and, by entering local 
coordinates on this boundary, coordinate the solution from 
the region of electroneutrality with the solution in the 
region of space charge. However, this results in a rather 
cumbersome solution that is inconvenient for practical use. 
Thus, a fairly simple analytical solution is found that has 
good accuracy everywhere except, as expected, for the left 

boundary of the quasi-equilibrium region of the space 
charge. 
It is shown for the first time that the left boundary of the 
space charge region is established quickly, approaching a 
certain straight line asymptotically . An 
asymptotic solution is constructed using this fact. The 
original feature of the proposed asymptotic method is that it 
is based not only on asymptotic simplifications in the 
equations, but also on replacing the exact structure of the 
diffusion layer with an approximate one.  
A comparison of the numerical and asymptotic solutions 
shows that they coincide with good accuracy, with the 
exception of a small neighborhood of the curved boundary 
of the quasi-equilibrium region of the space charge. 
 

 

6 Conclusions 
 

In this paper, the non-stationary transport of 1:1 of the 
electrolyte in the depleted layer of the cation exchange 
membrane in the potentiostatic prelimiting mode was 
investigated. A mathematical model is presented and the 
main patterns of 1:1 salt ion transport are investigated. 
Calculations have confirmed that the diffusion layer 
consists of an electroneutrality region and a small boundary 
layer at the cation-exchange membrane, where the space 
charge region  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

occurs. It is shown for the first time that the left boundary 
of the space charge region is established quickly, 
approaching a certain straight line asymptotically 

. An asymptotic solution is constructed using 
this fact. The original feature of the proposed asymptotic 
method is that it is based not only on asymptotic 
simplifications in the equations, but also on replacing the 
exact structure of the diffusion layer with an approximate 
one. The problem can be solved asymptotically and without 
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Table 1: The relative error of the numerical and asymptotic solutions . 
 

        t 
x 

0 0.1 1 2 4 6 7 8 10 

0.1 0.072 0.024 0.080 0.07 0.061 0,049 0.031 0.022 0.01 

0.2 0.102 0.053 0.159 0.151 0.125 0,081 0.066 0.053 0.023 

0.3 0,07 0,091 0,232 0,232 0,182 0,142 0,095 0,062 0.037 

0.4 0,014 0,142 0,296 0,293 0,235 0,182 0,116 0,067 0.055 

0.5 0,109 0,21 0,393 0,583 0,363 0,298 0,277 0,153 0.062 

0.6 0.154 0.296 0.474 0.422 0.306 0,243 0.147 0,096 0.054 

0.7 0,094 0,401 0,546 0,456 0,312 0,229 0,137 0,082 0.022 

0.8 0,098 0,523 0,599 0,470 0,294 0,125 0,076 0,056 0,028 

0.9 0.412 0.658 0.626 0.428 0.222 0,107 0.001 0,012 0.012 
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the assumption of simplifying the boundary of the region of 
electroneutrality and space charge, but this requires finding 
this boundary analytically and, by entering local 
coordinates on this boundary, coordinate the solution from 
the region of electroneutrality with the solution in the space 
charge region. However, this results in a rather 
cumbersome solution that is inconvenient for practical use. 

Thus, a simple analytical solution that has good 
accuracy everywhere is found except, as expected, for the 
left boundary of the quasi-equilibrium region of the space 
charge. 

It was shown for the first time that the left 
boundary of the space charge region was established 
quickly, approaching a certain straight line  
asymptotically. An asymptotic solution was constructed 
using this fact. The original feature of the proposed 
asymptotic method is that it is based not only on asymptotic 
simplifications in the equations, but also on replacing the 
exact structure of the diffusion layer with an approximate 
one.  

Comparison of the numerical and asymptotic 
solutions showed that they coincide except for a small 
neighborhood of the curved boundary of the quasi-
equilibrium region of the space charge. 
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