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Abstract: In this paper, we consider R a commutative ring with identity non-zero and the R-module I(G), which is the edge

ideal of a graph simple and finite G, with no isolated vertices. A submodule N of I(G) is called an edge dense submodule if

HomR(I(G)/N,ER(I(G))) = 0, where ER(I(G)) is the injective hull of I(G). The R-module I(G) is said to be edge monoform if

any nonzero submodule of I(G) is an edge dense submodule. Here in this paper, we presented some results which involve the definition

of the module I(G) to be edge monoform.
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1 Introduction

Throughout this paper, R is a commutative ring with non-
zero identity.

Here, we consider the R-module I(G) and the injective
hull of I(G) is denoted by ER(I(G)). A submodule N of
I(G) is called a proper submodule if N 6= I(G).

For an R-module M any, the annihilator of M is
denoted by AnnR(M) and for any x ∈ M the annihilator of
Rx is denoted by AnnR((x)).

In this paper, we consider submodules which involve
the theory of graphs, together with the edge ideal of a
graph. A submodule N of I(G) is called edge dense

submodule, and is written N ≤d I(G), if for any f ,
g ∈ I(G) with f 6= 0 there exists p ∈ R = K[v1, . . . ,vs]
such that p f 6= 0 and pg ∈ N. The R-module I(G) is said
to be edge monoform if any nonzero submodule of I(G) is
an edge dense submodule.

A proper submodule N of an R-module M is called
prime submodule if for r ∈ R and x ∈ M, we have that

rx ∈ N implies that x ∈ N or rM ⊆ N.

Also, M is called prime module if the submodule 0 of M is
prime.

If N is a submodule of an R-module M, then (N :R M)
denotes the ideal AnnR(M/N) of R, that is, we have

(N :R M) = {r ∈ R : rM ⊆ N} .

In the Section 2, we put some definitions and
prerequisites for a better understanding of the theory and
results. We introduce preliminaries of the theory of
graphs which involving the edge ideal of a graph G;
associated to the graph G is a monomial ideal, defined by

I (G) = (viv j | viv j is an edge of G) ,

with viv j = v jvi and with i 6= j, in the polynomial ring R =
K [v1,v2, . . . ,vs] over a field K, called the edge ideal of G.
The preliminaries of the theory of graphs were introduced
in this Section 2 together with the concepts suitable for the
work in question.

In the Section 3, we prove some properties of modules
and submodules with respect to theory in question,
properties that involve the edge ideal of a graph G, which
is a graph simple and finite, with no isolated vertices. In
this section we presented the definitions that we use in the
results, and we put some results in the context of the edge
ideal.

In the Section 4, we presented a relationship between
edge multiplication module and edge dense module; we
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put also, the definition of I(G) to be edge faithful, which
also will be used.

Throughout of the paper, we mean by a graph G, a
finite simple graph with the vertex set V (G) and with no
isolated vertices.

Here, we use properties of commutative algebra and
homological algebra for the development of the results
(see [1], [2] and [3]).

2 Prerequisites of the graphs theory

Let us present in this section the concepts of the graphs
theory that we will use in the course of this paper.

2.1 Edge ideal of a graph

This section is in accordance with [4] and [5].

Let R = K [v1, . . . ,vs] be a polynomial ring over a field
K, that was fixed, and let Z =

{

z1, . . . ,zq

}

be a finite set of
monomials in R.

The monomial subring spanned by Z is the
K-subalgebra,

K [Z] = K [z1, . . . ,zq]⊂ R.

In general, it is very difficult to certify whether K [Z]
has a given algebraic property - e.g., Cohen-Macaulay,
normal - or to obtain a measure of its numerical invariants
- e.g., Hilbert function. This arises because the number q

of monomials is usually large.

Thus, we consider any graph G, simple and finite
without isolated vertices, with vertex set
V (G) = {v1, . . . ,vs}.

Let Z be the set of all monomials viv j = v jvi, with i 6= j,

in R = K [v1, . . . ,vs], such that
{

viv j

}

is an edge of G, i.e.,
the graph finite and simple G, with no isolated vertices,
is such that the squarefree monomials of degree two are
defining the edges of the graph G.

Definition 21A walk of length s in G is an alternating
sequence of vertices and edges
w = {v1,z1,v2, . . . ,vs−1,zh,vs}, where zi = {vi−1vi} is the
edge joining vi−1 and vi.

A other definition is the following.

Definition 22A walk is closed if v1 = vs. A walk may
also be denoted by {v1, . . . ,vs}, the edges being evident
by context. A cycle of length s is a closed walk, in which
the points v1, . . . ,vs are distinct.

A path is a walk with all the points distinct. A tree is
a connected graph without cycles and a graph is bipartite
if all its cycles are even. A vertex of degree one will be
called an end point.

Definition 23A subgraph G
′
⊆ G is called induced if

viv j = v jvi, with i 6= j, is an edge of G
′

whenever vi and

v j are vertices of G
′

and viv j is an edge of G.

The complement of a graph G, for which we write Gc,
is the graph on the same vertex set in which viv j = v jvi,
with j 6= i, is an edge of Gc if and only if it is not an edge
of G. Finally, let Ck be denote the cycle on k vertices; a
chord is an edge which is not in the edge set of Ck. A
cycle is called minimal if it has no a chord.

If G is a graph without isolated vertices, simple and
finite, then let R denote the polynomial ring on the
vertices of G over some fixed field K. The next definition
is important for the sequel of the article.

Definition 24( [4]) According to the previous context, the
edge ideal of a finite simple graph G, with no isolated
vertices, is defined by

I (G) = (viv j | viv j is an edge of G) ,

with viv j = v jvi, and with i 6= j.

3 Results main involving submodules of the

edge ideal of a graph simple

In this section, we presented some results about the
modules and submodules, over the polynomial ring
R = K[v1,v2, . . . ,vs], where we have that K is a field any,
which involve the theory of graphs together with the edge
ideal of a graph G, which is simple and finite and with no
isolated vertices. Here, we take K a fixed field and we
consider K[v1,v2 . . . ,vs] the ring polynomial over the field
K. Since K is a field, we have that K is a Noetherian ring
and then K[v1, . . . ,vs] is also a Noetherian ring (Theorem
of the Hilbert Basis).

Therefore, the new discovery in the research is to face
the edge ideal of a graph as a module, and thus to present
results involving this object.

And, in addition, to use the techniques already known
from the theory of modules in general for this specific case
of graph theory.

Remark 31By the previous context, R = K[v1,v2 . . . ,vs]
is a Noetherian ring. Therefore, the edge ideal I(G) is a
finitely generated ideal. Thus, the edge ideal I (G) is an
R-module, which is finitely generated, and thus I(G) is a
Noetherian R-module. So, any submodule of I(G) is
finitely generated. In this context, we can to get
characterizations for this module under certain
hypothesis.

First, we put a proposition about edge dense
submodules, which also applies to modules in general,
which is used widely in the sequel.

Proposition 32( [6, Proposition 8.6]) Let

R = K[v1, . . . ,vs] be the ring polynomial, I(G) the edge
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ideal in R of a finite simple graph G, with no isolated

vertices. Let N be a nonzero submodule of I(G). Then the

following are equivalent:

(1.)N ≤d I(G).
(2.)HomR(I(G)/N,ER(I(G))) = 0.

(3.)For any submodule P such that N ≤ P ≤ I(G),
HomR(P/N, I(G)) = 0.

We put now the following definition.

Definition 33Let R = K[v1, . . . ,vs] be the ring
polynomial, I(G) the edge ideal in R of a finite simple
graph G, with no isolated vertices. The R-module I(G) is
called edge monoform if any nonzero submodule of I(G)
is an edge dense submodule.

The support of an R-module M is the set of all prime
ideals p of R such that Mp 6= 0, and it is denoted by
SuppR(M). Also, let p be a prime ideal of R. Thus, p is
said to be an associated prime ideal of M if p is the
annihilator of some x 6= 0 of M. The set of associated
primes of M is denoted by AssR(M). If a is an ideal of R,
then V(a) is the set of all prime ideals of R which
contains the ideal a.

Definition 34Let R = K[v1, . . . ,vs] be the ring polynomial,
I(G) the edge ideal in R of a finite simple graph G, with
no isolated vertices. The R-module I(G) is said to be edge
coretractable if for any proper submodule N of I(G), we
have that HomR(I(G)/N, I(G)) 6= 0.

We have then the following proposition.

Proposition 35Let R = K[v1, . . . ,vs] be the ring

polynomial, I(G) the edge ideal in R of a finite simple

graph G, with no isolated vertices. Then I(G) has no

proper edge dense submodule if and only if I(G) is edge

coretractable.

Proof.We have that if I(G) is edge coretractable module,
then has no proper edge dense submodule.

Conversely, suppose that I(G) has no proper edge
dense submodule and let N be a proper submodule of
I(G). Then, we have that

HomR(I(G)/N,ER(I(G))) 6= 0.

So, we have that

SuppR(I(G)/N)∩AssR(ER(I(G))) = SuppR(I(G)/N)∩AssR(I(G)) 6= /0.

Therefore, HomR(I(G)/N, I(G)) 6= 0, and hence I(G) is an
R-module edge coretractable.

Now, we have the following definition.

Definition 36Let R = K[v1, . . . ,vs] be the ring polynomial,
I(G) the edge ideal in R of a finite simple graph G, with no
isolated vertices. The R-module I(G) is called edge quasi-
dedekind if for any nonzero submodule N of I(G), we
have that HomR(I(G)/N, I(G)) = 0.

Definition 37Let R = K[v1, . . . ,vs] be the ring
polynomial, I(G) the edge ideal in R of a finite simple
graph G, with no isolated vertices. The R-module nonzero
I(G) is called edge uniform if any two nonzero
submodules of I(G) intersect nontrivially.

We presented now the following result.

Theorem 38Let R = K[v1, . . . ,vs] be the ring polynomial,

I(G) the edge ideal in R of a finite simple graph G, with no

isolated vertices. Then the following statements are hold:

(1)We have that if the R-module I(G) is edge uniform

module then I(G) is primary.

(2)The R-module I(G) is edge monoform if and only if it

is edge uniform prime.

Proof.(1) By [2, Corollary 9.35] and [6, Lemma 3.59] we
have that, the set of associated primes of the R-module
I(G) is such that |AssR(I(G))| = 1. Thus, it follows that
I(G) is primary, from [9, Theorem 6.6].

(2) (⇒) Let N be a nonzero submodule of the
R-module I(G) and r ∈ AnnR(N). Then the map
r : I(G) → I(G) by x 7→ rx is an R-homomorphism and
N ⊆ Ker(r). So, there exists an R-homomorphism

φ : I(G)/N → I(G) such that φ(x+N) = rx.

From Proposition 32, we have that φ = 0 and this results
that we have r ∈ AnnR(I(G)).

(⇐) Let N be a nonzero submodule of the R-module
I(G). Let x,y ∈ I(G) with x 6= 0. We first suppose that y =
0. Since I(G) is edge uniform, we have that there exists
f ∈ R such that we have

0 6= f x ∈ N and 0 = f y ∈ N.

Now, let y 6= 0. Then, we have that there exists g ∈ R such
that we have

0 6= gy ∈ N and gx 6= 0,

since, by hypothesis, we have that I(G) is an R-module
prime. So, we conclude that N ≤d I(G).

The following lemma is used in the sequel of this
paper.

Lemma 39Let R = K[v1, . . . ,vs] be the ring polynomial,

I(G) the edge ideal in R of a finite simple graph G, with

no isolated vertices. In this context, let N be a (nonzero)

submodule of the R-module I(G) such that we have, for

any 0 6= x ∈ I(G), AnnR(I(G)/N) is not contained in

AnnR((x)). Then, we have that N ≤d I(G).

Proof.Let x,y ∈ I(G) with x 6= 0. Then, we have that
AnnR(I(G)/N) is not contained in AnnR((x)). So, there
exists f ∈ R such that f I(G) ⊆ N and f x 6= 0. It follows
that f y ∈ N. Then, we have that N ≤d I(G).
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Let N be a submodule of an R-module M and let a be
an ideal of R. The residual submodule of N by a is defined
by

(N :M a) = {x ∈ M | xa⊆ N} .

It is a submodule of M containing N (see [2, Definition
6.20]).

Theorem 310Let R =K[v1, . . . ,vs] be the ring polynomial,

I(G) the edge ideal in R of a finite simple graph G, with no

isolated vertices. If a is an ideal of R such that (0 :I(G) a) =
0, then we have that aI(G) is an edge dense submodule of

I(G).

Proof.Let AnnR(I(G)/aI(G)) ⊆ AnnR((x)) for some 0 6=
x ∈ I(G). Then, we have that ax = 0, a contradiction. So,
aI(G) is an edge dense submodule of I(G), by the Lemma
39.

We have, now, the following result which is valid since
R = K[v1, . . . ,vs] is a Noetherian ring.

Theorem 311Let R =K[v1, . . . ,vs] be the ring polynomial,

I(G) the edge ideal in R of a finite simple graph G, with

no isolated vertices. Thus, we have that the R-module I(G)
is a prime R-module and for any nonzero submodule N of

I(G), we have that AnnR(I(G)/N) 6= AnnR(I(G)) if, and

only if, I(G) is an edge monoform R-module.

Proof.Let N be a nonzero submodule of I(G) and 0 6= x ∈
I(G). Then, we have that

AnnR(I(G)/N) is not contained in AnnR(I(G))=AnnR((x)).

Therefore, we have N ≤d I(G) by Lemma 39, and hence
I(G) is an edge monoform R-module.

Conversely, since R is a Noetherian ring and I(G) is a
finitely generated edge monoform R-module we have, by
theorem 38 (2), that I(G) is prime. Suppose on the
contrary that there exists a submodule N of I(G) such that

AnnR(I(G)/N) = AnnR(I(G)).

Then, we have that

AnnR(I(G)/N) = AnnR((x))

for all 0 6= x ∈ I(G). It follows that

AnnR(I(G)/N) ∈ SuppR(I(G)/N)∩AssR(I(G)) 6= /0

which is a contradiction with results of the theory of
modules in general. This completes the proof.

4 Edge dense submodules of edge

multiplication modules

In this section we consider the same context of the
previous section. Then we put some applications.

We presented now the following definition.

Definition 41Let R = K[v1, . . . ,vs] be the ring polynomial,
I(G) the edge ideal in R of a finite simple graph G, with
no isolated vertices. The R-module I(G) is called an edge
multiplication module if for each submodule N of I(G),
we have that N = aI(G) for some ideal a of R.

Thus, if I(G) is an edge multiplication module, for
each submodule N of I(G), we have that
N = (N :R I(G))I(G).

Definition 42Let R = K[v1, . . . ,vs] be the ring
polynomial, I(G) the edge ideal in R of a finite simple
graph G, with no isolated vertices. The R-module I(G) is
called edge faithful if AnnR(I(G)) = 0.

We presented now, the following theorem which uses
the previous concept.

Theorem 43Let R = K[v1, . . . ,vs] be the ring polynomial,

I(G) the edge ideal in R of a finite simple graph G, with no

isolated vertices. Suppose that the R-module I(G) is edge

faithful and edge multiplication. Let a be an ideal of R.

Then a is an edge dense ideal of R if and only if aI(G) is

an edge dense submodule of I(G).

Proof.Let a be an edge dense ideal of R. By [6, Examples
8.3(4)], we have that (0 :R a) = 0. So, in view
of [8, Lemma 2.1(1)] we have that

(0 :I(G) a) = (0 :R a)I(G) = 0.

Now, by the Theorem 310 we obtain that aI(G) is an edge
dense submodule of I(G).

Conversely, we assume that aI(G) is an edge dense
submodule of I(G). In view of [6, Examples 8.3 (4)], it is
enough to show that AnnR(a) = 0. Suppose on the
contrary that 0 6= r ∈ AnnR(a). Since I(G) is edge
faithful, we have that rI(G) = 0. Let x ∈ I(G) and with
rx 6= 0. Since aI(G) is edge dense submodule, there exists
f ∈ R such that f (rx) 6= 0 and f x ∈ aI(G). We have that

f x = f1x1 + . . .+ fkxk

for some f1, . . . , fk in a and x1, . . . ,xk in I(G). It follows
that we have then f (rx) = 0, a contradiction. This
completes the proof.

We finalize the paper with a proposition which involve
the previous concepts. And let’s use the following: for the
R-module I(G), we consider f ∈ R; for convenience, we
simply we denote

(0 :R R f ) and (0 :I(G) R f )

by, respectively,

(0 :R f ) and (0 :I(G) f ).

Proposition 44Let R = K[v1, . . . ,vs] be the ring

polynomial, I(G) the edge ideal in R of a finite simple

graph G, with no isolated vertices. Suppose that the

R-module I(G) is edge faithful and edge multiplication.

Let a be an ideal of R, and let f ∈ R. Then the following

statements are hold:
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(1.)a= (0 :R f ) if and only if aI(G) = (0 :I(G) f ).
(2.)(0 :R a) = 0 if and only if (0 :I(G) a) = 0.

(3.)(0 :R (0 :R a)) = a if and only if (0 :I(G) (0 :R a)) =
aI(G).

Proof.In view of [8, Lemma 2.1 (1)], we have that

(0 :I(G) a) = (0 :R a)I(G),

and so the proof it follows by [7, Theorem 3.1]. This
completes the proof.

Applications

It is important to mention to the fact that
understanding modules and submodules over polynomial
rings, leads to different interesting applications in
different fields such as entropy [10]- [13], variable
thermal conductivity, thermal stability and crystallization
kinetics of the semiconducting [14]- [28]. For example,
once can improve the controlled model to study the
influence of annealing temperature on properties of
nanocrystalline CdO thin films synthesized via thermal
oxidation process, optical, morphological and thermal
properties of spray coated polypyrrole film, the Structural
Properties of thermally evaporated aluminium thin films
on different polymer substrates etc.
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