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Abstract: We introduce squeezing flow between two infinite parallel plates with slip boundary conditions. By similarity

transformations, the system of nonlinear partial differential equations of motion is reduced to fourth order nonlinear ordinary differential

equation. The resulting boundary value fractional problem is solved and the velocity profiles are investigated through various techniques

like new iterative method, Picard method and Adomain decomposition method. The comparisons of solutions for different values of

the fractional order conform that the three methods are identical and are suitable for solving this kind of problems.
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1 Introduction

The squeezing fluid flow between two parallel infinite
plates is a fundamental type of flow that is frequently
observed in many injection molding, polymer processing,
and modeling of lubrication systems are some practical
examples of squeezing flows where their usage is found.
The first work in squeezing was laid down by Stefan [1]
who developed an adhoc asymptotic solution of
Newtonian fluids. An explicit solution of the squeeze
flow, considering inertial terms, has been established by
Thorpe and Shaw [2]. However, P. S. Gupta and A. S.
Gupta [3] proved that the solution given in [2] fails to
satisfy boundary conditions. Verma [4] and Singh et
al. [5] have established numerical solutions of the
squeezing flow between parallel plates. Leider and Byron
Bird [6] performed theoretical analysis of power-low fluid
between parallel disks . The motion of a thin film of
lubricant, squeezed flow between two stationary parallel
plane surfaces were reported by Tichy and Winner [7] and
Wang and Watson [8]. The theoretical and experimental
studies of squeezing flows have been conducted by many
researchers [9–13]. The mathematical studies of these
flows are concerned primarily with the nonlinear partial
differential equations which arise from the Navier-Stokes
equations, These equations have no general solutions, and

only a few exact solutions have been attained by confining
some physical aspects of the original problem [12].

The importance of the study of the fractional forms of
the differential equations is due to their wide appearing in
many of the mathematical, physical, and chemical
problems. So the aim of this work is to continue in this
study by preparing and using the NIM, PM, ADH where
there is not any of the above-mentioned difficulties in the
perturbation methods for solving the fractional order form
of an unsteady Axisymmetric squeezing fluid flow
between two infinite parallel plates with slip boundaries.
Also the effects of the fractional order on the solution are
studied tabularly and graphically.

The velocity profile is obtained using various
analytical techniques like Adomain decomposition
method (ADM), new iterative method (NIM), Optimal
homotopy asymptotic method (OHAM), and Picard
method (PM) [14–23]. The residual of each technique is
computed and a comparison is made to assess the
efficiency of the above technique. We select NIM and PM
for analyzing the velocity profile under different flow
parameters.
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2 Formulation of the Problem

In this section we investigate viscous incompressible
Axisymmetric squeezing flow between two infinite
parallel plates, separated by a distance 2c, with density ρ ,
pressure P and the viscosity η . The plates are moving
towards each other with velocity V .

The basic system of equation describing the motion of the
fluid is:
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+
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+
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2
(v2

r +v2
ξ )+P is the generalized pressure P̃ from

(2) and (3), we get

−ρ
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2
)
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The boundary conditions are as follows

vr = α
∂vr

∂ξ
, vξ =−V at ξ = c,

vξ = 0,
∂vr

∂vξ
= 0 at ξ = 0.

(6)

By virtue of (4) and using the transformation φ(r,ξ ) =
r2h(ξ ), equations (5) and (6) becomes

hiv(ξ )+
2ρ

η
h(ξ )h′′′(ξ ) = 0, (7)

h(0) = 0, h′′(0) = 0, h(c) =
V

2
, h′(c) = αh′′(d).

(8)

Introducing the following dimensionless parameters

h∗ =
h

V/2
, ξ ∗ =

ξ

c
, γ =

α

c
, R =

ρcV

η
, (9)

and drooping "∗" for simplicity, the boundary value
problems (??)-(9) takes the form

d4h

dF4
+Rh

d3h

dξ 3
= 0, (10)

with boundary conditions

h(0) = 0, h′′(0) = 0, h(1) = 1, h′(1) = γh′′(1).
(11)

For more physical explanation and details see [11, 12].

3 Fractional Calculus

In this section, we mention some basic definitions of
fractional calculus, which are used in the present work.

Definition 1. The Riemann-Liouville fractional integral
operator of order β > 0, of a function g(t) ∈ cµ and
µ ≥−1 is defined as [24]

J
β
ξ

g(ξ ) =
1

Γ (β )

ξ
∫

0

(ξ − v)β g(v)dv, β > 0,ξ > 0,

J0
ξ g(ξ ) = g(ξ ).

(12)

For the Riemann-Liouville fractional integral operator. J
β
ξ

,

we obtain

J
β
ξ

ξ µ =
Γ (µ + 1)ξ µ+β

Γ (µ +β + 1)
. (13)

Definition 2. The fractional derivative of g(ξ ) in the
Caputo sense is defined as [25]

Dβ
ξ

g(ξ ) = Jm−β Dm
ξ g(ξ )

=
1

Γ −β )

ξ
∫

0

(ξ −ν)m−β−1g(m)(ν)dν, (14)

for m − 1 < β ≤ m, ξ > 0. For the Caputo fractional

derivative operator D
β
ξ

, we obtain

Dβ
ξ

ξ ν =
Γ (ν + 1)ξ ν−β

Γ (ν + 1−β )
. (15)

For the Riemann-Liouville fractional integral and Caputo
fractional derivative operator of order β , we have the
following relation:

Jβ
ξ

Dβ
ξ

g(ξ ) = g(ξ )−
m−1

∑
k=0

g(k)(0+)
ξ

k!
. (16)
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Remark. According to the previous fractional calculus,
(10) can be rewritten in the following fractional order
form:

dβ h

dξ β
+Rh

d3h

dε3
, 3 < β ≤ 4. (17)

4 Analysis of the Considered Methods

In this section, we discuss the considered methods with
preparing them for solving any fractional differential
equation.

4.1 New Iterative Method (NIM)

To illustrate the basic idea of this method, we consider the
following general functional equations (12, 15, 16):

h(ξ ) = f (ξ )+N(h(ξ )), (18)

where N is a nonlinear operator from a Banach space
B → B and g(ξ ) is a known function (element) of a
Banach space B. We are looking for a solution h(ξ )
having the series form:

h(ξ ) =
∞

∑
i=0

hi(ξ ), (19)

the nonlinear operator N can be decomposed as:

N

( ∞

∑
i=0
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)
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∞

∑
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{

N

( i

∑
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h j
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−N

(i−1

∑
j=0
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)

}

.

(20)
From (19) and (20), Equation (18) is equivalence to:

∞

∑
i=0

hi = g+N(h0)+∑

{

N

( i

∑
j=0

h j

)

−N

(i−1

∑
j=0

h j

)

}

.

(21)
The required solution h(ξ ) for (18) can be obtained
recurrently from the recurrence relation:

h0 = g,

h1 = N(h0),

hr+1 = N

( r

∑
i=0

hi

)

−N

(r−1

∑
i=0

hi

)

, r = 1,2, ... .

(22)

Then
∞

∑
i=0

hi = g+N

( ∞

∑
i=0

hi

)

. (23)

The r-term approximate solution of (22) is given by

h(ξ ) =
r−1

∑
i=0

hi. (24)

4.2 solving General Fractional Differential
Equation by NIM

To solve any fractional differential equation of arbitrary
order β > 0, we consider the following general fractional
differential equation

Dβ
ξ

h(ξ ) = f (ξ )+L(h(ξ ))+K(h(ξ )), (25a)

m− 1 < β < m, m ∈ N,

subject to the initial values

dk

dξ k
h(0) = dk, k = 0,1,2, ...,m− 1, (25b)

where L is a linear operator, K is a nonlinear operator,

f (ξ ) is a nonhomogeneous term, and D
β
ξ

is the fractional

differential operator of order β > 0. In view of the
fractional integral operators, the boundary value
fractional problem (25a) and (25b) is equivalent to the
fractional integral equation:

h(ξ ) =
m−1

∑
k=0

dk ·
ξ k

k!
+ Jβ

ξ
[ f (ξ )]+ Jβ

ξ
[L(h(ξ ))+K(h(ξ ))]

= g+N(h), (26)

where g =
m−1

∑
k=0

dk(ξ
k/k!) + J

β
ξ
[ f (ξ )], N(h) = J

β
ξ

[L(h(ξ )) + K(h(ξ ))], and jβ
ξ

is the inverse of Dβ
ξ

. The

required solution h(ξ ) for (26) and hence for (25a) and
(25b) can be obtained recurrently from the recurrence
relation (22).

4.3 Picard Method (PM)

To illustrate the basic idea of this method, we consider the
following general fractional differential equation of
arbitrary order β > 0 [26, 27]:

Dβ
ξ

h(ξ ) = F(ξ ,h(k)(ξ )), m− 1 < β ≤ m,m ∈ N, (27a)

dk

dξ k
h(0) = dk k = 0,1,2, · · · ,m− 1, (27b)

where Dβ
ξ

is the fractional differential operator of order

B > 0. In view of the fractional integral operators, the
initial value fractional problems (27a) and (27b) is
equivalent to the fractional integral equation:

h(ξ ) =
m−1

∑
k=0

dk
ξ k

k!
[F(ξ ,h

(k)
ξ
(ξ )] = f +N(h). (28)

Where, J
β
ξ

is the inverse of D
β
ξ

. The required solution

h(ξ ) for (28) which is solution for (27a and 27b) can be
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obtained as the limit of a sequence of functions hr+1(ξ )
generated by the recurrence relation:

h0 = g,

hr+1 = h0 +N(hr), r = 0,1,2, · · · , (29)

where h(ξ ) = lim
r→∞

hr(ξ ).

4.4 Adomian Decomposition Method (ADM)

To illustrate the idea of this method, Let us consider the
fractional order problem [12, 14]:

D
β
ξ

h(ξ ) = L(h(ξ ))+N(h(ξ ))+ f (ξ ), (30a)

m− 1 < β ≤ m, m ∈ N,

subject to the initial values

dk

dξ k
h(0) = dk, k = 0,1,2, · · · ,m− 1, (30b)

where, L, N are linear and nonlinear operators and g(ξ ) is
a nonhomogeneous term. The method is based on

applying the fractional integral operator Jβ
ξ

, the inverse of

the fractional differential operator D
β
ξ

, to both sides of

(30a) and (30b) to obtain: to obtain:

h(ξ )=
m−1

∑
k=0

dk ·
ξ k

k!
+Jβ

ξ
[L(h(ξ ))+N(h(ξ ))+ f (ξ )]. (31)

The ADM suggests that the solution h(ξ ) in the form of
infinite series of components:

h(ξ ) =
∞

∑
n=0

hn(ξ ), (32)

and the nonlinear term N(h) in (30a) is decomposed as:

N(h) =
∞

∑
n=0

An, (33)

where An are the so-called Adomian polynomials given by

An =
1

n!

[

dn

dξ n
N

( n

∑
k=0

ξ khk

)

]

ξ=0

. (34)

Substituting the decomposition series (32) and (33) into
both sides of (31) gives:

∞

∑
n=0

hn(ξ ) =
m−1

∑
k=0

·ξ
k

k!
+ Jβ

ξ

[

L
∞

∑
n=0

hn(ξ )+
∞

∑
n=0

An + f (ξ )

]

.

(35)

Following the decomposition method, we introduce the
recurrence relation as:

h0(ξ ) =
m−1

∑
k=0

dk ·
ξ k

k!
+ J

β
ξ
( f (ξ )),

h j+1(ξ ) = Jβ
ξ
[L(h j(ξ ))+A j], j ≥ 0.

(36)

This formula is easy to compute. Finally, we approximate
the solution h(ξ ) by the truncated series:

ψN(ξ ) =
N−1

∑
j=1

h j(ξ ),

lim
N→∞

ψN(ξ ) = h(ξ ).

(37)

5 Applications

In this section, we illustrate the application of the
considered methods to solve the nonlinear fractional order
ordinary differential equation (17) subject to the boundary
conditions (11).

5.1 NIM

According to (26), the boundary value fractional order
problem (17)-(11) is equivalent to the fractional integral
equation:

h(ξ ) = aξ +
bξ 3

6
+N(h). (38)

Where N(h) =−J
β
ξ

[

Rh d3h
dξ 3

]

.

Therefore, according to (22), we can obtain the following
first few components of the new iterative solution for (35)

hθ (ξ ) = aξ +
bξ 3

6
,

h1(ξ ) =
−6abRξ 1+β

Γ (4+β )
− 5abRβ ξ 1+β

Γ (4+β )
− abRβ 2ξ 1+β

Γ (4+β )

− b2Rξ 1+β

Γ (4+β )
,

h2(ξ ) =− 21−2β a2b
√

πR2ξ−1+2β

Γ (β )Γ ( 1
2
+β )

− 21−2β a2b
√

πR2β ξ−1+2β

Γ (β )Γ ( 1
2
+β )

− 22−2β ab2
√

πR2ξ 1+2β

3Γ (β )Γ ( 3
2
+β )

+
22−2β ab2

√
πR2β 2ξ 1+2β

3Γ (β )Γ ( 3
2
+β )

c© 2021 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 15, No. 5, 561-569 (2021) / www.naturalspublishing.com/Journals.asp 565

+
72a2b2R3β ξ−1+3βΓ (2β )

(2+ 9β + 9β 2)Γ (3β )γ(4+β )2
+ · · · ,

and so on. Considering the NIM 4th solution, we have the
following:

h(ξ ) =
3

∑
i=0

hi

= aξ +
bξ 3

6
− 6abRξ 1+β

Γ (4+β )
− 5abRβ ξ 1+β

Γ (4+β
− abRβ 2ξ 1+β

Γ (4+β )

− b2Rξ 3+β

Γ (4+β )
− 21−2β a2b

√
πR2ξ−1+2β

Γ (β )Γ ( 1
2
+β )

+
21−2β a2b

√
πR2β ξ−1+2β

Γ (β )Γ ( 1
2
+β )

− 22−2β ab2
√

πR2ξ 1+2β

3Γ (β )Γ ( 3
2
+β )

+
22−2β ab2

√
πR2β 2ξ 1+2β

3Γ (β )Γ ( 3
2
+β )

+
5a2b2R3β 3ξ−1+3β

6(1+ 2β )Γ (3β )

+
ab3R3β 3ξ 1+3β

18(1+ 3β )Γ (3β
+

72a2b2R3β 3ξ−1+3βΓ (4+β )2

(2+ 9β + 9β 2)Γ (4+β )2

+ · · · . (39)

In the special case β = 4, (39) becomes

h(ξ ) = aξ +
bξ 3

6
− 8.33333× 10−3abRξ 5 − 1.98413

× 10−4b2Rξ 7 + 5.9238× 10−4a2bR2ξ 7

+ 2.75573× 10−5ab2R2ξ 9 + 1.484648

× 10−7a2b2R3ξ 11+ 1.0706× 10−10ab3R3ξ 13

+ · · · .
The boundary conditions in (11) at ξ = 1 and γ = 1 are
used to get the values of a and b as follows

a = 0.71897, b = 1.74911. (40)

The four-term solution obtained by the NIM for (17)-(11),
is therefore

h(ξ ) =0.71897ξ + 0.291518x3− 0.010478ξ 5

− 0.0000677914ξ 7+ 0.0000699355ξ 9− 4.72198

× 10−6ξ 11 − 1.0173× 10−6ξ 13 − 1.41631

× 10−8ξ 15 + 1.81369× 10−9ξ 17 − 4.71881

× 10−11ξ 19 − 4.6022× 10−12ξ 21 + 2.48384

× 10−14ξ 23 + 6.00342× 10−15ξ 25+ 4.25066

× 10−17ξ 27 − 1.84398× 10−18ξ 29 − 2.01692

− 2.01692× 10−20ξ 31. (41)

5.2 PM

Also the boundary value fractional problem (17)-(11),
according to (28) and (29), is equivalent to the fractional

integral equation:

hr+1(ξ ) = h0 − Jβ
ξ

[

Rh
d3hr

dξ 3

]

, r = 0,1,2, · · · . (42)

Therefore, according to (29), we can obtain the following
first few components of Picard solution for (17)-(11):

h0(ξ ) = aξ +
bξ 3

6
,

h1(ξ ) =aξ +
bξ 3

6
− 6abRξ 1+β

Γ (4+β )
− 5abRβ ξ β+1

Γ (4+β )

− abRβ 2ξ 1+β

Γ (4+β )
− b2Rξ 3+β

Γ (4+β )
,

h2(ξ ) =aξ +
bξ 3

6
− 21−2β a2b

√
πR2ξ−1+2β

Γ (β )Γ ( 1
2
+β

+
21−2β a2b

√
πR2β ξ−1+2β

Γ (β )Γ ( 1
2
+β )

− 2−2−2β ab2
√

πR2ξ 1+2β

3Γ (β )Γ ( 3
2
+β )

+
72a2b2R3β ξ−1+3βΓ (2β )

(2+ 9β + 9β 2)Γ (3β )Γ (4+β )2

− 48ab2R3ξ 1+3βΓ (2β )

(2+ 9β + 9β 2)Γ (3β )Γ (4+β )2

− 7b4R3ξ 3+3βΓ (2β )

(2+ 9β + 9β 2)Γ (3β )Γ (4+β )2
+ · · ·

and so on. In the same manner, the rest of component can
be obtained. The 4-order term solution for (17)-(11) in
series form, is given by:

h(ξ ) =aξ +
bξ 3

6
− abRξ 1+β

Γ (β + 2)
− b2Rξ 3+β

Γ (β + 4)

+
5a2b2R3β 3ξ−1+3β

6(1+ 2β )Γ (3β )

12a2b2R3ξ−1+3β

(1+β )(2+β )(3+β )(1+2β )Γ(3β )
+ · · · .

(43)

In the special case β = 4, (43) becomes

h3(ξ ) =aξ +
bξ 3

6
− 8.33333× 10−3abRξ 5− 1.98413

× 10−4b2Rξ 7 + 1.48616× 10−7a2b2R3ξ 11 + · · · .

On using (40), we get

h(ξ ) =0.71897ξ + 0.291518ξ 3− 0.0104796ξ 5
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− 0.000068838ξ 7+ 0.0000701138ξ 9− 4.2.198

× 10−6ξ 11 − 1.0173× 10−6ξ 13 − 1.41631× 10−8

ξ 15 + 1.81369× 10−9ξ 17 − 4.71881× 10−11ξ 19

− 4.6022× 10−12ξ 21 + 2.48384× 10−14ξ 23

+ 6.00352× 10−15ξ 25 + 4.25067× 10−17ξ 27

− 1.84398× 10−18ξ 29 − 2.01692× 10−20ξ 31.
(44)

5.3 ADM

According to the recurrence relation (36), the initial value
fractional order problem (17)-(11) gives:

hθ (ξ ) = aξ +
bξ 3

6
,

h1 = − 6abRξ 1+β

Γ (4+β )
− 5abRβ ξ 1+β

Γ (4+β )
− abRβ 2ξ 1+β

Γ (4+β )

− b2Rξ 3+β

Γ (4+β )
,

h2(ξ ) =
−3× 22−2βa2b

√
piR2β ξ−1+2β

Γ ( 1
2
+β )Γ (4+β )

+
3× 22−2βab2

√
piR2β ξ 1+2β

(1+ 2β )Γ ( 1
2
+β )Γ (4+β )

+ · · · ,

h3(ξ ) =
9× 23−2βa2b2

√
πR3ξ−1−3βΓ (2β )Γ (2+β

(1+ 2β )(3+(2β )Γ (β )Γ (3β )Γ ( 1
2
+β )Γ (4+β )

− 22−2β b4
√

πR3ξ 3+3βΓ (2β )Γ (5+β )/

[

(1+ 2β )

· (3+ 2β )(1+ 3β )(2+3β)Γ(3β )Γ

(

1

2
+β

)

·Γ (4+β )2

]

+ · · · .

Considering the NIM 4th solution, we have the following:

h(ξ ) =
3

∑
i=0

hi

= aξ +
bξ 3

6
− 6abRξ 1+β

Γ (4+β )
− 5abRβ ξ 1+β

Γ (4+β )

− abRβ 2ξ 1+β

Γ (4+β )
− b2Rξ 3+β

Γ (4+β )

− 3× 22−2βa2b
√

πR2β ξ−1+2β

Γ ( 1
2
+β )Γ (4+β )

+
3×2−2β ab2

√
πR2β ξ 1+2β

(1+ 2β )Γ ( 1
2
+β )Γ (4+β )

+
9× 23−2β a2b2

√
πR3Γ (2β )Γ (2+β )ξ−1+3β

(1+ 2β )(3+ 2β )Γ(β )Γ (3β )Γ ( 1
2
β )Γ (4+β )

+ · · · . (45)

In the special case, β = 4, (45) becomes

h(ξ ) =aξ +
bξ 3

6
− 8.33333× 10−3abRξ 5 − 1.98413

× 10−4b2Rξ 7 + 1.57470× 10−7ab2R2ξ 9 + 2.16901

× 10−10a2b2R3ξ 11 + · · · .

On using (40) the 4-order term solution for R = 1 is

h(ξ ) =7.1897× 10−1ξ + 2.91518× 10−1ξ 3 − 1.04796

× 10−2ξ 5 − 6.88387× 10−5ξ 7 + 7.01138× 10−5

ξ 9 − 3.49258× 10−6ξ 11 − 4.22954× 10−7ξ 13

+ 1.04129× 10−7ξ 16 + 1.32402× 10−8ξ−17

+ 4.22479× 10−10ξ 19. (46)

From the previous results for (17)-(11), obtained by the
three considered methods, it is clear that the approximate
solutions obtained by NIM in (39), PM in (43) and ADM
in (44) are approximately the same and these methods are
suitable for solving this kind of problems.

The residual error of the problem is:

Reh(ξ ) = Residual Error

=
dβ h̄

dξ β
+Rh̄

d3h̄

dξ 3
, (47)

where h̄ is the 4-term approximate solutions in (39) or (43)
and (45).

If Re = 0, then h̄ will be the exact solution. However,
this usually does not occur in nonlinear problems.

It is clear from the obtained results that the
above-considered methods minimize the limitations of the
ordinary perturbation methods. In the same time, these
methods take full advantages of the traditional
perturbation methods. Therefore, these methods are
powerful methods for solving the nonlinear fractional
order differential equations.

6 Numerical Results and Discussion

In this work, an axisymmetric flow between two infinite
plates is considered. The resulting nonlinear fractional
order boundary value problem is solved analytically in
case of slip boundary conditions using NIM, PM, and
ADM.

Table 1 present the solutions for different values of the
fractional order β along with absolute residual errors |Re |
at β = 4 for fixed value of the Reynolds number R.
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Figures 1 and 2 indicate the approximate solutions for
different values of β = 3.7,3.8,3.9,4.0,4.1 at R = γ = 1
in cases of NIM, PM and ADM. In addition to the above
figures, figures 3, 4 represent the r and ξ component for
the velocity profile at R = 1 given by NIM and PM.

Fig. 1: Solutions for β = 3.7,3.8,3.9,4.0,4.1 at R = γ = 1 using

NIM, PM.

Fig. 2: Solutions for β = 3.7,3.8,3.9,4.0,4.1 at R = γ = 1 using

ADM.

Fig. 3: ξ -component Vξ (r,θ ,ξ ) =− 1
r

∂ φ
∂ ξ

of the velocity profile

given by NIM and PM at R = γ = 1.

Fig. 4: r-component Vξ (r,θ ,ξ ) =
1
r

∂ φ
∂ ξ

of the velocity profile

given by NIM and PM at R = γ = 1.

7 Conclusion

In this work, an analytical solution for an axisymmetric
squeezing flow between to infinite parallel plates in
fractional form is obtained using the NIM, PM and ADM
in cases of slip boundary condition. Analysis of the
residual errors confirms that the NIM and PM are
identical and efficient schemes. The convergence of the
considered methods is confirmed by absolute residual
errors. Therefore, we concluded that the considered
methods can be effectively used in various fields of
science and engineering as they give better results in
terms of accuracy.
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Table 1: Solutions for different values of ξ and β at R = 1.

ξ
β = 3.7 β = 3.8 β = 3.9

NIM & PM ADM NIM & PM ADM NIM & PM ADM

0.0 0.00 0.00 0.00 0.00 0.00 0.00

0.1 7.21882×10−2 7.21882×10−2 7.1883×10−2 7.21883×10−2 7.21884×10−2 7.21884×10−2

0.2 1.46117×10−1 1.46117×10−1 1.46120×10−1 1.46120×10−1 1.46121×10−1 1.46121×10−1

0.3 2.23502×10−1 2.23502×10−1 2.23517×10−1 2.23517×10−1 2.23528×10−1 2.23528×10−1

0.4 3.06014×10−1 3.06014×10−1 3.06065×10−1 3.06065×10−1 3.06106×10−1 3.06106×10−1

0.5 3.95266×10−1 3.95266×10−1 3.92401×10−1 3.92401×10−1 3.95510×10−1 3.95510×10−1

0.6 4.92804×10−1 4.92804×10−1 4.93096×10−1 4.93096×10−1 4.93337×10−1 4.93337×10−1

0.7 6.00092×10−1 6.00093×10−1 6.00649×10−1 6.00649×10−1 6.01116×10−1 6.01116×10−1

0.8 7.18508×10−1 7.18510×10−1 7.19473×10−1 7.19474×10−1 7.20296×10−1 7.20296×10−1

0.9 8.49330×10−1 8.49338×10−1 8.50886×10−1 8.50890×10−1 8.52234×10−1 8.52235×10−1

1.0 9.93737×10−1 9.93761×10−1 9.93761×10−1 9.96118×10−1 9.98188×10−1 9.98192×10−1

Table 1: Continue

ξ
β = 4.0 β = 4.1 Resβ=4

NIM & PM ADM NIM & PM ADM NIM & PM ADM

0.0 0.00 0.00 0.00 0.00 0.00 0.00

0.1 7.21884×10−2 7.21884×10−2 7.21884×10−2 7.21884×10−2 −9.8392×10−20 8.89760×10−13

0.2 1.46123×10−1 1.46123×10−1 1.46124×10−1 1.46124×10−1 −1.29926×10−7 4.78321×10−10

0.3 2.23537×10−1 2.23537×10−1 2.23543×10−1 2.23543×10−1 −2.33646×10−6 21.99410×10−8

0.4 3.06138×10−1 3.06138×10−1 3.06162×10−1 3.06162×10−1 −1.87760×10−5 2.961550×10−7

0.5 3.95597×10−1 3.95597×10−1 3.95666×10−1 3.95666×10−1 −9.77465×10−5 2.523930×10−6

0.6 4.93534×10−1 4.93534×10−1 4.93694×10−1 4.93694×10−1 −3.88561×10−4 1.522890×10−5

0.7 6.01506×10−1 6.01506×10−1 6.01829×10−1 6.01829×10−1 −1.28640×10−3 7.265870×10−5

0.8 7.20994×10−1 7.20994×10−1 7.21583×10−1 7.21584×10−1 −3.73261×10−3 2.924660×10−4

0.9 8.53394×10−1 8.53395×10−1 8.54389×10−1 8.54389×10−1 −9.8035×10−3 1.034700×10−3

1.0 1.00000 1.00001 1.00158 1.00158 −2.38132×10−2 3.306640×10−3
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