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Abstract: In this paper, we consider a kind of new nonlinear dispersive wave equation, which is generalized integrable shallow water

equation with strong dispersive term. Applying Kato’s semigroup approch, we obtained local well-posedness of Cauchy problem for

the generalized integrable shallow water equation with strong dispersive term in Sobolev space (Hs,s > (3/2)).
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1 Introduction

Shallow water waves and their model equations are very
important for mathematical and physical theory.
Furthermore, water wave modeling is a complicated
process and usually leads to models which are hard be
analyzed mathematically and to be solved numerically
[1].

Although the history of shallow water waves [2] goes
back to the French and British mathematicians of the
eighteenth and early nineteenth century, Stokes [3] is
considered one of the pioneers of hydrodynamics [4]. He
carefully derived the equations for the motion of
incompressible, inviscid fluid, subject to a constant
vertical gravitational force, where the fluid is bounded
below by an impermeable bottom and above by a free
surface [5]. Starting from these fundamental equations
and by making further simplifying assumptions, various
shallow water wave models can be derived. These shallow
water models are widely used in oceanography and
atmospheric science [5].

In this paper, we consider the Cauchy problem for the
generalized integrable shallow water equation with strong
dispersive term:





ut −α2uxxt +(g(u))x + γ
(
u−α2uxx

)
xxx

=

α2
(

h′(u)
2

u2
x + h(u)uxx

)
x
, t > 0, x ∈R,

u(0,x) = u0 (x) , x ∈ R,

(1)

where g(u) , h(u) : R → R are given function, α and γ
are constants. For g(u) = 2ωu+ 3

2
u2 and h(u) = u, Eq.(1)

takes the following form:

{
ut −α2uxxt + 2ωux+ 3uux+ γ

(
u−α2uxx

)
xxx

=

α2 (2uxuxx + uuxxx) .
(2)

The strong dispersive term γ
(
u−α2uxx

)
xxx

corresponds
to the Lagrangian averaged Navier-Stokes alpha
equations for turbulence and can provide analytical
control over the solutions [6]. In [6], Tian et al. studied
the well-posedness by applying Kato’s semigroup
approach. Moreover, they got the precise blow-up
scenario and gave an explosion criterion of strong
solutions of Eq.(2) with rather general initial data.

If α = 1, γ = 1 and ω = 0, Eq. (2) becomes the
following fifth-order shallow water equation

ut − uxxt + uxxx + 3uux− uxxxxx = 2uxuxx + uuxxx (3)

which is a higher-order modification of the following
Camassa-Holm equation

ut − uxxt + 3uux = 2uxuxx + uuxxx.

The well-posedness of the Cauchy problem of Eq. (3) in
Sobolev spaces has been studied by several authors (see
[7,8,9] and the references therein).

In Eq. (2), if the strong dispersive term
γ
(
u−α2uxx

)
xxx

is rewritten as the weak dispersive term

∗ Corresponding author e-mail: nurhandundar@hotmail.com

c© 2021 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/150404


430 N. Dündar, N. Polat: Local Well-posedness for a Generalized...

γuxxx, Eq. (2) becomes the following
Dullin-Gottwald-Holm equation

{
ut −α2uxxt + 2ωux+ 3uux+ γuxxx =
α2 (2uxuxx + uuxxx) , t > 0, x ∈R

(4)

which was derived by Dullin, Gottwald and Holm using
asymptotic expansions directly in the Hamiltonian for
Euler’s equations in the shallow water regime in [10]. It is
a model for unidirectional shallow water waves over a flat
bottom. Here, the constants α2 and

γ
2ω are squares of

length scales, and ω is the linear wave speed for
undisturbed water at rest at spetial infinity. It has a
bi-Hamiltonian structure and a Lax pair formulation (see
[10]). Dullin-Gottwald-Holm equation (we call it DGH
equation for short) is an integrable system via the inverse
scattering transform (IST) method and contains both the
Korteweg-de Vries (KdV) and Camassa-Holm (CH)
equations [11] as limiting cases.

Recently, many papers have been conducted on the
DGH equation. In [12], Tian et al. studied the
well-posedness of the Cauchy problem and the scattering
problem for the DGH equation. In [13], Hakkaev proved
the orbital stability of the peaked solitary waves for the
DGH equation using the method in [14]. It has been
shown that DGH equation has global solutions and
blow-up solutions in [15,16,17,18].

Recently, the Cauchy problem of the generalized
DGH equation has been investigated in [19,20]. The
well-posedness of problem for the following
generalization of the DGH equation

{
ut −α2uxxt + h(u)x + γuxxx =

α2
(

g′(u)
2

u2
x + g(u)uxx

)
x
, t > 0, x ∈ R

(5)

has been studied in [20]. The difference between Eq.(1)
and Eq.(5) is that Eq. (1) contains the strong dispersive
term γ

(
u−α2uxx

)
xxx

. Thus, Eq.(1) involves higher-order
derivative than Eq.(5). However, the Cauchy problem of
the generalized integrable shallow water equation with
strong dispersive term has not been discussed yet. The
present paper aims to establish the local well-posedness
of Eq. (1). The result in this paper generalizes the local
well-posedness results in [6,20]. Moreover, using Lemma
2.4 and Lemma 2.5, we obtained the local well-posedness

of Eq. (1) for g,h ∈ C[s]+1 (R) , s > 3
2
, but the local

well-posedness of Eq. (5) was obtained for
g,h ∈Cm+3 (R) , m ≥ 2 in [20].

For convenience, we now reformulate our problem (1).
Rescalling x 7→ x

α , we rewrite (1) as





ut − uxxt +(g(u))x + a(u− uxx)xxx =

b
(

h′(u)
2

u2
x + h(u)uxx

)
x
, t > 0, x ∈ R,

u(0,x) = u0 (x) , x ∈ R,

(6)

where a = γ
α3 and b = 1

α .
We apply Kato’s theory to establish the local

well-posedness for the Cauchy problem of (1). We now

provide the framework in which we shall reformulate (6).

Note that if p(x) = 1
2
e−|x|, x ∈ R, then(

1− ∂ 2
x

)−1
f = p ∗ f for all f ∈ L2 (R) . Here, we denote

by ∗ the convolution. If we denote P(D) as the Fourier
integral operator with the Fourier multiplier

−iξ
(
1+ ξ 2

)−1
and Q(D) =

(
1+ ξ 2

)−1
, then we can

rewrite (6), as follows:




ut + bh(u)ux + auxxx = P(D)
(
g(u)+ b

2
h′ (u)u2

x

)

+Q(D)(bh(u)ux) , t > 0, x ∈ R,
u(0,x) = u0 (x) , x ∈R.

(7)

Or in the equivalent form





ut + bh(u)ux + auxxx =−∂xΛ
−2

(
g(u)+ b

2
h′ (u)u2

x

)

+Λ−2 (bh(u)ux) , t > 0, x ∈ R,
u(0,x) = u0 (x) , x ∈ R.

(8)

where Λ =
(
1− ∂ 2

x

)1/2
.

The main results:

Theorem 1.1. Assume that g,h ∈ C[s]+1 (R) , and h(0) =
g(0) = 0. Given u0 ∈ Hs, s > 3

2
, there exists a maximal

T = T (u0) > 0, and a unique solution u to (1) (or (8))
such that

u = u(.,u0) ∈C ([0,T ) ;Hs)∩C1
(
[0,T ) ;Hs−1

)
.

Moreover, the solution depends continuously on the initial
data, i.e the mapping

u0 → u(.,u0) : Hs →C ([0,T ) ;Hs)∩C1
(
[0,T ) ;Hs−1

)

is continuous.

Theorem 1.2. Assume that g,h ∈ C[s]+1 (R) , and h(0) =
g(0) = 0. Let u0 ∈ Hs, s > 3

2
. Then, T in Theorem 1.1

may be chosen independent of s in the following sense.
If u = u(.,u0) ∈ C ([0,T ) ;Hs)∩C1

(
[0,T ) ;Hs−1

)
to (1)

(or (8)), and if u0 ∈ Hs′ for some s′ 6= s, 3
2
< s′, then u ∈

C

(
[0,T ) ;Hs′

)
∩C1

(
[0,T ) ;Hs′−1

)
with the same T. In

particular, if g,h ∈ C∞ (R) and u0 ∈ H∞ = ∩s≥0Hs, then
u ∈C ([0,T ) ;H∞) .

The remainder of the paper is organized, as follows:
In section 2, we present our basic notation and recall
some required results. In section 3, by applying Kato’s
theory, the local well-posedness of the generalized
integrable shallow water equation with strong dispersive
term is investigated.

2 Preliminaries

First, we introduce some notations. Λ s =
(
1− ∂ 2

x

)s/2
, s ∈

R; Hs = Hs (R) with norm

‖ f‖Hs = ‖ f‖s =

(∫

R

(
1+ |ξ |2

)s ∣∣∣ f̂ (ξ )
∣∣∣
2

dξ

)1/2
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and (., .) for its inner product. [A,B] = AB−BA denotes
the commutator of the linear operators A and B. For the
sake of simplicity, we will employ the same symbols c for
different positive constants.

We will apply Kato’s theory to establish the local well-
posedness for the Cauchy problem of Eq. (1). Consider the
abstract quasi-linear evolution equation:

dv

dt
+A(v)v = f (v) , t ≥ 0, v(0) = v0. (9)

Let X and Y be two Hilbert spaces such that Y is
continuously and densely embedded in X and let
Q : Y → X be a topological isomorphism. L(Y,X) denotes
the space of all bounded linear operators from Y to X

(L(X), if X = Y ). Assume that:
(I) A(y) ∈ L(Y,X) for y ∈Y with

‖(A(y)−A(z))ω‖X ≤ κ1 ‖y− z‖X ‖ω‖Y , y,z,ω ∈Y,

and A(y) ∈ G(X ,1,β ) , (i.e. A(y) is quasi-m-accretive),
uniformly on bounded sets in Y .

(II) QA(y)Q−1 = A(y) + B(y) where B(y) ∈ L(X) is
bounded, uniformly on bounded sets in Y . Moreover,

‖(B(y)−B(z))ω‖X ≤ κ2 ‖y− z‖Y ‖ω‖X , y,z ∈Y,ω ∈X .

(III) f : Y → Y and also extends to a map from X into
X . f is bounded on bounded sets in Y , and satisfies

‖( f (y)− f (z))‖Y ≤ κ3 ‖y− z‖Y , y,z ∈ Y,

‖( f (y)− f (z))‖X ≤ κ4 ‖y− z‖X , y,z ∈ Y.

Here, κ1,κ2,κ3 and κ4 depend only on max{‖y‖Y ,‖z‖Y}.

Theorem 2.1. [21] Assume that (I), (II) and (III) hold.
Given v0 ∈ Y , there is a T > 0 depending only on ‖v0‖Y

and a unique solution v to Eq. (9) such that

v = v(.,v0) ∈C ([0,T ) ;Y )∩C1 ([0,T ) ;X) .

Moreover, the map v0 → v(.,v0) is continuous from Y to
C ([0,T ) ;Y )∩C1 ([0,T ) ;X) .

Some useful lemmas:

Lemma 2.1. [22] Let f ∈ Hs, s > 3
2
. Then,

∥∥Λ−r
[
Λ r+t+1,M f

]
Λ−t

∥∥
L(L2) ≤ c‖ f‖s , |r| , |t| ≤ s−1,

where M f is the operator of multiplication by f and c is a
positive constant depending only on r, t.

Lemma 2.2. [21] Let r, t be any real numbers such that
−r < t ≤ r. Then,

‖ f g‖t ≤ c‖ f‖r ‖g‖t , if r >
1

2
,

‖ f g‖
r+t− 1

2
≤ c‖ f‖r ‖g‖t , if r <

1

2

where c is a positive constant depending only on r, t.

Lemma 2.3. [23] Let X and Y be two Banach spaces and
Y be continuously and densely embedded in X . Let −A be

the infinitesimal generator of the C0-semigroup T (t) on X

and S be an isomorphism from Y onto X . Y is
−A-admissible (i.e T (t)Y ⊂ Y, ∀t ≥ 0, and the restriction
of T (t) to Y is a C0-semigroup on Y ) if and only if
−A1 = −SAS−1 is the infinitesimal generator of the
C0-semigroup T1 (t) = −ST (t)S−1 on X . Moreover, if Y

is −A-admissible, then the part of −A in Y is the
infinitesimal generator of the restriction of T (t) to Y.

Lemma 2.4. [24] Let f ∈ C[s]+1 (R) , s ≥ 0, with f (0) =
0.Then, for any R > 0, there is some constant C1 (R) such
that for all u ∈ Hs ∩L∞ with ‖u‖L∞ ≤ R, we have

‖ f (u)‖s ≤C1 (R)‖u‖s .

Lemma 2.5. [24,25] Let f ∈ C[s]+1 (R) , s ≥ 0. Then, for
any R > 0, there is some constant C2 (R) such that for all
u,v ∈ Hs ∩L∞ with ‖u‖L∞ ≤ R, ‖v‖L∞ ≤ R and ‖u‖s ≤ R,
‖v‖s ≤ R, we have

‖ f (u)− f (v)‖s ≤C2 (R)‖u− v‖s .

3 Local well-posedness

In this section, we prove Theorem 1.1 and Theorem 1.2.

To shorten our notation, we write G(X ,1,β ) for the
set of all linear operators A in X , such that −A generates a

C0-semigroup T (t) on X and that ‖T (t)‖L(X) ≤ etβ for all
t ≥ 0. We will apply Theorem 2.1 with

A(u) = bh(u)∂x + a∂ 3
x ,

f (u) = −∂xΛ
−2

(
g(u)+

b

2
h′ (u)u2

x

)
+Λ−2 (bh(u)ux) ,

Y = Hs, X =Hs−1 and Q =Λ =
(
1− ∂ 2

x

) 1
2 . We know that

Q is an isomorphism of Hs onto Hs−1. To prove Theorem
1.1, by applying Theorem 2.1, we only need to check that
A(u) and f (u) satisfy assumptions (I)–(III).

We break the argument into several lemmas.

Lemma 3.1. The operator A(u) = bh(u)∂x+a∂ 3
x , with u∈

Hs, s > 3
2

belongs to G
(
L2,1,β

)
.

Proof. From [26], A(u) ∈ G
(
L2,1,β

)
if and only if there

is a real number β such that

(i) (A(u)y,y)0 ≥−β ‖y‖2
0 ,

(ii) The range of λ I+A is all of X , for some (or all) λ > β .
We first prove (i). Since u ∈ Hs, s > 3

2
, u and ux belongs to

L∞. Note that ‖ux‖L∞ ≤ ‖u‖s and ‖u‖L∞ ≤ ‖u‖s . Thus,

|(A(u)y,y)0| = |((bh(u))∂xy,y)0|+
∣∣(a∂ 3

x y,y
)

0

∣∣

≤

∣∣∣∣
b

2
‖∂xh(u)‖L∞ ‖y‖2

0

∣∣∣∣

≤

∣∣∣∣
b

2
‖h(u)‖s ‖y‖2

0

∣∣∣∣

≤ cC1 (R)‖u‖s ‖y‖2
0 .
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Setting β = cC1 (R)‖u‖s , we obtain

(A(u)y,y)0 ≥ −β ‖y‖2
0 . Next, we prove that A(u)

satisfies (ii). Because A(u) is a closed operator and
satisfies (i), (λ I+A) has closed range in L2 for all λ > β .
Therefore, it suffices to show that (λ I+A) has dense

range in L2 for all λ > β . Given u ∈ Hs, s > 3
2

and y ∈ L2.
We have the generalized Leibniz formula

∂x

((
bh(u)+ a∂ 2

x

)
y
)
= ∂x

(
bh(u)+ a∂ 2

x

)
y

+
(
bh(u)+ a∂ 2

x

)
∂xy in H−1.

Due to u, ux ∈ L∞, we have

D(A) = D
(
(bh(u))∂x + a∂ 3

x

)

=
{

y ∈ L2,(bh(u))∂xy+ a∂ 3
x y ∈ L2

}

=
{

z ∈ L2,−∂x

(
bh(u)+ a∂ 2

x

)
z ∈ L2

}

= D
((

(bh(u))∂x + a∂ 3
x

)∗)
= D(A∗) .

Assume that the range of (λ I+A) is not all of L2, then
there exists z ∈ L2, z 6= 0, such that ((λ I+A)y,z)0 = 0,

∀y∈ D(A) . Since H1 ⊂D(A) , we have that D(A) is dense
in L2. Hence, it follows that z ∈ D(A∗) and λ z+A∗ = 0 in
L2. Since D(A) =D(A∗) , multiplying by z and integrating
by parts, we obtain

0 = ((λ I+A∗)z,z)0

= (λ z,z)0 +(z,Az)0 ≥ (λ −β )‖z‖2
0 , ∀λ > β ,

and so z = 0, which contradicts our assumption z 6= 0. This
completes the proof of Lemma 3.1.

Lemma 3.2. The operator A(u)= bh(u)∂x+a∂ 3
x , with u∈

Hs, s > 3
2

belongs to G
(
Hs−1,1,β

)
.

Proof. Since Hs−1 is a Hilbert space, A(u) belongs to
G(Hs−1,1,β ) for some real number β if and only if the
following conditions hold [21]:

(i) (A(u)y,y)s−1 ≥−β ‖y‖2
s−1 .

(ii) −A(u) is the infinitesimal generator of a
C0−semigroup on Hs−1 for some (or all) λ > β .
Using the equalities

(
Λ s−1a∂ 3

x y,Λ s−1y
)

0
= 0, (10)

Λ s−1 (bh(u)∂xy) =
[
Λ s−1,bh(u)

]
∂xy+ bh(u)Λ s−1∂xy

we have∣∣(A(u)y,y)s−1

∣∣ =
∣∣(Λ s−1

((
bh(u)∂x + a∂ 3

x

)
y
)
,Λ s−1y

)
0

∣∣

=
∣∣(Λ s−1bh(u)∂xy,Λ s−1y

)
0

∣∣

=
∣∣([Λ s−1,bh(u)

]
∂xy,Λ s−1y

)
0

+
(
bh(u)Λ s−1∂xy,Λ s−1y

)
0

∣∣

≤
∣∣b
([

Λ s−1,h(u)
]

∂xΛ
1−sΛ s−1y,Λ s−1y

)
0

∣∣

+

∣∣∣∣
b

2

(
∂xh(u) ,

(
Λ s−1y

)2
)

0

∣∣∣∣

≤
∥∥b

[
Λ s−1,h(u)

]
Λ 2−s

∥∥
L(L2)

∥∥Λ s−1y
∥∥2

0

+

∥∥∥∥
b

2
∂xh(u)

∥∥∥∥
L∞

∥∥(Λ s−1y
)∥∥2

0
.

From Lemma 2.1 with r = 0, t = s−2 and Lemma 2.4, we
obtain
∣∣(A(u)y,y)s−1

∣∣ ≤ c(‖h(u)‖s + ‖∂xh(u)‖L∞)‖y‖2
s−1

≤ c(‖h(u)‖s + ‖h(u)‖s)‖y‖2
s−1

≤ cC1 (R)‖u‖s ‖y‖2
s−1 .

Choosing β = cC1 (R)‖u‖s , we have

(A(u)y,y)s−1 ≥−β ‖y‖2
s−1 . Next, we prove (ii). Consider

S =Λ s−1. Note that S is an isomorphism of Hs−1 onto L2,
and Hs−1 is continuously and densely embedded in L2 as
s > 3

2
. Define

A1 (u) = SA(u)S−1 = Λ s−1A(u)Λ 1−s,

B1 (u) = A1 (u)−A(u) .

Let y ∈ L2 and u ∈ Hs. Moreover, we have[
Λ s−1,(bh(u))∂x

]
Λ 1−s =

[
Λ s−1,(bh(u))

]
Λ 1−s∂x. Then,

we obtain (note that (10)= 0)

‖B1 (u)y‖0 =
∥∥[Λ s−1,bh(u)∂x

]
Λ 1−sy

∥∥
0

=
∥∥[Λ s−1,bh(u)

]
Λ 1−s∂xy

∥∥
0

≤
∥∥b

[
Λ s−1,h(u)

]
Λ 2−s

∥∥
L(L2)

∥∥Λ−1∂xy
∥∥

0

≤ c‖h(u)‖s ‖y‖0 ≤ cC1 (R)‖u‖s ‖y‖0 ,

where we used Lemma 2.1 with r = 0, t = s − 2 and
Lemma 2.4. Hence, B1 (u) ∈ L

(
L2
)
. Note that

A1 (u) = A(u) + B1 (u) and A(u) ∈ G
(
L2,1,β

)
(see

Lemma 3.1). By a perturbation theorem for a semigroup,
we have that A1 (u) ∈ G

(
L2,1,β1

)
. By Lemma 2.3 with

X = L2,Y = Hs−1, and S = Λ s−1, we conclude that Hs−1

is A-admissible. Therefore, −A(u) is the infinitesimal
generator of a C0-semigroup on Hs−1. This completes the
proof of Lemma 3.2.

Lemma 3.3. Let the operator A(u) = bh(u)∂x + a∂ 3
x with

u ∈ Hs, s > 3
2
. Then, A(u) ∈ L

(
Hs,Hs−1

)
. Moreover,

‖(A(u)−A(v))ω‖s−1 ≤ κ1 ‖u− v‖s−1 ‖ω‖s ,

u,v,ω ∈ Hs.

Proof. Let u,v,ω ∈ Hs,s > 3
2
. Note that Hs−1 is a Banach

algebra. Then, we have

‖(A(u)−A(v))ω‖s−1 = ‖b(h(u)− h(v))∂xω‖s−1

≤ ‖b(h(u)− h(v))‖s−1‖∂xω‖s−1

≤ cC2 (R)‖u− v‖s−1‖ω‖s ,

where we used Lemma 2.5. Taking v = 0 in the above
inequality, we obtain A(u) ∈ L

(
Hs,Hs−1

)
. Thus, proof of

the Lemma 3.3 is completed.

Lemma 3.4. The operator

B(u) =
[
Λ ,

(
bh(u)+ a∂ 2

x

)
∂x

]
Λ−1 ∈ L

(
Hs−1

)
,

with u ∈ Hs, s > 3
2
. Moreover,

‖(B(u)−B(v))ω‖s−1 ≤ κ2 ‖u− v‖s ‖ω‖s−1 .
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Proof. Let u,v ∈ Hs and ω ∈ Hs−1, s > 3
2
. Moreover, we

have [Λ ,(bh(u))∂x]Λ
−1 = [Λ ,(bh(u))]Λ−1∂x. Then, we

obtain

‖(B(u)−B(v))ω‖s−1

=
∥∥Λ s−1 [Λ ,(bh(u)− bh(v))∂x]Λ

−1ω
∥∥

0

=
∥∥Λ s−1 [Λ ,(bh(u)− bh(v))]Λ−1∂xω

∥∥
0

≤
∥∥bΛ s−1 [Λ ,(h(u)− h(v))]Λ 1−s

∥∥
L(L2)

×
∥∥Λ s−2∂xω

∥∥
0
.

Applying Lemma 2.1 with r = 1− s, t = s−1 and Lemma
2.5, we obtain

‖(B(u)−B(v))ω‖s−1 ≤ c‖(h(u)− h(v))‖s ‖ω‖s−1

≤ cC2 (R)‖u− v‖s ‖ω‖s−1 .

Taking v = 0 in the above inequality, we obtain B(u) ∈
L
(
Hs−1

)
. Thus, proof of the Lemma 3.4 is completed.

Lemma 3.5. Let

f (u) = −∂x

(
1− ∂ 2

x

)−1
(

g(u)+
b

2
h′ (u)u2

x

)

+
(
1− ∂ 2

x

)−1
(bh(u)ux) .

Then, f is bounded on bounded sets in Hs, and satisfies

(i) ‖ f (u)− f (v)‖s ≤ κ3‖u− v‖s u,v ∈ Hs,

(ii) ‖ f (u)− f (v)‖s−1 ≤ κ4 ‖u− v‖s−1 u,v ∈ Hs.

Proof. Let u,v ∈ Hs, s > 3
2
. Setting

f1(u) =
(
1− ∂ 2

x

)−1
(bh(u)ux)

= b∂x

(
1− ∂ 2

x

)−1
(k (u)) ,

f2(u) = −∂x

(
1− ∂ 2

x

)−1
(g(u)) ,

f3(u) = −∂x

(
1− ∂ 2

x

)−1
(

b

2
h′ (u)u2

x

)
,

where k′ (u) = h(u) , then

f (u) = f1(u)+ f2(u)+ f3(u).

Applying Lemma 2.5, we get

‖ f1(u)− f1(v)‖s ≤ c‖b(k(u)− k(v))‖s−1

≤ cC2 (R)‖u− v‖s

and

‖ f2(u)− f2(v)‖s ≤ c‖g(u)− g(v)‖s−1

≤ cC2 (R)‖u− v‖s .

Since s > 3
2

and Hs−1 is a Banach algebra, then

‖ f3(u)− f3(v)‖s ≤ c
∥∥h′ (u)u2

x − h′ (v)v2
x

∥∥
s−1

≤ c
(∥∥h′ (u)

(
u2

x − v2
x

)∥∥
s−1

+
∥∥v2

x

(
h′ (u)− h′ (v)

)∥∥
s−1

)

≤ c(
∥∥h′ (u)− h′ (0)

∥∥
s−1

‖ux − vx‖s−1

×‖ux + vx‖s−1

+
∣∣h′ (0)

∣∣‖ux − vx‖s−1 ‖ux + vx‖s−1

+‖vx‖
2
s−1

∥∥(h′ (u)− h′ (v)
)∥∥

s−1
).

Again using Lemma 2.4 and Lemma 2.5, we obtain

‖ f3(u)− f3(v)‖s ≤ c
(
C1 (R)+

∣∣h′ (0)
∣∣)‖u− v‖s ‖u+ v‖s

+cR2C2 (R)‖u− v‖s

≤ c
(
R
(
C1 (R)+

∣∣h′ (0)
∣∣)+R2C2 (R)

)

×‖u− v‖s

≤ c‖u− v‖s .

Taking v = 0 in the above inequality, we obtain that f is
bounded on bounded sets in Hs.
Next, we prove (ii). Let u,v ∈ Hs, s > 3

2
. Analogously of

(i), we get

‖ f1(u)− f1(v)‖s−1 ≤ c‖b(k(u)− k(v))‖s−2

≤ cC2 (R)‖u− v‖s−1 ,

‖ f2(u)− f2(v)‖s−1 ≤ c‖g(u)− g(v)‖s−2

≤ cC2 (R)‖u− v‖s−1 .

Next,

‖ f3(u)− f3(v)‖s−1 ≤ c
∥∥h′ (u)u2

x − h′ (v)v2
x

∥∥
s−2

≤ c

(∥∥h′ (u)
(
u2

x − v2
x

)∥∥
s−2

+
∥∥v2

x

(
h′ (u)− h′ (v)

)∥∥
s−2

)

≤ c
(∥∥h′ (u)∂x (u+ v)

∥∥
s−1

‖∂x (u− v)‖s−2

)

+‖vx‖
2
s−1

∥∥(h′ (u)− h′ (v)
)∥∥

s−2

≤ c(
∥∥h′ (u)− h′ (0)

∥∥
s−1

‖u− v‖s−1 ‖u+ v‖s

+
∣∣h′ (0)

∣∣‖u− v‖s−1 ‖u+ v‖s

+‖v‖2
s

∥∥(h′ (u)− h′ (v)
)∥∥

s−2
)

≤ c‖u− v‖s−1 .

This completes the proof of Lemma 3.5.

Proof of Theorem 1.1. Combining Theorem 2.1 and
Lemmas 3.1-3.5, we can get the statement of Theorem 1.1.

Then, we will give the proof of Theorem 1.2.

Proof of Theorem 1.2. It suffices to consider the case
s′ > s, since the case s′ < s is obvious from uniqueness
which is guaranteed by Theorem 1.1. To prove Theorem
1.2 for s′ > s, let us return to (8), if we apply operator Λ 2 to
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(8), we obtain the following equation for y(t) = Λ 2u(t) =
u− uxx :

dy

dt
+A(t)y+B(t)y = f (t) , y(0) = Λ 2u(0) ,

where

A(t)y = ∂x

((
bh(u)+ a∂ 2

x

)
y
)
, B(t)y = bh′ (u)uxy,

and

f (t) = ux

(
b

2
h′′ (u)u2

x − g′ (u)+ 2bh′ (u)u+ bh(u)

)
.

Because u ∈C ([0,T ) ;Hs) and u0 ∈ Hs′ , we have

y ∈C
(
[0,T ) ;Hs−2

)

and

y(0) = Λ 2u(0) ∈C

(
[0,T ) ;Hs′−2

)
.

It is our purpose to deduce y ∈ C
(
[0,T ) ;Hs′−2

)
, which

implies u ∈ C
(
[0,T ) ;Hs′

)
. This will complete the proof

of Theorem 1.2.
Note that u ∈ C ([0,T ) ;Hs) , ux ∈ Hs−1, where Hs−1 is a

Banach algebra, and g,h ∈C[s]+1 (R) . Then, we obtain

B(t) ∈ L
(
Hs−1

)
and f (t) ∈C

(
[0,T ) ;Hs−1

)
.

To this end (see Lemmas 3.1-3.3 in [22]), we first need to
prove that the family A(t) has a unique evolution operator
{U (t,τ)} associated with the spaces X = Hη and Y = Hk,
where −s ≤ η ≤ s− 2, 1− s ≤ k ≤ s− 1, and k ≥ η + 1.
Therefore, according to the proof of Lemma 3.1 in [22],
we need to verify the following three conditions.
(i) A(t) ∈ G(Hη ,1,β ), ∀y ∈ Hs.
(ii) Λ η ∂x

[
Λ k−η ,bh(u)

]
Λ−k is uniformly bounded on L2.

(iii) A(t) ∈ L(Hk,Hη) is strongly continuous in t.
We begin by verifying (i). Since Hη is a Hilbert space,
A(t)∈G(Hη ,1,β ) [21] if and only if there is a real number
β such that

(a) (A(t)y,y)η ≥−β ‖y‖2
η ,

(b) −A(t) is the infinitesimal generator of a C0-semigroup
on Hη for some (or all) λ > β .
First, we prove (a). Take y ∈ Hη and note that

Λ η ∂x

(
bh(u)y+ a∂ 2

x y
)

= Λ η ∂x

(
−
[
Λ−η ,bh(u)

]
Λ η y+Λ−η (bh(u)Λ η y)

)

+aΛ η∂ 3
x y

= −Λ η ∂x

[
Λ−η ,bh(u)

]
Λ ηy+ ∂x (bh(u)Λ η y)

+aΛ η∂ 3
x y.

Then, we have

(A(t)y,y)η =
(
−Λ η∂x

[
Λ−η ,bh(u)

]
Λ η y

+∂x (bh(u)Λ η y)+ aΛ η∂ 3
x y,Λ η y

)
0

=
(
Λ η+1

[
Λ−η ,bh(u)

]
Λ ηy,∂xΛ η−1y

)
0

+
b

2
(∂x (h(u)Λ η y) ,Λ η y)0

≤
∥∥Λ η+1

[
Λ−η ,bh(u)

]∥∥
L(L2) ‖Λ ηy‖

2
0

+

∥∥∥∥
b

2
∂xh(u)

∥∥∥∥
L∞

‖Λ ηy‖
2
0 .

From Lemma 2.1 with r = −(η + 1), t = 0 and Lemma
2.4, we obtain
∣∣∣(A(t)y,y)η

∣∣∣ ≤ c(‖h(u)‖s + ‖∂xh(u)‖L∞)‖y‖2
η

≤ c(‖h(u)‖s + ‖h(u)‖s)‖y‖2
η

≤ cC1 (R)‖u‖s ‖y‖2
η .

Choosing β = cC1 (R)‖u‖s , we have

(A(t)y,y)η ≥−β ‖y‖2
η .

Second, we prove (b). Let S = Λ s−1−η . Note that S is an
isomorphism of Hs−1 onto Hη and Hs−1 is continuously
and densely embedded in Hη as −s ≤ η ≤ s− 2. Define

A1 (t) = SA(t)S−1 = Λ s−1−ηA(t)Λ η+1−s,

B1 (t) = A1 (t)−A(t) = [S,A(t)]S−1.

Let y ∈ Hη and u ∈ Hs, s > 3
2
. From Lemma 2.1 with r =

−(η + 1) , t = s− 1 and Lemma 2.4, we have that

‖B1 (t)y‖η =
∥∥Λ η∂x

[
Λ s−1−η ,bh(u)

]
Λ η+1−sy

∥∥
0

≤
∥∥Λ η∂x

[
Λ s−1−η ,bh(u)

]
Λ 1−s

∥∥
L(L2)

×‖Λ ηy‖0

≤ c‖h(u)‖s ‖y‖0

≤ cC1 (R)‖u‖s ‖y‖η .

Thus, we obtain B1 (t) ∈ L(Hη) . Note that

A(t)y = ∂x

((
bh(u)+ a∂ 2

x

)
y
)

= ∂x (bh(u))y+ bh(u)∂xy+ a∂ 3
x y

and ux ∈ L
(
Hs−1

)
.

Applying Lemma 3.2 and a perturbation theorem for
semigroups, we have Hs−1 is A(t)-admissible.
Furthermore, applying Lemma 2.3 with Y = Hs−1,
X = Hη and S = Λ s−1−η , we obtain that −A1(t) is the
infinitesimal generator of a C0-semigroup on Hη . Due to
A1 (t) = A(t) + B1 (t) and B1 (t) ∈ L(Hη) ,by a
perturbation theorem for a semigroups, we have that
−A(t) is the infinitesimal generator of a C0-semigroup on
Hη . This completes the proof of (b).
Next, we verify (ii). Take y ∈ L2. Then, we have

∥∥∥Λ η ∂x

[
Λ k−η ,bh(u)

]
Λ ky

∥∥∥
0
≤ cC1 (R)‖u‖s ‖y‖0 ,
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where we applied Lemma 2.1 with r = −(η + 1) , t = k

and Lemma 2.4.
Finally, we verify (iii). Take y ∈ Hk. Then,

‖(A(t + τ)−A(t))y‖η

= ‖∂x (bh(u(t + τ))− bh(u(t))y)‖η

≤ ‖bh(u(t + τ))− bh(u(t))y‖η+1

≤ c‖b(h(u(t + τ))− h(u(t)))‖s−1 ‖y‖η+1

≤ cC2 (R)‖u(t + τ)− u(t)‖s−1 ‖y‖η+1

≤ cC2 (R)‖(u(t + τ)− u(t))‖s ‖y‖k ,

where we applied Lemma 2.2 with r = s− 1, t = η + 1
and Lemma 2.5. By the continuity of u, we prove (iii).
Thus, the above three conditions imply the existence and
uniqueness of evolution operator U (t,τ) for the family
A(t) . In particular, U (t,τ) maps Hr into itself for
−s ≤ r ≤ s− 1.
Next, we choose Y = Hs−2 and X = Hs−3. Note that

y ∈C
(
[0,T ) ;Hs−2

)
∩C1

(
[0,T ) ;Hs−3

)
.

By the properties of evolution operator U (t,τ) , we can
obtain

d

dτ
(U (t,τ)y(τ)) =U (t,τ)(−B(τ)y(τ)+ f (τ)) .

An integrating over τ ∈ [0, t] gives

y(t) =U (t,0)y(0)+

∫ t

0
U (t,τ) (−B(τ)y(τ)+ f (τ))dτ.

(11)
If s < s′ ≤ s + 1, we have

f (t) ∈ C
(
[0,T ) ;Hs−1

)
⊂ C

(
[0,T ) ;Hs′−2

)
and

B(t) = bh′ (u)ux ∈ L
(

Hs′−2
)

is strongly continuous in

[0, t) , and Hs−1Hs′−2 ⊂ Hs′−2 as s − 1 > 1
2
. Due to

−s < s − 2 < s′ − 2 ≤ s − 1, the family {U (t,τ)} is

strongly continuous on Hs′−2 to itself. Note that

y(0) ∈ Hs′−2. We regard Eq. (11) as an integral equation
of Volterra type which can be solved for y by successive
approximation. Then, the result of Theorem 1.2 is
obtained.
If s′ > s + 1, we obtain the result of Theorem 1.2 by
repeated application of the above argument. This
completes the proof of Theorem 1.2.
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