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Abstract: In this paper, we introduce a new solution technique for resolving the neutrosophic linear fractional programming problem,

where the objective function’s coefficients are neutrosophic trapezoidal-numbers. We convert the problem into a crisp multi-objective

linear fractional programming. The transformed multi-objective linear fractional programming problem is reduced to a single-objective

linear programming problem (LP) by using the proposed approach, which can be easily solved by suitable algorithm. A numerical

example is given to verify the proposed method.
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1 Introduction

Linear Fractional Programming (LFP) is a generalization
of LP, whereas in a linear-fractional programming the
objective function is a ratio of two linear functions. The
highest profit/cost ratio, inventory/sale, real
costs/standard costs, performance/employee, etc., is used
in linear fractional programming. Decision makers may
be unable, due to incomplete and imprecise information
tending to be provided in real-life situations to indicate
the coefficients (some or all), of the LFP problem. Often,
objective function aspiration level and parameter of the
problems are uncertain decision makers. The
neutrosophical environment can effectively model these
situations. Neutrosophy is an exploration of dialectic
neutrality as an extension.

Neutrosophic is the neutrosophy derivative which
contains neutrosophic set, neutrosophic probability, and
neutrosophic logic. Neutrosophical theory means
neutrosophy used in many areas of science to solve
indeterminacy-related issues. While intuitionistic fuzzy
sets can process incomplete information not
indeterminate, information can be treated by the
neutrosophical set both incomplete and indeterminate.
Smarandache, Florentin. [1,2] introduce Neutrosophic

sets characterized by three separate degrees namely truth
(T ), indeterminacy (I), and falsity memberships degrees
(F), in which the T, I,F are standard or non-standard
subsets of ]−0,1+[. The neutrosophical decision makers
want to maximize the degree of truthiness and to
minimize the degree of indeterminacy and falsity
membership. The article has the following structure: in
the next section we discuss a preliminary; in the third
section presents neutrosophic linear fractional
programming problem with solution procedure; the fourth
section provides a numerical example to put on view how
the approach can be applied; finally, the fifth section
provides the conclusion. Also A. M. ElHadidi, O. E.
Emam, A. M. Abdelfadel [3] use ranking to optimize the
fully neutrosophic.

2 Preliminaries

In this section, some of the fundamental concepts in
neutrosophic set theory and Neutrosophic linear fractional
programming (NLFP) problem are introduced:

Definition 1 [4] The neutrosophical trapezoidal number is
defined as a set in R with the following truth,
indeterminacy and falsity memberships functions:
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TA(x) =



















αA(x−a1)
a2−a1

: a1 ≤ x ≤ a2

αA : a2 ≤ x ≤ a3

αA

(

a4−x
a4−a3

)

: a3 ≤ x ≤ a4

0 otherwise

IA(x) =



















a2−x+θA(x−a′1)

a2−a′1
: a′1 ≤ x ≤ a2

θA : a2 ≤ x ≤ a3
x−a3+θA(a

′
4−x)

a′4−a3
: a3 ≤ x ≤ a′4

1 otherwise

FA(x) =



















a2−x+βA(x−a”1)
a2−a”1

: a”1 ≤ x ≤ a2

βA : a2 ≤ x ≤ a3
x−a3+βA(a”4−x)

a”4−a3
: a3 ≤ x ≤ a”4

1 otherwise

where αA,θA,βA ∈ [0,1] are represent the maximum
degree of truthiness, minimum degree of indeterminacy
and minimum degree of falsity, respectively. The
membership functions of trapezoidal neutrosophic
number are presented in Fig. 1. It is clear that
a”1 < a1 < a′1 < a2 < a3 < a′4 < a4 < a”4.

Fig. 1: Truth, indeterminacy and falsity memberships functions

of trapezoidal neutrosophic numbers

Definition 2 [5] A single valued trapezoidal neutrosophic
number (SVTN-number), denoted by
A∼ = 〈(a,b,c,d) ,αA,θA,βA〉 is a special neutrosophic set

on the real number set R, whose truth, indeterminacy, and
falsity memberships functions are given as follows:

TA(x) =















αA(x−a)
b−a

: a ≤ x ≤ b

αA : b ≤ x ≤ c

αA

(

d−x
d−c

)

: c ≤ x ≤ d

0 otherwise

(1)

IA(x) =















b−x+θA(x−a)
b−a

: a ≤ x ≤ b

θA : b ≤ x ≤ c
x−c+θA(d−x)

d−c
: c ≤ x ≤ d

1 otherwise

(2)

FA(x) =















b−x+βA(x−a)
b−a

: a ≤ x ≤ b

βA : b ≤ x ≤ c
x−c+βA(d−x)

d−c
: c ≤ x ≤ d

1 otherwise

(3)

Definition 3 [6] The algebraic operations on two
trapezoidal neutrosophic numbers

A∼ = 〈(a1,b1,c1,d1) ,αA,θA,βA〉 and

B∼ = 〈(a2,b2,c2,d2) ,αB,θB,βB〉 are as follows:

A∼+B∼ = 〈(a1 + a2,b1 + b2,c1 + c2,d1 + d2) ,αA ∧αB,

θA ∨θB,βA ∨βB〉

A∼−B∼ = 〈(a1 − d2,b1 − c2,c1 − b2,d1 − a2) ,αA ∧αB,

θA ∨θB,βA ∨βB〉

(A∼)−1 =

〈(

1

d1

,
1

c1

,
1

b1

,
1

a1

)

,αA,θA,βA

〉

where A∼ 6= 0

γA∼ =

{

〈(γa1,γb1,γc1,γd1) ,αA,θA,βA〉 i f γ > 0
〈(γd1,γc1,γb1,γa1) ,αA,θA,βA〉 i f γ < 0

A∼

B∼
=







































〈(

a1
d2
,

b1
c2
,

c1
b2
,

d1
a2

)

,αA ∧αB,θA ∨θB,βA ∨βB

〉

i f d1 > 0,d2 > 0
〈(

d1
d2
,

c1
c2
,

b1
b2
,

a1
a2

)

,αA ∧αB,θA ∨θB,βA ∨βB

〉

i f d1 < 0,d2 > 0
〈(

d1
a2
,

c1
b2
,

b1
c2
,

a1
d2

)

,αA ∧αB,θA ∨θB,βA ∨βB

〉

i f d1 < 0,d2 < 0

A∼B∼=



























〈(a1a2,b1b2,c1c2,d1d2) ,αA ∧αB,θA ∨θB,βA ∨βB〉
i f d1 > 0,d2 > 0

〈(a1d2,b1c2,c1b2,d1a2) ,αA ∧αB,θA ∨θB,βA ∨βB〉
i f d1 < 0,d2 > 0

〈(d1d2,c1c2,b1b2,a1a2) ,αA ∧αB,θA ∨θB,βA ∨βB〉
i f d1 < 0,d2 < 0

c© 2021 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 15, No. 5, 571-576 (2021) / www.naturalspublishing.com/Journals.asp 573

Definition 4 [6] The Neutrosophic linear fractional
programming (NLFP) problem can be written as:

Maximize z∼ ≈

n

∑
j=1

c∼j x j+p∼

n

∑
j=1

d∼j x j+q∼
= N(x)

D(x)

Sub ject to
n

∑
j=1

a∼i jx j ≤ b∼i ; i = 1,2, . . . ,m, x j ≥ o.

(4)

In this type of problem, c∼j , p∼,d∼
j ,q

∼,a∼i j and b∼i are
trapezoidal neutrosophic numbers. For convenience here,
we consider D(x) > 0. In reality, every manager or
decision-maker needs to achieve the best solution to the
problem by considering ambiguous, imprecise and
inconsistent information when describing the problem.

2.1 Proposed MOLFP Method

In this section, the general form of MOLFP problem is
discussed and the procedure for converting MOLFP
problem into MOLP problem is illustrated.

The MOLFP problem can be written as follows:

Max z(x) = [z1(x),z2(x), . . . ,zk(x)]
Sub ject to

x ∈ Ω = {x : Ax ≤ b,x ≥ 0}
(5)

With b ∈ Rm,A ∈ Rm×n, and zi =
cix+pi

dix+qi
= Ni(x)

Di(x)
,ci,di ∈ Rn

and pi,qi ∈ R, i = 1,2, . . . ,k.

Let I be the index set such that I = {i : Ni(x) ≥ 0 for x ∈
Ω} and Ic = {i : Ni(x) < 0 for x ∈ Ω}, where I

⋃

Ic =
{1,2, . . . ,k}, Di(x) is positive on Ω , which is non-empty

and bounded. For simplicity, let t = 1
dix+qi

for i ∈ I and

t = 1
−(cix+pi)

for i ∈ Ic.

To illustrate the method, we propose a procedure for
solving neutrosophic linear fractional programming
problem where the cost of the objective function, the
resources, and the technological coefficients are
trapezoidal neutrosophic numbers.

Let us consider the NLFP problem:

Max z(x∼n) =
∑c∼n

j x j+p∼n

∑d∼n
j x j+q∼n

Sub ject to

∑a∼n
i j x j ≤ b∼n

i , i = 1,2, . . . ,m,

x j ≥ 0, j = 1,2, . . . ,n.

(6)

We assume that c∼n
j , p∼n,d∼n

j ,q∼n,a∼n
i j and b∼n

i are
trapezoidal neutrosophic numbers for each i = 1,2, . . . ,m
and j = 1,2, . . . ,n therefore, the problem (6) can be
written as:

Max z(x∼n) =
∑(c j1,c j2,c j3,c j4;αc,θc,βc)x j+(p1,p2,p3,p4;αp,θp,βp)

∑(d j1,d j2,d j3,d j4;αd ,θd ,βd)x j+(q1,q2,q3,q4;αq,θq,βq)

(7)

Subject to

∑(ai j1,ai j2,ai j3,ai j4;αa,θa,βa)x j ≤
(b j1,b j2,b j3,b j4;αb,θb,βb), i = 1,2, . . . ,m,

x j ≤ 0, j = 1,2, . . . ,n.

Where α,θ ,β ∈ [0,1] and stand for truth-membership,
indeterminacy and falsity-membership function of each
neutrosophic number.

In this situation the decision maker desires to improve the
degree of truthfulness and to reduce the degree of
indeterminacy and falsity membership.

Using the concept of component wise optimization, the
problem (7) reduces to an equivalent MOLFP as follows:

Maxz1 =
∑c j1x j+p1

∑d j4x j+q4

Maxz2 =
∑c j2x j+p2

∑d j3x j+q3

Maxz3 =
∑c j3x j+p3

∑d j2x j+q2

Maxz4 =
∑c j4x j+p4

∑d j1x j+q1

Maxz5 =
∑αcx j+αp

∑βcx j+βq

Maxz6 = 1−
∑θcx j+θp

∑θcx j+θq

Maxz7 = 1−
∑βcx j+βp

∑αcx j+αq

Subject to

∑ai j1x j ≤ b j1,

∑ai j2x j ≤ b j2,

∑ai j3x j ≤ b j3,

∑ai j4x j ≤ b j4,

∑αax j ≤ αb,

∑θax j ≤ θb,

∑βax j ≤ βb,

x j ≥ 0, i = 1,2, . . . ,m j = 1,2, . . . ,n.

Using Charnes and Cooper’s linear transformation y = tx

[7], where t = 1
D(x) ,D(x) > 0, the previous MOLFP

problem is equivalent to the following MOLP problem:

Maxz1 = ∑c j1y j +P1t

Maxz2 = ∑c j2y j +P2t

Maxz3 = ∑c j3y j +P3t

Maxz4 = ∑c j4y j +P4t

Maxz5 = ∑αcy j +αpt

Maxz6 = 1−∑θcy j +θpt

Maxz7 = 1−∑βcy j +βpt

Subject to

∑d j4y j + q4t ≤ 1

∑d j3y j + q3t ≤ 1

∑d j2y j + q2t ≤ 1

∑d j1y j + q1t ≤ 1

∑βcy j +βqt ≤ 1

∑θcy j +θqt ≤ 1

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


574 A. M. ElHadidi et al.: Linear fractional programming based on trapezoidal

∑αcy j +αqt ≤ 1

∑ai j1y j + b j1t ≤ 0,

∑ai j2y j + b j2t ≤ 0,

∑ai j3y j + b j3t ≤ 0,

∑ai j4y j + b j4t ≤ 0,

∑αay j +αbt ≤ 0,

∑θay j +θbt ≤ 0,

∑βay j +βbt ≤ 0,

t,y j ≥ 0, i = 1,2, . . . ,m, j = 1,2, . . . ,n.

Solving the transformed MOLP problem for each
objective function, we obtain z∗1,z

∗
2,z

∗
3,z

∗
4,z

∗
5,z

∗
6 and z∗7.

Using Zimmermann’s min operator [8], the above model
transformed to the following crisp model as:

Max λ ,
Subject to

∑c j1y j + p1t − z∗1λ ≥ 0

∑c j2y j + p2t − z∗2λ ≥ 0

∑c j3y j + p3t − z∗z λ ≥ 0

∑c j4y j + p4t − z∗4λ ≥ 0

∑αcy j +αpt − z∗5λ ≤ 0

1− (∑θcy j +θpt)− z∗6λ ≤ 0

1− (∑βcy j +βpt)− z∗7λ ≤ 0

∑d j4y j + q4t ≤ 1

∑d j3y j + q3t ≤ 1

∑d j2y j + q2t ≤ 1

∑d j1y j + q1t ≤ 1

∑βcy j +βqt ≤ 1

∑θcy j +θqt ≤ 1

∑αcy j +αqt ≤ 1

∑ai j1y j − b j1t ≤ 0,

∑ai j2y j − b j2t ≤ 0,

∑ai j3y j − b j3t ≤ 0,

∑ai j4y j − b j4t ≤ 0,

∑αay j −αbt ≤ 0,

∑θay j −θbt ≤ 0,

∑βay j −βbt ≤ 0,

t,y j ≥ 0, i = 1,2, . . . ,m, j = 1,2, . . . ,n.

2.2 Algorithm

The proposed approach for solving NLFP problem can be
summarized as follows:

Step 1. The NLFP problem is transformed into MOLFP
problem using component wise optimization.

Step 2. The MOLFP problem is converted into MOLP
problem using Charnes and Cooper method.

Step 3. Solve each objective function subject to the given
set of constraints.

Step 4. Use Zimmermann’s operator to obtain crisp model,
then solve this crisp model.

3 Numerical Example

In this section, we try to prove the applicability of the
proposed method, we solved the same problem which
introduced by (M. Mohamed, M. Abdel-Baset, F.
Smarandache) [9].

Let x1,x2 and x3 units be the amount of I, II and III,
respectively to be produced. After prediction of estimated
parameters, the above problem can be formulated as the
following NLFPP:

Maxz(x∼n) =
8∼nx1 + 7∼nx2 + 9∼nx3

8∼nx1 + 9∼nx2 + 6∼nx3 + 1.5∼n

Subject to

4∼nx1 + 3∼nx2 + 5∼nx3 ≤ 28∼n
,

5∼nx1 + 3∼nx2 + 3∼nx3 ≤ 20∼n,

x1,x2,x3 ≥ 0
(8)

with

8∼n = (7,8,9,10;0.5,0.8,0.3)

7∼n = (6,7,8,9;0.2,0.6,0.5)

9∼n = (8,9,10,11;0.8,0.1,0.4)

6∼n = (4,5,6,7;0.75,0.25,0.1)

1.5∼n = (0.5,1,1.5,2;0.75,0.5,0.25)

4∼n = (3,4,5,6;0.4,0.6,0.5)

3∼n = (2,3,4,5;1,0.25,0.3)

5∼n = (4,5,6,7;0.3,0.4,0.8)

28∼n = (24,26,28,30;04,0.25,0.5)

20∼n = (18,19,20,21;0.9,0.2,0.6)

This problem is equivalent to the following MOLFPP:

max z1 =
7x1+6x2+8x3

10x1+11x2+7x3+2

max z2 =
8x1+7x2+9x3

9x1+10x2+6x3+1.5

max z3 =
9x1+8x2+10x3

8x1+9x2+5x3+1

max z4 =
10x1+9x2+11x3

7x1+8x2+4x3+1.5

max z5 =
0.5x1+0.2x2+0.8x3

0.3x1+0.4x2+0.1x3+0.25

max z6 =
0.8x1+0.6x2+0.1x3

0.8x1+0.1x2+0.25x3+0.5

max z7 =
0.3x1+0.5x2+0.4x3

0.5x1+0.8x2+0.75x3+0.75

Subject to

3x1 + 2x2+ 4x3 ≤ 24,

4x1 + 3x2+ 5x3 ≤ 26,

5x1 + 4x2+ 6x3 ≤ 28,

6x1 + 5x2+ 7x3 ≤ 30,

4x1 + 2x2+ 2x3 ≤ 18,

5x1 + 3x2+ 3x3 ≤ 19,

6x1 + 4x2+ 4x3 ≤ 20,

7x1 + 5x2+ 5x3 ≤ 21,
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0.4x1 + x2 + 0.3x3 ≤ 0.4,

0.6x1 + 0.25x2+ 0.4x3 ≤ 0.25,

0.5x1 + 0.3x2 + 0.8x3 ≤ 0.5,

0.3x1 + x2 + x3 ≤ 0.9,

0.4x1 + 0.25x2+ 0.25x3 ≤ 0.2,

0.8x1 + 0.3x2 + 0.3x3 ≤ 0.6,

x1,x2,x3 ≥ 0

Using the transformation, the problem is equivalent to the
following MOLPP:

Max z1 = 7y1 + 6y2 + 8y3

Max z2 = 8y1 + 7y2 + 9y3

Max z3 = 9y1 + 8y2 + 10y3

Max z4 = 10y1 + 9y2 + 11y3

Max z5 = 0.5y1 + 0.2y2 + 0.8y3

Max z6 = 0.5y2 + 0.15y3+ 0.5

Max z7 = 0.2y1 + 0.3y2 + 0.35y3+ 0.75

Subject to

10y1 + 11y2 + 7y3+ 2t ≤ 1,

9y1 + 10y2+ 6y3 + 1.5t ≤ 1,

8y1 + 9y2 + 5y3+ t ≤ 1,

7y1 + 8y2 + 4y3+ 0.5t ≤ 1,

0.3y1 + 0.4y2 + 0.1y3+ 0.25t ≤ 1,

0.8y1 + 0.1y2 + 0.25y3+ 0.5t ≤ 1,

0.5y1 + 0.8y2 + 0.75y3+ 0.75t ≤ 1,

3y1 + 2y2 + 4y3− 24t ≤ 0,

4y1 + 3y2 + 5y3− 26t ≤ 0,

5y1 + 4y2 + 6y3− 28t ≤ 0,

6y1 + 5y2 + 7y3− 30t ≤ 0,

4y1 + 2y2 + 2y3− 18t ≤ 0,

5y1 + 3y2 + 3y3− 19t ≤ 0,

6y1 + 4y2 + 4y3− 20t ≤ 0,

7y1 + 5y2 + 5y3− 21t ≤ 0,

0.4y1 + y2 + 0.3y3− 0.4t ≤ 0,

0.6y1 + 0.25y2+ 0.4y3− 0.25t ≤ 0,

0.5y1 + 0.3y2 + 0.8y3− 0.5t ≤ 0,

0.3y1 + y2 + y3 − 0.9t ≤ 0,

0.4y1 + 0.25y2+ 0.25y3− 0.2t ≤ 0,

0.8y1 + 0.3y2 + 0.3y3− 0.6t ≤ 0,

t,y1,y2,y3 ≥ 0

Solving each objective at a time we get

z1 = 0.7843,z2 = 0.8824,z3 = 0.9804,z4 = 1.0784,z5 =
0.0784,z6 = 0.5147,z7 = 0.7843

Now the previous problem can be reduced to the following
LPP:

Max λ ,
Subject to

7y1 + 6y2 + 8y3− 0.7843λ ≥ 0

8y1 + 7y2+ 9y3 − 0.8824λ ≥ 0

9y1 + 8y2+ 10y3 − 0.9804λ ≥ 0

10y1 + 9y2 + 11y3− 1.0784λ ≥ 0

0.5y1 + 0.2y2+ 0.8y3 − 0.0784λ ≥ 0

−0.5y2 + 0.15y3+ 0.5− 0.5147λ ≥ 0

0.2y1 + 0.3y2+ 0.35y3+ 0.75− 0.7843λ ≥ 0

10y1 + 11y2+ 7y3 + 2t ≤ 1,

9y1 + 10y2+ 6y3 + 1.5t ≤ 1,

8y1 + 9y2+ 5y3 + t ≤ 1,

7y1 + 8y2+ 4y3 + 0.5t ≤ 1,

0.3y1 + 0.4y2+ 0.1y3 + 0.25t ≤ 1,

0.8y1 + 0.1y2+ 0.25y3+ 0.75t ≤ 1,

3y1 + 2y2+ 4y3 − 24t ≤ 0,

4y1 + 3y2+ 5y3 − 26t ≤ 0,

5y1 + 4y2+ 6y3 − 28t ≤ 0,

6y1 + 5y2+ 7y3 − 30t ≤ 0,

4y1 + 2y2+ 2y3 − 18t ≤ 0,

5y1 + 3y2+ 3y3 − 19t ≤ 0,

6y1 + 4y2+ 4y3 − 20t ≤ 0,

7y1 + 5y2+ 5y3 − 21t ≤ 0,

0.4y1 + y2 + 0.3y3 − 0.4t ≤ 0,

0.6y1 + 0.25y2+ 0.4y3− 0.25t ≤ 0,

0.5y1 + 0.3y2+ 0.8y3 − 0.5t ≤ 0,

0.3y1 + y2 + y3 − 0.9t ≤ 0,

0.4y1 + 0.25y2+ 0.25y3− 0.2t ≤ 0,

0.8y1 + 0.3y2+ 0.3y3 − 0.6t ≤ 0,

λ , t,y1,y2,y3 ≥ 0

Solving by Maple we have

λ = 1, t = 0.1569,y1 = 0,y2 = 0,y3 = 0.09804

⇒ x1 = 0,x2 = 0,x3 = 0.625

z(x∼n) = (0.625)9∼n

(0.625)6∼n+1.5∼n

= (0.7843,1.0714,1.5152,2.2917;0.75,0.5,0.4)

4 Conclusion

We introduced a new approach to solve
trapezoidal-neutrosophic linear fractional programming
models. A comparison between the fuzzy approach and
the neutrosophic approach is given. We illustrated the
importance of neutrosophic approach than used fuzzy
approach. Finally, to obtain a neutrosophic basic possible
optimal solution to a somewhat modified set of
constraints, the suggested technique proposed a
neutrosophic approach involving neutrosophic artificial
variables. The neutrosophic simplex technique is then
used to remove the artificial neutrosophic variables and to
resolve the original problem. We plan to extend this
approach to solve multi-level multi-objective fully
neutrosophic linear fractional programming problems in
the next work.
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