Appl. Math. Inf. Sci. 15, No. 5, 577-592 (2021)

%NSI’)

577

Applied Mathematics & Information Sciences

An International Journal

http://dx.doi.org/10.18576/amis/150506

A New Generalization of Garima Distribution with Application

to Real Life Data

Maryam Mohiuddin"*, Hilal Al Bayatti* and R. Kannan'

'Department of Statistics, Annamalai University, Annamalai Nagar, Tamil Nadu-608002, India
2College of Computer Sciences Applied Science University, P.O. Box 5055, Kingdom of Bahrain

Received: 21 Mar. 2021, Revised: 22 May 2021, Accepted: 24 Jul. 2021.

Published online: 1 Sep. 2021.

Abstract: In this paper, we proposed a new distribution based on Garima distribution called as Alpha Power Transformed
Garima distribution by using a technique developed by Mahdavi and Kundu. Some of the reliability and statistical properties
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1 Introduction

In recent years, researchers proposed different methods of
generating new continuous distributions in life-time data
analysis to increase the ability to fit several lifetime data
which have a high degree of skewness and kurtosis. These
extensions to distributions provide better flexibility in
modelling certain applications and data in practice. A detailed
survey of methods for generating distributions has been
studied by Lee [1] et al. and Jones [2]. Most of these
distributions are special cases of the T-X class studied by
Alzaatreh [3] et al. This class of distributions extends some
recent families such as the beta-G pioneered by Eugene [4] et
al., the gamma-G defined by Zografos and Balakrishnan [5],
the Kw-G family proposed by Cordeiro and Castro [6] and
the Weibull-G introduced by Bourguignon [7] et al. and so
on.

Kus [8] introduced the two-parameter lifetime distribution
with decreasing failure rate. The parameters of the
distribution were obtained by EM algorithm using maximum
likelihood estimate and the asymptotic variances and
covariance of these estimates.

Some authors have discussed the situations where the data
shows decreasing failure rate the upside-down bathtub
(UBT) shape hazard rate. For example Proschan [9] found
that the air-conditioning systems of planes follow decreasing
failure rate. Efron [10] analyzed the data set related to head
and neck cancer, in which the hazard rate initially increased,
attain maximum and then decreased before it stabilized
owing to a therapy. Bennette [11] analyzed lung cancer trial
data which showed that failure rates were uni-modal in

nature. Langlands [12] et al. have studied the breast
carcinoma data and found that the mortality reached a peak
after some finite period, and then declined gradually. It is
interesting to know that the hazard rates of inverse versions
of the probability distributions show the UBT shapes.

Dey [13] et al. discussed Alpha Power Lindley distribution
its properties and application with earthquake data. Nassar
et al. [14] also discussed the Alpha Power Weibull
distribution, its properties and application to real-life data.
Elbatal Ahmad [15] et al. discussed the newly Alpha Power
transformed family of distribution, its properties and
applications to the Weibull model. Alpha power
Transformed Frechet Distribution was introduced by
Suleman et al. [16] for modelling real-life data sets. The
authors discussed some of the statistical properties of the
distribution such as quantile function, moments, mean
residual life, generating function, entropy, stochastic
ordering, etc. The method of maximum likelihood estimation
is used for estimating the parameters of the distribution. Dey
[17] discuss the Alpha Power extended exponential
distribution with application to ozone data. Ceren and Selen
et al. [18] obtained the Alpha Power inverted Exponential
distribution, its properties and application to real-life data.

Garima Distribution was introduced by Shankar [19] as a
new one parameter lifetime model for behavioural and
emotional science. Its usefulness and importance of life time
model were better as compared to Lindley and exponential
distribution. Shanker [20] obtained the discrete Poisson-
Garima distribution. Shenbagaraja, Rather and Subramanian
[21] obtained the length biased Garima distribution with
properties and applications.
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Let F(x) be the cumulative distribution function (CDF) of
random variable X, then the APT of CDF is defined as

F(x) _
a—ll; ifa>0,a+1
a-—
Fypr(x) = M
F(x) if a=l1

and the corresponding Probability density function (PDF) is
defined as:

loi_oll @) afifa>0,a#1
Sapr (x) = (2)
S (x) sif a=1

The APT survival function S 4pr () and hypr (X) ) are
given by

L (1-a") 5 if axl
Spr (X) = 3
I_F()C) ; lf‘ a=1
-1
o /Wloga 3 if a =l
hypr(x) = @

The purpose of this article is to obtain a new distribution
from the Garima distribution by a-power transformation as
proposed by Mahdavi and Kundu [22]. The distribution is
referred to as Alpha Power Transformed Garima (APTG)
distribution. The additional parameter in the model can
provide various properties and more flexibility in the form
of the hazard and density functions.

In this paper, we will obtain the Alpha Power Transformed
version of Garima distribution and discuss its various
properties. Finally, the two lifetime data sets have been
analysed, the results are compared to other distributions.

We are motivated to introduce the APTG distribution

because:-

(1) it has an ability for modelling decreasing and upside-
down bathtub shaped hazard rates.

(i1) it is the appropriate model for fitting the skewed data
which may not be properly fitted by other common
distributions and can also be used in a multiplicity of

problems in various fields such as earthquake analysis,
failure rate times, survival times of patients;

(iii) two real data applications show that it compares well
with other competing lifetime distributions in
modelling survival times of data.

Let X be a random variable with parameter, 6 > 0. The
PDF of one parameter Garima distribution is defined as
follow

f(x;0) i(l+9+9x)e_@c ;x>0,0>0 &)
o+2
and its corresponding CDF of Garima distribution is given by

Ox

F(x;0)=1-|1+
(x:6) ( 0+2

je—‘% ;x>0,0>0 (6)

2 Alpha
Distribution

Power Transformed Garima

By using APT Model, The probability density function
(PDF) of the Alpha Power Transformed Garima (APTQG)
distribution with parameters 8 > 0, o > 0 is given as

Sfapr(x,0,a) =

0x ) _ox
- l+—— e
loga [ af_ (1+0+6x)e’" a( 9”)
a-1\6+2

Jif x>0;0>0,>0, a#1

[%j(nawx)e‘“ cif x>0:0>0,a=1
+

(7
Where, 8, « are the scale and shape parameters.

and the CDF of the Alpha Power Transformed Garima
distribution.

— ;ifx>050,a>0,a #1

FAPT(X;HJZ):

1—[1+ Ox Je*“;ifx>o;e>o,a=1
+2
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Fig. 1: cdf plot of APTGD distribution. . . .
Fig. 3: Survival plot of APTG distribution.
3.2 Hazard Function
hAPT(X; 9,0() =
o | _[1_,_&] —0x
- a 9+2 0
= loga | ——
. Tz [ [9 2 j
o 1 a 6+2
] (1+6+60x) ;ifx>0;0>0,0>0,a#1
S 0 .
' ' — [;if x>0;0>0,a=1
o 2 4 6 8 10 Ox+0+2
(10)
Fig. 2: cdf plot of APTG distribution.
Hazard Plot
3 Reliability Analysis
In this section we will discuss the Survival, hazard rate functions =3
respectively, given by S
3.1 Survival Function -
o [, ik
—~ |1-q ' Jif x>0,60,a>0,a %1
a-1 S 1
Spr(x;0,0)= ©) . -
Ox \ _y. . ° - : : :
[1+9+2]e9 1if x>0,0>0,a=1 N . o -

Fig. 4a: hazard plot of APTG distribution.
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4 Statistical Properties

4.1 Moments

Let X denotes the random variable of Alpha Power
Transformed Garima (APTG) distribution then the r*"order
moment E(X") of APTG distribution can be obtained as

E(X")=pt, =[x [y (x:0,c0)dx
0

logar (i](newx)

o a-1\0+2
E(X)=[x" dx
0 [17 P e""‘J
o ( 0+2] efex

s (5232
a-1 0+2

Txr (1+9+@C)a[l{l+%}ﬁ]e‘& dx
0

By using the power series expansion to above equation,

Fig.4c: hazard plot of APTG distribution.

: <o (logar)*
a —kZOTZk (])
1) =S e (1)
; 1

o= (22 )52
T la-1 \o+2

Bl

04

[i (lo%‘a)i Txr ((1 +0+tk)e ™ )J dx
i=0 : 0

1)

(gt

Using binomial series expansion (I) and (I) to equation (11), we

get

Fig. 4d: hazard plot of APTG distribution.
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alx”)- (l;g—oll j(efzj
e s sfi)s)

Tx’ ((1 +0+ Hx)ef&e*@-x) dx
0

o) ](Z oz Z[ ]( 1),2[ ]]

( P ] Tx,+k((l N 9+9x)e—9(j+l)x)dx
+1
(9 + Z)k 0

[Z (log.a) Z( j( 1),2(/)[(99;“]

loga ]?xy+k+lfle*19(j+l)x e +
a-1J)3

o0 o0
gj‘xr+k+l—le—€(/+l)x dx+0J.xr+k2—lle—9(j+l)x dx
0 0

, loga
i - (e )
a—1

Ze e Hlet)

[ F(r+k+l) . 9F(r+k+1) + 9F(r+k+2)J
@+ G+ e
2)

Puttingr = 1,2, 3, ..., so on in equation (12),

we obtain the moments of APTG distribution.

# a—1

DTS IR FLam

,:[loga ][ C(k+2)  or(k+21) ~ Or(k+3)
1 @G+ (oG +0f (o0 +1))

)

[ (e+3)  or(k+3) | 491“(k+4)}
OG+DfT (0G+f* (ol +1)

)

[ [(k+4) . OT(k+4) 9F(k+5)]

OG+0f (OG+1)f™ (G +1)
4.2 Moment Generating Function

Let X have APTG distribution, the MGF of X is obtained as
M (6) = E™) =J' " [ oy (x: 0, ) dx

0
Using Taylor’s series

E(e*)= I (1+DC+(D; (D;)3 Fovnn ijPT(x;g’a)dx

tx S tx r
E(e")=], 2 (v 0,a) d

tx ot r
Ee)=201 [, X furr(x:0,0)dx

ﬂf)Z m
" o (log o j A A
e )

[ Dlr+k+1) | OT(r+k+1) 61"(r+k+2)]

(‘9 (]""1))”]{+1 (6’(j+ 1))r+k+1 (g(] +1))r+k+2

(=== (4]

Similarly, characteristic function of APTG distribution

is given by
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0.O=M (i) = [ " f 1y (:0,0)

sy (Lee ) @)

EEe 22 )et))

=0 i=0 /=0

L0 r(r+k+ 1)
(0(1 + 1))r+k+1

[ C(r+k+1)

Or(r+k+2) J
(0 + 1)y

"Gy

4.3 Stress Strength Reliability

Let X be the strength of the system which is subjected to a
stress Y, and if X ~ APTG (a,,60;) and Y ~ APTG
(a;,6,),provided X and Y are statistically independent
random variables, then R = P(Y < X).

R :J.fAPT(X;glﬁal) Fpr (%0, ,a,)dx
0

2 0x | o«
R= (k’g_alJ[iJj(l +0,+ Hlx)all{Hel +2]E ’

o -1 )6 +2 0

6,x
1- 1 —
a, [+92+2]e O,x -1

a,—1

dx

i)

0
0x | o« x| _oyx
1 1+ RSN P Pc i el
J-(1+91+01x)a1 ( 91+2] a, [ 0,42)°  dx
0

0, log oy J

h =[<a1 10, + 2Nes — 1)

0 k kK k
D (10gk0'41) Z(_l)z[lj
k=0 : /=0

1

Ox | _xo
1-| 1+ o 72
(2%} ( 92+2J dx

/
_[(1+91 +91x)(1+ O1x J 16
o, +2

7 Gllogal
E )

Ji logal)k

0 Oox o k
) ~0yx
o 22 o
1
0

m=0

0m+1 logal
(“1 —1)(91 + Z)mﬂ( a _1)

) P
Ix’" (1+6, +6,x)e 8D 1| 14 Ox_ e | | dx
o 0,+2

(g S g e

k=0

R s e

(13) . 0" 1
7 Ox ) o 2 Z 1 (a, -1)0, + zjif‘{ l(a 1)
1 -01x —_ p—
- J-(l +0,+ Hlx)allf[Haﬁz]e r =0 ] : :

0

R=1+1,
0 q

Using the power series expansion (I) and (II) to equation (13) J' X ((l +0.+0 x)e_g‘ (I+1)x~B,qx ) 1+ 0,x dc
as follows d e 0, +2
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I =
PR EN IR
S (st

502 oo

5=0

e—Hl (l+1)x—62qxdx

(et

;[:J(_ 1)q[(a1 - 1)1(99T++] 120)g0?( a - 1)]

0, | < qwms —6,(I+1)x-6gx
[—€2izj ;[Sj B[x ' ((l+91+91x)e T )dx

On simplification we get,

g g

m=0

S(0)er (<a1 e —1)]
2%) 2

I'm+s+1 N O I'm+s+1
(01 (l + 1)_ qu )"1+S+1 (9] (l + 1)_ qu )m+s+1

~

. OI'm+s+2
(6,(+1)-g0,)"""

Similarly, we can do for I, and we will get,

EEgr e

i=0 j=0 z=0

[ Ms+1) . 6r(s+1) | elr(s+2)J
@G+ @G+ @G+

4.4 Mean Waiting Time and Mean Residual Time
4.4.1 Mean waiting time

The mean waiting time represents the waiting time elapsed
since the failure on an object on condition that this failure
have occurred in the interval [0, t]. The mean waiting time
of X, sayu(t)

u)=t _m foPT(x 0, )dx

1) = t—mj' [bg_“j[a;iz](lwwx)

a() =1~ (14)

By using power series representation, to

equation, (14),

o0 k
:Z(loi"l) S %)
k=0 ’
1
ﬂ()—l—m
Zw: loga)(J' [logaj[ ] l
6+2
i=0
dx

(1+9+@c)(1—(1+£:2ne&
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HO) =t——— ) =t- ——
F() a(l—(l+g+2]e ”X]

By using series expansion to (15),

=g (7))

On simplification, we get

t

() = jxk” (146 +6x)e 0 U gy

=

S e i

Putx6(j+1) =260 + 1)dz = dx, dx =

asx—>0, z-0;a x—-t, z-0t(j+1)

j+1)
t0(j+1)

ere

Substituting equation (3) into equation (15) we get,

(15)
dx

(n

L\J E (4
JNk)6+2
dz
6(j+1)

1 ( o YV o (k+2)-1
oG +Hlo+2 (0(;} e ids +

(k+3-1)
)] e “dz

k+1
1 .
(9(;+1)J Pk +2);00( + 1))+

k+1
1 .
[ 9(,-+1)J 7k +2);00( + 1)+

1
a(j+1)

k+2
1 .
(9(]' " 1)] 7((k +3);00( +1))

4.4.2 Mean Residual Life

Assuming that X is a continuous random variable with
survival function (6).then the mean residual life is the
expected additional lifetime that the component has
survived after a fixed time point t. the mean residual life
function is given by

() =${E(r) - ! xf(xa, 0)de —t (16)
Where,
Ixf(x;a,&)dx=

0

l()ﬂ 'e) (loga)l i J ~ (i j 9 k+1
()5t 515 o2 (o)

k+1
1 o
[ 9(j+1)] P+ 21500 +1)+

k+1
1 o
[9(/_ " 1)] 7k +2);00( +1))+

1
o3(j+1)

k+2
[9(/_ " 1)] 7((k +3);20( +1))

Substituting the equation (10), equation (17) and equation
(8) in equation (16) we get,
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a—1

u(t) =
a[l — a_[l)r%jeia( J
N 5 (loga)™!
PRI SE

Zk:i K1\ Trmei2) (1 Y7
, 1) \m) @G+ L oG +1)

=0 m=0

P ((k +2):000 + 1)+ 7((k +2);60() +1))

k+1
+(9(j " 1)} 7((k+3);00(j +1))

5 Entropies

The concept of Entropy is used to measure the randomness
of systems and is widely used in areas like physics,
molecular imaging of tumours and sparse kernel density
estimation.

5.1 Renyi Entropy

Renyi entropy was introduced by Alfred Renyi [23]. Some
recent applications of Renyi entropy have been considered
such as sparse kernel density estimations, high-resolution
scalar quantization, estimation of the number of components
of multi-component non-stationary signal. Renyi entropy is
given by

e(f) =$10g.!fﬂ(x)dx | B>0,f#1
1 loga Fro Y
Pg [ —1) [9+2)

* B [17[”&}5”"]
J'(l 0+ a 0+2) )y PO g (13)
0

Using the power series expansion (I) and (II) to

equation (18),

f o
e(ﬂ)=1_1ﬂlog[l;)g_01[j (.9+2] Z 1oga)

i=

i (ol (1 ) o)) -
!(1+0+9x) [ﬂ [1 (1+0+2Je De

ﬂHx dx

1 loga ’ 0\
e(ﬁ)_l—ﬂlog(a—l] (9+2j

(146 + )P x* e 0P gy

S e 8

Vi p+l
«(h)= 1—1,31°g(:g—01lj (aizj

e VRIES

i= : J=0 k=0 1=

k

_[(1 + x)! xk e 0U+Bx g
0

1 logaﬂ 0 Y
e(ﬂ)_l—ﬂlog(a—lj (9+2]

pae il i 1R

(—1)/( 9 jﬂ T(k+1+1)
0+2 O + A
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(222) (%) (%)
. . . L. a—1 o+2 o +2
A generalization of Boltzmann-Gibbs a statistical
mechanics initiated by Tsallis has focused a great deal of 1 (1 loga Y & :
attention. This generalization of B-G statistics was proposed P = 21| '~ ZO: Z[J(_DI =
firstly by introducing the mathematical expression of Tsallis
entropy [24] for a continuous random variable is defined as
follows

£ [ 4 & Y _ona
J-(l+6+9x) 1+ e 0
s o+ 2

S(2)=—

S(ﬂ)——( jf (x)dxj A

E (logajl Ck+1+1) (2 ( 1)’[ j
loga( af j a-1) (O +a)Fol1 0+2
1

0+2 1—

©

s(ﬂ)—ﬂ 1= iiiiiﬂog@*)mml/k
0 1+ﬁ] ‘3‘] o i=0 j=0 k=0 /=0 m=0 : A
ot

(1+6+ &)a[l{ o2

6 Bonferroni And Lorenz Curve

loga Y 6 Y The Bonferroni [25] and Lorenz [26] curve have applications not only
( -1 J [9 + zj in economics to study income and poverty, but also in other fields such
S(A) = L dx as reliability, demography, insurance, and medicine. The Bonferroni
A-1 . ( [ or j 7(%) and Lorenz curves are defined as
I(l +0+ &) a o+2 —Aox q

B(p) = [ % frr (e
up

() 0
Using the power series expansion to (I) & (II) to and
equation (19), .
1
B L(p)= _,J-foPT (x)dx
[logaj ( j i loga)' s
0+2) <= i!
——1 - 9 T T
S(2) = ! | dx B(p)= 1' [loga][ ij (1+6+ &) [ [ 0+2j jefacdx
T & o I Atk He 0+2 0
A — O\ _
.([(1+9+@c) [i[l—[l+€+2je De 20)

Using the power series expansion to equation (20),

loga ' /ﬂoga) = (loger
=) 5% ozl

. _ 1 loga = loga)’
S(/'L)—% 1- i(;}(—l)jj‘(lﬁ+6k)}" dx e [ j[éHZJZ (21)
J= 0

q & i
Ix (1+60+ ) 1—[l+ je’g’c e *dx
? 0+2

By using series expansion, to equation (21),

gl

i=0

—
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£ .S\ sy

w5 )

par iy J

q o
jx (1+€+@c) (1+—j e 0% e gy
0 0+2

On simplification we get,

k+14
4 '[xk“(l+9+9x) e 0L gy
0+2 o

k+14
( 0 j J‘xk+1 o0l x g
0+2 0

q q
+0ka+l e—ﬁ(j+1)xdx+gjxk+2 e—&(j+l)xdx
0
. _ . _ _ az
Put x0(j+1)=2 6(+ 1dx =dz,dx = 3G+T

asx—>0, z—>0,a x—-q z-60q(G+1)

-] 55 e

'u,p i=0 j=0 k=0
(— 1)1 Al ( 0 jlm 1
ik o+2 0(j+1)

q0(j+1) (k+1)

J- z ‘dz+0

0 0(j+1)
qO(j+1) (k+1)

z
“d
! oG +1) °7
q0(j+1) (k+2)
0 j [ z j e~?dz
) \o(i+1)

By =L (loga] ii 1oga)l ( J(g[gizjm

i=0 j=0 k=0

| k+2 q0(j+1) q0(j+1)
( j 2 erg, 10 J.zk+2_1 e dz +
0

-SSR )

]mz ylk+2,00(j + 1)+ 0y(k +2,609(j +1))

(efzjkﬂ(e(jlﬂ)

L(p) = pB(p)

o R

+((jl+1)J7(k +3.64(j+1)

Ly yk+2,00(j + 1)+ 0 y(k +2.09(j + 1)+
(9(j+1)j

(ﬁ}/(k +3,00(j +1))

7 Order Statistics

Suppose  x,,x,,X,,..,Xx, Is a random sample

n

fromf,pr(x; 0, @).

Let Xtys X (2ys X3sees Xmy be the order statistics of a
random sample x, x, x,, .. x, drawn from the

continuous  population  with  probability  density
function f,pr(x) and cumulative density functionF,py(x),
then the PDF of rt" order statistics X, (ry 1s given by

S— [Fy ol - Fy ™ (22
fX(r)(x)—mfx(x) x (%) —Fyx (x) (22)

Using the equation (7) and equation (8) in equation (22),
the probability density function of r" order statistics

X of APTG distribution is given by
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n!
fx(r) ) =m

loga [—“6 ] (1+¢9+49x)a{
-1 {8+2

1+ 0x Je’g" ]
0+2

r—1 n—r
l—e® [1+%) l—e™® (1+% J
a /1 a—«a *

Therefore, the probability density function of higher order
X
()

statistics can be obtained as

Frw @) =nf(x)(F(x))"
logca [ ab
ag—l (ﬁ)

(1+0+60x) (

fX(n) (x)=n

Ox \ _gy
I+—— |7
0+2

n-1
e ® (1+%)
a AR

and the PDF of first order statistic X(;ycan be obtained
as

feo @) =nf(x)(1-F(x)"

Sy (¥)=n [loga [ af j(1+9+0x)a[l+a:2]e‘“]

6+2

8 Parameter Estimation
8.1 Least Square Estimation

Suppose that X', X,, X;,..., X, is a random sample of

sample then Least Square estimators can be obtained by
minimizing the sum of squares errors

z(a,9)=§[F(X<f>)_[n i sz

Where F\X ., ) is the CDF of APTG Distribution with
(i)

® th
X (i)being the l Order statistic.

With respect to unknown parameters. So the LSE [27] of the

population parameters (a,0) can be obtained by the
simultaneous solutions of the normal equations.

:Z": F (X 9)( Flx,),a,0) - (niln—o (23)

i=l1
aZ(a o) _ Zp X 1)0,0 [ (X(,),a,e)—(n;;qD=O (24)

0Z(a,0)
oa

By using the equations (23) and equation (24), the LSE can

be obtained as follows,

onf, 0x ) | (@=1) 1—(1+ Ox je O% | _a
[1 9+2] 0+2
a - =0 (25)
(a—1)
1 *“[Hﬂj

0Z(a,0) | @ o+2) 3 i

00 o a—1 n+1

1—e*5x(1+ﬂ)
a 9+2) lloga =0 (26)

From the above said equation (25) and equation (26) are
difficult to obtain the estimators (o, 0), so they can be

computed by using R software.

8.2 Maximum Likelihood Estimator
8.2.1 Complete Data

n size from APTG distribution and . 16(; Let X}, X, ,X3 y+++y X, be a random sample from APTG
is the corresponding ordere

Xy Xy Xy s X P g (0,0), distribution then
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L(xza.)=] [(f (xi:a.0)),

i=1
The log-likelihood function becomes

L=LO,a)=n {log(loga)— 1og(a - 1)+ log(H)— log(H + 2)}
(27)

n n n ex[ o,
+;(l+9+9xi)—9;xi +loga;[l—(l+ 9+2Je J

Therefore, the maximum likelihood equations are given by

61 H i —0x;

— ali i 28
oa aloga a-1 az( [ j j (28)
o _n 1+x;
- = +
0 0 (9+z) lx’ ;[1+6’+0x]

C Ox; \ _ox
+1 -1+ — i 29
e 1= (10 22 )0 )

The MLEs of o and 0 can be obtained by solving (28) and
(29) equations simultaneously, and they will be denoted
by &, 0

Because of the complicated form of likelihood equations
(26) and (27) algebraically it is very difficult to solve the

system of nonlinear equations. Therefore, we use R and

wolfram mathematics for estimating the required
parameters.

8.2.2 Censored Data

Consider a data set D = (x:7), where

X =X,,X,X5 ..., X, the observed failure are times and

Vo = 1,1y sy .y 1, ATE the censored failure times where

r;is equal to 1 if a failure is observed and O otherwise.
Suppose that the data are independently and identically
distributed follows a distribution with probability
density f(x, 8) and survival functions S (x, 8) respectively.

Japr(x30,0)= loga ((9 j(1+6+9x)a[1[Hojéjeexje_gx

-1

Survival function:

—(Hﬂ]e’g*
S pr (v, 9)_—1 l-a * %2

L(x;a,0) ZH]

The likelihood function for the observations is given by

Ti

loga

0
-1 (mj(l+0+¢9x)

] 3 loga |\ 0 e
IOgL(xva»H)—IOg(a_ljzlrﬁ‘lOg ) eri"'

n

Zrlog(l+0+9x) 9er +log( “1 j
o

i=1 i=1

n n

_e 9% | 97)(]
(l—ri)log l-a ’ ( o+2

)3+ (10g(6) - tog(0 + 2)

i=1

logl = (log(log(a))— log(a -

n

Zr+Zrlog(l+9+9x) Qer +(log(a) - log(er —1) )

i=1 i=1 i=1

n n e [] HxJ
(1=n)+ D (1=r)log| 1-a o2

The log likelihood function in can be maximized numerically
in order to obtain the ML estimates.

9 Data Analysis

In this section, we work with an application based on a real
data set and found that APTG distribution gives the best fit
for the considered data.

9.1 Data Set 1

Gross and Clark [28] reported a set of data relating relief in
minutes receiving of 20 patients.

The data is given below:
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1.1 1141317

1.9

1.8 1.6 |22

1.7 2.7

41181512

1.4

3017123

1.6 | 2.0

In order to compare the distributions, we consider the

9.2 Data Set 2

The data set represents the life time of 50 devices from
Aarset [29] et al. it consists of the following set of
observations.

criteria like AIC (Akaike Information Criterion), AICC 01 102 |1 1 1 1 1 2 13 6
(Corrected Akaike Information Criterion) And BIC
(Bayesian Information Criterion). The better distribution 7 1 12 118 | 18 18 | 18 118 | 21|32
corresponds to lesser AIC, AICC and BIC values. 36 140 |45 |46 |47 |50 15516063163
AIC =2k —2logL 67 |67 |67 |67 |72 |75 |79 |82]|82]83
84 |84 |8 |85 |8 |8 |8 |85 |86 |86
BIC =klogn —2log L
2k(k+1
AICC=A4IC+ ¥
n—k-1
Where, k is the number of parameters in the statistical
model, n is the sample size and —2 log L the maximized
value of the log-likelihood function and are shown in
Tableland Table 2.
Table 1: MLE’s and Criteria for Comparison for data set 1.
Distribution MLE S.D -2logL AIC BIC AICC
PLD 6=0.34448830 | 6=0.0996896 | 40.86395 | 44.86396 | 46.85543 | 46.36396
[£=2.25294202 | B=0.3067661
LBWNQLD a =1.578852 a=2.038191 | 45.77610 | 49.7761 | 51.76757 51.2761
£ =8.378050 [=3.355450
APTGD 6=2.044349 6 =1.531384 | 34.84120 | 38.84121 | 40.83267 | 40.34121
a = 1.608602 a=3.355495
LBG 0=1.306236 6=0.183792 50.6912 | 52.6912 | 53.68693 | 52.857629
LBETE a =1.162584 a=167.86310 | 52.32636 | 56.32636 | 58.31782 | 57.82636
[ =1531495 | f=116.95185
ODOMA 6=1.7229491 6=0.1326213 | 62.05256 | 64.05256 | 65.0483 65.55256
GARIMA 6=0.7395722 | § =0.1405294 | 63.2116 | 6521155 | 66.20728 | 65.43377
Exponential 6=0.5263157 | = 0.1176873 | 65.67416 | 67.67416 | 68.66989 | 67.89638
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Table 2: MLE’s and Criteria for Comparison for data set 2.

Distribution MLE S.D -2logL AIC BIC AICC
APTGD 0=0.03624992 | 8 =0.0061332 | 479.8391 | 483.8394 | 487.6634 | 484.3611
@ =1.7764411 | & =1.3098916
PLD 0=0.16120455 | 0=0.04475142 | 484.1747 | 488.1746 | 491.9987 | 488.6964
£=0.66379655 | B=0.06848726
LBWTPAD | a=1.6632881 @=1.0755112 | 512.6821 | 516.6821 | 520.5061 | 517.2038
6=6.421260 6 = 6.972958
APTLD @ =1.2593115 | @=0.90296576 | 502.7629 | 506.7619 | 510.586 | 507.2837
6=0.04439636 | 6=0.00631427
LBG 0=0.05648725 | 6=0.00512144 | 524.5255 | 526.5255 | 528.4375 | 526.6088
WAD @=0.00100000 | @=0.74490857 | 590.0163 | 594.0163 | 597.8403 | 594.5380
6=0.08690334 | 6=0.01747111
ODOMA | §=0.11063692 | §=0.00696766 | 6682526 | 670.2527 | 672.1647 | 670.7744
It has been observed from Tablel and Table 2 that the APTG ~ References

distribution have the lesser AIC, BIC, AICC values as
compared to other distributions. Therefore, we conclude that
the Alpha Power Transformed Garima Distribution leads to
a better fit than the other distributions.

10 Conclusions

In this paper, we have introduced a new generalization of
Garima distribution called Alpha Power Transformed
Garima Distribution. We have studied various mathematical
and statistical properties of distribution. The moments,
survival function, hazard function and the maximum
likelihood estimates, LSE of the parameters, have been
investigated. The application of the new distribution has also
been demonstrated with real-life data over one and two
parameter Like APTLD, LBETE, LBG, WAD etc. The
results are compared with APTG distribution, revealed that
the APTG distribution provides a better fit than other
distributions.

Acknowledgement

The authors thank two anonymous reviewers for their helpful

comments.

Conflict of Interest
The authors declare that they have no conflict of interest.

[1] Lee, F. Famoye, A. Alzaatreh, Methods for generating
families of continuous distribution in the recent
decades, Wiley Interdiscip, Rev. Comput Stat., 5, 219—
238 (2013).

[2] M. C. Jones, On families of distribution with shape
parameters, Int. Stat Rev, 83(2), 175-192 (2015).

[3] A. Alzaatreh, C. Lee, F. Famoye, A new method for
generating families of continuous distributions,
Metron, 71, 63-79 (2013).

[4] M. Eugene, C. Lee, Famoye, F. Beta-normal
distribution and its applications, Commun Stat Theory
Methods, 31,497-512 (2002).

[5] K. Zografos, N. Balakrishnan, On families of beta- and
generalized gamma-generated distributions and
associated inference, Stat Methodoly, 6, 344-362
(2009).

[6] G.M. Cordeiro, M. Castro, A new family of generalized
distributions, J. Stat Comput. Simul., 81, 883-898
(2011).

[7] M. Bourguignon, R. B. Silva, G. M. Cordeiro, the
Weibull-G family of probability distribution, J. Data
Sci., 12, 53-68 (2014).

[8] C.Kus, A new lifetime distribution, Comput. Stat. Data
Annals, 51,4497-4509 (2007).

[9] Proschan, Theoretical explanation of observed
decreasing failure rate, Technometrics, 5, 375-383

© 2021 NSP
Natural Sciences Publishing Cor.



N SS

592

M. Mohiuddin et al.: A New generalization of Garima ...

(1963).

[10] Efron, Logistic regression, survival analysis and the
Kaplan-Meier curve, J. Am. Stat. Assoc., 83, 414—425
(1988).

[11] Langlands, S. Pocock, G. Kerr, S. Gore, Long-term
survival of patients with breast cancer: a study of the
curability of the disease, Br Med J., 2, 1247-1251
(1997).

[12] S. Bennette, Log-logistic regression models for
survival data, Appl. Stat., 32, 165-171 (1963).

[13] S. Dey, D. Kumar, Alpha power transformed Lindley
distribution, properties and associated inference with
application to earthquake data, Annals data
Sci., 6(4), 625-650 (2019).

M. Nassar, A. Alzaatreh, M. Mead, O. Abo-Kasem,
Alpha power Weibull distribution, Properties and
applications, Communications in Statistics—Theory
and Methods, 46(20), 10236-10252 (2017).

[14]

[15] I. Elbatal, A. Zubair, et.al A new alpha power
transformed family of distributions, properties and
application to Weibull model, J. Non-linear Sci. Appl.,

12, 1-20 (2019).

S. Nasira, P.N. Mwitha, Alpha Power Transformed
Frechet Distribution, Applied Mathematics and
Information Sciences, 13(1), 129-141 (2019).

S. Dey, A. Alzaatreh, C. Zhang, D. Kumar, An New
extension of generalized exponential distribution with
application to ozone data, Ozone Sci. and Eng., 39(4),
273-285 (2017a).

U. Ceren, and C. Salen, Alpha Power Inverted
Exponential Distribution, Gazi University Journal of
Science, 31(3), 954-965 (2018).

[16]

[17]

[18]

[19] R. Shanker, Garima distribution and its application to
model behavioral science data, Biometrics and

Biostatistics International Journal, 4(7), (2016).

[20] R. Shanker, The discrete Poisson Garima distribution,
Biometrics and Biostatistics International Journal,

5(2) (2017).

R. Shenbagaraja, C. Subramanian, On Some Aspects of
Length Biased Technique with Real Life Data, Science,
Technology, and Development, 8(9), 326-335 (2019).

[21]

[22] A. Mahdavi, D. Kundu, A new method for generating
distributions with an application to exponential
distribution, Commun. Stat Theory Methods, 46(13),

6543-6557 (2017).

[23] A. Rényi, On measures of entropy and information,
Proceedings  of  fourth  Berkeley  symposium
mathematics statistics and probability, University of

California Press, Berkeley, 1, 547-561 (1961).

[24]C. Tsallis, Possible generalization of Boltzmann-Gibbs
statistics, J. Stat Phys., 52, 479-487 (1988).

[25] C.E. Bonferroni, Elmenti di statistic a generale, Libreria
Seber, Firen, (1930).

[26] M. O. Lorenz, Methods of measuring the concentration
of wealth, Publ. Am. Stat. Assoc.,9,209-219 (1997).

[27] J. Swain, S. Venkatraman, and J. Wilson, Least square
estimation of distribution function in Johnson’s
translation system, J. Statist. Comput. Simul., 29, 271-
297 (1988).

[28] J. Gross, V. A. Clark, Survival Distributions Reliability
Applications in the Biometrical Sciences, John Wiley,
New York, (1975).

[29] M.V. Aarset, How to identify bathtub hazard rate, IEEE
Trans. Rel. R., 36, 106-108 (1987).

[30] S. Dey, V. K. Sharma, M. Mesfioui, A new extension of
Weibull distribution with application to lifetime data,
Ann. Data Sci,.4(1), 31-62 (2017b).

Authors Profile

Maryam Mohiuddin is pursuing
Ph.D. Statistics in the Department
of Statistics from Annamalai
University, Chidambaram, and
Tamil-Nadu. She has completed
her Master of Statistics from
Islamic University of Science and
Technology, Kashmir in 2016. She
did her Bachelors of Science in
=~ Actuarial and Financial
Mathematics from the Islamic University of Science and
Technology, Kashmir in 2014. She has published
innumerable research articles in reputed Journals.

= R. Kannan is Professor in the
Department of  Statistics at
Annamalai University,
Chidambaram, Tamil Nadu. His
area of specialization is stochastic
process and its applications,
survival analysis and reliability
theory and Bio-Statistics. He has
thirty one years of teaching
experience and thirty three years
of research experience. He has served as a Head of
Department in the Department of Statistics in Annamalai
University. He has published sixty one research articles in
reputed Journals, both at the national and international
level. He has organized and attended the forty nine national
and nineteen international conferences.

T8

© 2021 NSP
Natural Sciences Publishing Cor.



