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Abstract: An advection-driven interspecific competition model is constructed, which we believe is more physically realistic as the

movements of competing species are usually aimed at a target. Standard analysis using the travelling wave approach was employed,

and the results show that the equilibrium points are independent of the advection velocities and the wave speed. However, the stability

of each steady state depends on the wave speed and the advection velocities of the competing species. Conditions for the extinction

and coexistence of the species were also obtained and illustrated using numerical simulations. The implication for ecological resource

management is also highlighted.
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1 Introduction

Mathematical modelling of interspecfic competition has
been at the centre of mathematical ecology. The classic
Lotka-Volterra interspecific competition model is a
reference point, despite its shortcomings such as
non-capturing of the random movement of the interacting
species. A lot of research work has been carried out on
the Lotka-Volterra competition model. Prominent among
them are the works of Fassoni, etal [1], who established
the effects of parameters on the size of the basin of
attraction of the equilibrium points in an interspecific
competition model. The works of Barabas, et al [2],
Gerhard, et al [3], Gavina, et al [4] and Cushing, et al [5]
are relevant references as far as interspecific competition
is concerned. However, critics of some of the interspecific
models are of the view that most of the models do not
capture certain biological features such as environmental
effects and spatial heterogeneity. This is the focus of this
research work. However, many researchers have
addressed some aspects of spatially structured
competition models. For instance, Okubo [6] addressed
the effect of diffusion on a two-species competition
model. Ryabov and Blasius [7] in a review paper, noted
that advection is the directed movement of species from
one region to the other. They stated that the dynamics of a

population involving the spatial movement of organisms
due to diffusion and advection is given by

∂ p(x, t)

∂ t
+ v

∂ p

∂x
= µ(x, p)p+

∂

∂x

(

D
∂ p

∂x

)

,

where p(x, t) is the population density, µ is the intrinsic
growth rate, v is the advection velocity and D is the
diffusion coefficient. Specifically, the advection term is

given by v
∂ p
∂x

. Similarly, Lam and Ni [8] considered a
reaction-diffusion-advection system for two competing
species and examined the effects of both diffusion and
advection on the coexistence of the species, similar to the
works of Zhao and Zhou [9] and Xu and Jiang [10].
Averill, et al [11] on the other hand studied the effect of
intermediate advection on the dynamics of a
reaction-diffusion-advection competition model and
concluded that the species cannot coexist under weak
advection, but that they only coexist in the presence of
strong advection. Mackenzie, et al [12], though did not
approach their work from a mathematical perspective,
submitted that the movement of animals is a combination
of diffusion and advection. While diffusion measures the
random movement of animals, advection captures the
component in a specified direction, such as the movement
towards a food resource. In species interactions in a
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competition, movement is more directed towards the food
resource, rather than random movement. The effects of
advection on the dynamics of competition models have
not been adequately addressed by researchers, hence the
focus of this work. Advection is certainly not the only
form of movement among competing species as captured
above and as described by Smouse, et al [13], but no
doubt the dominant form of movement. The current
research intends to investigate only the effects of
advection on the dynamics of the competing species with
the assumption that random movement is negligible. The
remaining parts of this work is structured as follows:
section 2 is dedicated to the mathematical formulation of
the model, section 3 centres on the analysis and numerical
simulations, while section 4 deals with the results and
discussion.

2 Mathematical Formulation

We consider two competing species p and q such that the
interactions are governed by the equations

∂ p

∂ t
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∂ p

∂x
= r1 p

(

1−
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−
α12

K1

q

)

(1)

∂q
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q

K2

−
α21
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p

)

(2)

where u1 and u2, r1 and r2, K1 and K2 are respectively the
advection velocities, the linear birth rates and the carrying
capacities of the environment of species p and q, while
α12 and α21 measure the competitive pressures on p and q

respectively. Using the scalling variables

p = K1 p∗,q = K2q∗, t =
t∗

r1

,x = Lx∗,

we obtain after dropping asterisks, the non-dimensional
system
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= p(1− p−αq) (3)

∂q
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∂q
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= θq(1− q−β p) (4)

where v1 =
u1
r1L

,v2 =
u2
r1L

,α = α12K2
K1

,β = α21K1
K2

and θ = r2
r1

.

Assuming the wave variable τ = x−ct, where c is the wave
speed, we obtain the equations

(v1 − c)
d p

dτ
= p(1− p−αq) (5)

(v2 − c)
dq

dτ
= θq(1− q−β p) (6)

3 Stability Analysis of the Equilibrium Points

The steady states of (5)-(6) are obtained as
E0 = (0,0),E1 = (0,1),E2 = (1,0) and

E3 =
(

α−1
αβ−1

,
β−1

αβ−1

)

. The equilibrium points are however

the same as in the competition model without advection,
hence the equilibrium points are independent of the
advection velocities. The Jacobian matrix of the system is
given by

J(p,q) =

(

(1−2p−αq)
v1−c

− α p
v1−c

− β θq
v2−c

θ(1−2q−β p)
v2−c

)

(7)

Hence J(E0) =

(

1
v1−c

0

0 θ
v2−c

)

, with eigenvalues λ1 =
1

v1−c

and λ2 = θ
v2−c

. Thus, E0 is unstable when v1,v2 > c and

stable for v1,v2 < c. However, E0 is a saddle point for
v1 < c < v2 and v2 < c < v1. This clearly shows the
effects of advection on the stability of the equilibrium
point. The table below shows the equilibrium points
E0,E1 and E2 and the conditions for stability or
otherwise.

The analysis of the interior equilibrium point

E3 =
(

α−1
αβ−1

,
β−1

αβ−1

)

is more complex than the other three

and is considered separately. The Jacobian matrix
corresponding to this steady state is given by
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where A = − 1
v1−c

(

α−1
αβ−1

)

and D = − θ
v2−c

(

β−1

αβ−1

)

. The

eigenvalues are obtained as

λ1 =
(A+D)+

√
(A+D)2+4AD(αβ−1)

2
and

λ2 =
(A+D)−

√
(A+D)2+4AD(αβ−1)

2
. We note that for the

interior equilibrium point E3 =
(

α−1
αβ−1

,
β−1

αβ−1

)

to be

physically meaningful, α < 1,β < 1 ⇒ αβ < 1 and
α > 1,β > 1 ⇒ αβ > 1. Hence two cases arise:

Case 1: α < 1,β < 1 and αβ < 1

For case 1, we have four conditions to consider,
v1,v2 > c,v1,v2 < c,v1 < c < v2 and v2 < c < v1. If
v1 > c and v2 > c, then A < 0,D < 0,AD > 0 and
αβ − 1 < 0. Hence

(A+D)2
> (A+D)2+4AD(αβ −1)⇒ (A+D)+

√

(A+D)2 +4AD(αβ −1)< 0.

Thus, λ1 < 0 or Reλ1 < 0. Similarly,

(A+D)−
√

(A+D)2 + 4AD(αβ − 1)< 0 which implies
λ2 < 0 or Reλ2 < 0. Hence E3 is a stable point.
For v1 < c and v2 < c, A > 0,D > 0,AD > 0 and
αβ − 1 < 0,

(A+D)+
√

(A+D)2 + 4AD(αβ − 1)> 0,
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Table 1: Summary of Equilibrium Points and their Stability

Equilibrium point Eigenvalues Conditions Stability

E0 = (0,0)
λ1 =

1
v1−c

λ2 =
θ

v2−c

v1,v2 > c

v1,v2 < c

v1 < c < v2

v2 < c < v1

Unstable node

Stable node

Saddle

Saddle

E1 = (0,1)
λ1 =

1−α
v1−c

λ2 =− θ
v2−c

α < 1,v1,v2 > c

α < 1,v1,v2 < c

α < 1,v1 < c < v2

α < 1,v2 < c < v1

α > 1,v1,v2 > c

α > 1,v1,v2 < c

α > 1,v1 < c < v2

α > 1,v1 < c < v2

Saddle

Saddle

Stable node

Unstable node

Stable node

Unstable node

Saddle

Saddle

E2 = (1,0)
λ1 =− 1

v1−c

λ2 =
θ(1−β )

v2−c

β < 1,v1,v2 > c

β < 1,v1,v2 < c

β < 1,v1 < c < v2

β < 1,v2 < c < v1

β > 1,v1,v2 > c

β > 1,v1,v2 < c

β > 1,v1 < c < v2

β > 1,v2 < c < v1

Saddle

Saddle

Unstable node

Stable node

Stable node

Unstable node

Saddle

Saddle

therefore λ1 > 0 or Reλ1 > 0. Consequently,

(A+D)−
√

(A+D)2 + 4AD(αβ − 1)> 0

and so λ2 > 0 or Reλ2 > 0, which shows that E3 is an
unstable point in this case. For v1 < c < v2, A > 0,D <

0,AD < 0. If A+D > 0, then

(A+D)+
√

(A+D)2 + 4AD(αβ − 1)> 0 ⇒ λ1 > 0.

Also,

(A+D)−
√

(A+D)2 + 4AD(αβ − 1)< 0 ⇒ λ1 < 0.

However, if A+D < 0, then

(A+D)+
√

(A+D)2 + 4AD(αβ − 1)> 0 ⇒ λ1 > 0

and

(A+D)−
√

(A+D)2 + 4AD(αβ − 1)< 0 ⇒ λ2 < 0.

Hence E3 is a saddle point. For v2 < c < v1,
A < 0,D > 0,AD < 0 and 4AD(αβ − 1)< 0.
This is similar to the last condition above, hence E3 is a
saddle point.

Case 2: α > 1,β > 1 and αβ > 1
Four conditions will be examined under this case. For
v1,v2 > c, A < 0,D < 0,AD > 0 and αβ − 1 > 0. Hence

(A+D)+
√

(A+D)2 + 4AD(αβ − 1)> 0 ⇒ λ1 > 0.

Similarly,

(A+D)−
√

(A+D)2 + 4AD(αβ − 1)< 0 ⇒ λ2 < 0,

thus E3 is a saddle. For v1,v2 < c, A > 0,D > 0,AD > 0
and αβ −1> 0,λ1 > 0 and λ2 < 0, therefore, E3 is again a
saddle point. Considering v1 < c < v2, A > 0,D < 0,AD <

0 and αβ − 1 > 0. Hence A+D > 0 or A+D < 0. If A+
D > 0, we have

(A+D)+
√

(A+D)2 + 4AD(αβ − 1)> 0 ⇒ λ1 > 0

or Reλ1 > 0 and

(A+D)−
√

(A+D)2 + 4AD(αβ − 1)> 0 ⇒ λ2 > 0

or Reλ2 > 0. Thus, E3 is an unstable node or spiral. But, if
A+D)< 0,

(A+D)+
√

(A+D)2 + 4AD(αβ − 1)< 0 and (A+D)−
√

(A+D)2 + 4AD(αβ − 1)< 0, hence λ1 < 0 and λ2 < 0
and so E3 is a stable node or spiral. In a similar vein, for
v2 < c < v1, E3 is an unstable node or spiral.

Numerical simulations are carried out to confirm the
stability of the steady states contained in the analysis done
above. Each figure is based on some conditions already
stated in the stability analysis.
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Fig. 1: α < 1, β < 1, v1 < c and v2 < c

Fig. 2: α < 1, β < 1, v1 < c < v2

Fig. 3: α > 1, β > 1, v1 > c and v2 > c

Fig. 4: α < 1, β < 1, v1 > c and v2 > c
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4 Results and Discussion

This research work is targeted at investigating the effects
of advection on the dynamics of two competing species.
In any competition, the competitors direct their
movements towards a target, rather than random
movement, hence the need to examine the effects of such
targeted movements in a competition model. An
advection-driven competition model involving two
species is considered. The results show that the
equilibrium points are independent of the advection
velocities of the species, but not their stability. The
stability of each steady state depends on the advection
velocities of the competing species and the wave speed.
The results of theoretical analysis summarised on Table 1
and the numerical simulations both agree, as can be seen
from Figures 1-4 below. Figure 1 indicates that for v1 < c

and v2 < c, E0 is stable, which implies that competing
species go into extinction when they both compete
weakly with low advection velocities. Under the same
conditions, E1 and E2 are unstable as can be seen from
table 1. However, E1 is stable when α < 1 and
v1 < c < v2, which physically implies that species p goes
into extinction when it competes at advection speed less
than that of q. E1 is also stable when α > 1, v1 > c and
v2 > c. This means that species p also dies out under
strong competitive pressure from q, in the presence of
high advection speeds from both species. A similar
scenario occurs in the case of E2, when species q goes
into extinction. For v1 < c < v2, α < 1 and β < 1, E0 is a
saddle point, E1 is a stable node or spiral, which shows
that species q wins in this case. The result is depicted on
Figure 2. Figure 3 on the other hand, indicates the
phenomenon of bistability, when both species compete
strongly at high advection velocities. The species however
coexist when they compete weakly, but at advection
speeds higher than the wave speed. This is shown on
Figure 4.

In conclusion, we have shown that advection affects
the dynamics of competing species. Secondly, conditions
for the stability of all the equilibrium points were
obtained and the numerical results agree with theoretical
analysis. These results show that the targeted movement
of species as they compete for food in an ecosystem has
effects on the stability of species population as well as
implication for ecological resource management. The
various stability conditions are indicators of when one or
both species go into extinction or coexist and the role of
the advection velocity, which is the measure of the rush
for food.
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