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Abstract: In this work, we present a solution to a major problem that most researchers meet, which is the solution of differential
equations of different dimensional by presenting a new structure to n-dimensional for the Extended cubic B-spline collocation
algorithm. The Extended cubic B-spline collocation forms are displayed in one, two and three dimensional. These constructs are
of prime importance in solving mathematical models that have applications in various sciences. The efficiency and accuracy of these
algorithms through a few test problems in two and three dimensional. Also, comparing our solutions and with the results obtained by

using other numerical methods available in the literature as much as possible.
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1 Introduction

We all know that obtaining solutions to partial differential
equations is of great importance in various fields. The
solutions to these equations are divided into analytical
solutions and numerical solutions [1-5]. Recently,
researchers have tended to use different methods to find
these solutions, whether analytical or numerical. With the
existence of models for these equations that have a degree
of difficulty in finding solutions to them, especially if they
are in two dimensional or in three dimensional or more
than that, serious work continued on how to find these
solutions. Over time, some researchers in this field found
it difficult to find analytical solutions with different
dimensional for these models, so some of them went to
find numerical solutions to them. Several researchers have
used different numerical methods to find solutions to
these equations with different dimensional [6—-16]. Now,
we are continuing to work on developing a different basis
B-spline collocation method to find numerical solutions
to partial differential equations in two and three
dimensional and so on. This work is a continuation of the
works in [17, 18]. The collocation strategy began by
Frazer et al. [19] in 1937. Afterward, the collocation
strategy at the side the least-squares strategy and Galerkin

strategy was utilized by Bickley [20] to ponder shaky heat
condition issues. Afterward on, in 1975, the collocation
strategy beside B-splines was connected to shaky warm
conduction and boundary layer streams [21] and it was
found that the comes about gotten were superior when
compared with comes about gotten with limited contrast
strategies. Since at that point, the collocation strategy is
being utilized over a wide extend of issues [22-29]. In
combination with the collocation strategy, there has been
serious utilization of polynomial B-splines for
understanding halfway differential conditions. Cubic
B-splines, quasi B-splines, quartic B-splines, quintic
B-splines, and so on are utilized in combination with the
collocation strategy in [22-27] for managing with
different straight and nonlinear boundary esteem issues.
Strategies like Haar wavelet collocation strategy [30], a
slope replicating part collocation strategy [31] and
Newton premise capacities collocation strategy [32] are
moreover picking up ubiquity to illuminate differential
conditions.

In this work, we presente the Extended cubic B-spline
collocation algorithm forms in n-dimensional. In addition,
some numerical examples are proposed to study the
effectiveness and accuracy of this method.
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This article is organized as follows: The second
section introduces n-dimensional Extended cubic
B-spline formulations. The third section introduces
numerical examples. The error estimates are present in
section four. Finally, show the conclusion part.

2 Construct Extended cubic B-spline
Formulas

The forms for n-dimensional Extended cubic B-splines
were introduced in this part.

2.1 One dimension Extended cubic
B-spline [21]

Let x € [a,b] and A;(x) are those Extended cubic B-spline
with knots at the points x;. Then the set of Extended cubic
B—splines A,] (x) s A()(x) g ey AN,] (x) y AN(X), AN+| s
forms a basis for functions defined over the interval. The
approximation N (x) to #(x) which uses these splines
as:

N+1
AN () =Y L M), (1
i=—1
where .%; unknown term. The formulations of 77,
2 .
%, dd;éﬁ are given by:
1
Hi= 5 (0~ 42+ 2p +8) %~ (p— ) i),
d A _ L —Zi
dx 2h '
dH_ (p+2) (L1 — 254+ L)
dx? 2h? ’

2)

2.2 Two dimensional Extended cubic B-spline

In this subsection, we show the formula of Extended
cubic B-spline in two dimensional on a rectangular grid
divided into regular rectangular finite elements on both
sides. h = Ax,k = Ay by the knots (x,,y,) where
m = 0,1,....M,n = 0,1,....N. The approximation
AN (x,y) to A (x,y) given by:

M+1 N+1
%N(xvy): Z Z Zm,nUm,n(xvy); 3)

m=—1n=—1

where %}, , are the amplitudes of the Extended cubic B-
splines Uy, ,(x,y) given by

Um,n(xay) = Am(x)An(Y)-

Which peaks on the knot (x,,y,) and A, (x), A,(y) are
identical in form to the one dimension Extended cubic

i ; 2.,
B-splines. Then the formulations of J7,,, —57*,
O Hnn 0> Hn 9> Hinn 9> Hinn

Ty ol Ty 0 axdy ,... are given by:

1
T 576

(72 <P2 +4P - 32) gmfl,n +p2$m71,n+l

—20° L1 4> Lonn = 20> L1 +0° Lons 101
- 2Pz‘iﬂmﬂ,n + P2$n+1,n+1 +(p - 4)Z‘iﬂmfl,nfl

=8P L 1nt1 =8P L1 + 64D Lo — 8P Lo vt
—8pLni10-1 —80Lni1.n — 8P Lnt1nt1

+16.L 01 pg1 +64.L0 o1 +256. L0 5+ 64.L5 11

Hin, n

+ l6-=%n+1,n71 +64$m+1,n + ]6$m+l,n+1) .
4
0., 1
a;n,n == ((p D) Lptn-1—2(P+8) L0

+p$m71,n+1 - p$m+l,n71 + 2p$m+1,n
- p$m+l,n+1 - 4gn1fl,n+1 + 4gm+l,n71

+ ]6gm+1,n + 4gm+l,n+l) )

Oy 1
ay - 4_8k ((P _4)$mfl,n71

(p - 4')ngfl,rH»l - 2P$m,n71 + ngm,;ﬂ»l
+ pgm+1,n71 - pgm+1,n+l - 16$m7n,1 + ]6gm,n+1

4L 101 +4«$m+1,n+1) :

(&)

P A P2

ox2 4812
((p D)L i1 2P+ 8) L+ PLn—1 1

- 2p-’?ﬁn,nfl + 4pw§/ﬂm,n - 2P$m,n+l + pZnJrl,rzfl
- 2p$m+1,n + p$m+l,n+1 - 4gn1fl,n+1
+ 8$m7n71 + 329%71# + 8$m,n+1 - 4$m+1,n71

- 16$m+],n4$m+l,n+l>v
Py P2

ayz = — 48](2 <(P *4)-’%7171.]:7] 72(p *4)3,”,],"

+ panl,thl - 2p-’?ﬁn,nfl + 4pw§/ﬂm,n - 2P$m,n+l
+ pZnJrl,rzfl - ZPZnJrl,n + p$m+l n+1— 4w§/pmfl,n+l
- 16ws/ﬂm,rzfl + 32$m,n - 16Zn,n+l - 4Zn+l,nfl

+ 8Zm+l,n - 4Zn+l,n+l) .
(6)
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82 %n,n _ gmfl,nfl - gmfl,rH»l - gm#»l,nfl +gm+1,n+1
dxdy 4hk

P Ay _ (p12)

dx2dy 4h%k

(gmfl,nfl - gmfl,rH»l - 2«>gm,nfl + 2ogm,rH»l
+ ngrl,nfl - gm+1,n+1)7

9 A _ (P+2)

dxdy? 4hk?

(Ln—tn-1 2L 10+ L1041 — L1 01

+ 2ogm{»l,n - gm+l,n+1)a

(N

2.3 The three dimensional Extended cubic
B-spline

Now, we obtain the Extended cubic B-spline in three
measurements approximates on a framework subdivided
into limited components of sides
h=Ax,k=Ay ,q= Az by the knots (xu, yn, zr) Where
m = 0,1,..M,n = 0,1,...,.N,r = 0,1,...,R can be
interpolated in terms of piecewise Extended cubic
B-splines. If 77 (x, y, z) is a function of x, y and z, it can
be shown there exists a unique approximation
AN (x,y,7) as

M+1 N+1 R+1
%N(xv Y, Z) = Z Z Zn,n,rUm,n,r(xayaZ)a (8)

m=—1n=—1r=—1

where .%,, ., are the amplitudes of the Extended cubic B-
splines Uy, r(x,y,2) given by

Um,n,r(xvyv Z) = Am(x) An (y)Ar(Z)'

Also, Ay (x),A,(y) and A,(z) have the same form as the
one dimension Extended cubic B-splines. The

. O Hopnr O Hownr O Hn.

formulations of Homnyrs —30 a"y’ Sl Tl

02 Hnnr 0> Hnnr 0> Hnnr 0> Hnnr 9* Hnnr are
ox2 7 9y2 ' 972 7 dxdy ° dxdz 7’

given in terms of the .%}, , , by:

3

1
o, = Taoa | 2 m—1.n—1.r —42
Honn, 13824((p+8)2’ ta-1r(P —4)

(P4’ L1 =P L tntr1

+ 120 Lyttt — 48P Lot 141

+ 64 Lyt p i1+ 20° Lot

—96p L1 pr—1+256 L1 pr1—4P> Loy
— 48> Ly s+ 1028 L0 1 s +20° Lo 11
—96p L1041+ 256. L0 1 p i1

— P L it 1207 L

— 48D L1 1 -1+ 04 L1 1 1

+20° Lt i1 = 9P L 1

+256.L 11— P Lot 1 1

+ 1202 L tn i1 — 48P Lot it i

+ 64 Lyt 11+ 20> Lo 1

—96p Lnn—1,-1+256.Lpn—1,-1

— 4P L1 — A8 L1 s

+1024.%5 51,420 Loun 141

— 960 L n—1,r+1+256. L0 n—1 41

— 403 s — 480" L1+ 1028L, 5
+80° Lons + 19202 Ly nr + 15360 Lo
+4096. L. =40 Lo

+256.Lmnit o1 — 4P Lonnir r — 482 Loni1
+1024.Z i1, + 2p3$m,n+1,r+1 —96p. L 1,041
+256.Lmnr1 01— P Lottt r—1

+ 1202 L tnt—1 — 48P Lot 1 1

+ 64 Lt 1 207 Lo 11
—96p Lt 10—1,r+256.L 001 n—1,r

— P Lttt + 1202 Lt 11

— 48P L1 n—1,r+1+64Lp 1 1541

+20° Lt -1 — 96P Lot -1 +256. Lot
—4p > L 10— 480" Lt +1024.L001
+ 2P3$m+1,n,r+1 —96p L 11

+256. Lt i1 — P> Lottt 1 1

+120° Lt 1 — 480 Lot i1 51

+ 64 Lt i1+ 207 Lot i1

—96p Lt 1 041,r+256.L 001 nt1

— P Lot 1 1202 Lt i1

- 48pgm+1,n+1,r+1 + 64gm+1,n+l,r+l) .

©))
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0, 1
L= 2 2 4p —32 m—1,n—1,r
Ix 1152h( (p"+4p =32) L1,

- pzo%nfl,nfl,ﬂrl + 2P2$m7],n,r,1 — 4p2‘§,ﬂm,],n,r

+ 2pzogmfl,n,r#»l - pzagmfl,rH»l,rfl + 2P2§fm71,n+1,r
- ngmfl,n+1,r+1 + ngerl,nfl,rfl - 2pzongrl,nfl,r
+ P Lt 1511 = 20> Lot 1 F 40> Lo 1 s

- 2p2$m+l,n,r+1 + ngnH»l,rH»l,rfl - 2Pzaiﬂm+1,n+1,r
+p2$n1+1,n+1,r+1 - (P - 4)2°gm71,r171,r—1

+ 8pagmfl,nfl,r+1 + 8pcgmfl,n,rfl

—64p. L 10+ 8P L 11 T80 L1 nr 1,1

+ 80 L1041+ 80 L1 041,041 — 8P Lot 1 n—1,r—1
=80 L 11— 8P Lot 1 1,041 — 8P Lt 1 -1
+64p L1y — 80 L1 nr i1 — 8P L1t 1,01

— 80 Lt 1041, — 8P Lont 1 nt1 1 — 168001 n—1 11
—64. L 11 —256. L0 1 py— 64 L1 i

—16. L0 11,1 —64L0 1 i1, — 16 L0 1 g 11
+16. L0 101,11 64L 101, + 16 L0 101041
+ 643”14‘1,",}‘71 + 256$n1+1,n,r

+ 64gm+1,n,r+1 + 16gm+1,n+1,r71

+ 64gm+1,n+1,r + ]6gm+1,n+1,r+l) )

., 1
m,n,r: 2 2 4 _ 2 2 ey
Jy 1152k( (p"+4p =32) L1,

- ngmfl,nfl,ﬂrl + ngmfl,n+1,r71 - 2p2$n171,n+1,r
+ ngmfl,n+1,r+1 + 2pzagm,nfl,rfl - 4'p2°gm,n71,r

+202 Lnt i1 = 2P L1 1 + 4P L1

- ZPZZn,nJrl,hLl - Pziﬂmﬂ n—lr—1+ 2p2,§,”m+] n—1r
— P2 Lty F P Lot i1 = 2P Lot i1
+ P2 Litnitrt — (P =82 Lo tn1 s

+80 L1 n1.r41—8PL 101,01

=80 L1 1= 8P Lot 141 T 8P L1 -1

- 64p‘>§/ﬂm,n7],r+ 8pvsfﬂm,rzfl,rJrl - Spgm,nﬂ Jr—1

+ 64p$m,n+l a Sp‘iﬂm,nﬂ o+l

+80 Lt 1,1 +8P L1 -1,

+ 8p$m+l,n71,r+l - 8p$m+l,n+1,r71

=8P L1t 1= 8P L1 a1l — 16 L0 1 n1,r41
+16. L0 1 pg 1,1+ 64 L0 1 g1

+16. L0 1 nt1,41 =64 Lnn—1,-1

- 256«>gm,nfl,r - 64gm,nfl,r+1

+64. L ni1,-1+256. L0 011+ 64 L i1 11

—16. L0 10-1,-1—64L 0101,

—16. L0 101,41+ 16. L0 01 01,01

+ 64 L1 g1+ 16$m+1,n+1,r+1) 7

d s 1

dz - 1152¢g (zngml,n,rl - 2p2$n1717n,r+1

- ngmfl,n+1,r71 + ngmfl,n+1,r+1 + 2P2«$m,n71,r71
— 20> Lpnt i1 — AP L1

+4p* L nri1 + 202 L1 -1 — 2P Lo i1 511

- ngerl,nfl,rfl + p2$m+1,n71,r+1 + 2P2$m+1,n,r4
- 2p2'>grt1+1,n,r+1 - p2$n1+1,n+1,r71 + p2$n1+1,n+1,r+1
+(P =4 Lt g1 — (P =4 2Lt

+80 L1 -1 — 8P L1041

+80 L1101 8PL 1t 1,041
+80Ln—1,-1— 8P Lo 1,41

—064p L p -1+ 640 L rv1

+ 8pcgm,n+1,r71 - 8pgm,n+1,r+1

+80 L tn-1,-1— 80 L 11,41

+ 8p$m+1,n,r—1 - 8pgm+1,n,r+1

+8P L1t 11— 80 Lt 1 nr 1,41

—64. L 11+ 64 L0 1 — 1680 a1

+16. L0 11,01 — 64 Lnn 1,1

+64. L0 1 41— 256 L r—1 256 L i1

—04.L 1 =1+ 604 Lo g1 r 41

—16. L1011+ 16 L0 1 n1 41

— 04 L 1 =1+ 64 Lot nrr

- 16Zn+l,n+l,rfl + 16$m+l,n+l,r+l> .

(10)
0% A 1
axa’y’ = 96hk <(p ~ DLt

—2(P+8)Ln—1n—1,+PLn—1 p—1,r+1

— P L1041 —1 + 20 L1 nt 1 1

—PLm 141 — PLon 1,1

+20 L tn1r—PLmi 11+ PLonit ns 11
=20 Lttt T PLmi i 11 — 4L 11,41
+A4 L 11 168t gt AL 1 41

+ 4gm+1,n71,r—1 + ]6gm+1,n71,r + 4gm+1,n71,r+1

- 4Zn+l,n+l,rfl - 16Zn+l,n+l,r* 4Zn+l,n+l,r+l> 3

O Hpnr 1
“oxdz  96hs < —(P=4) Lt p—1,r1

+ =D L1120 L1 1

=20 L1041 — PLm—1n41 =1 T PLon—1 nt1,04+1
FPL st n—1—1 = PLint 1 p—1,4+1 = 2P0 Lt 1 -1
F20 Lt 1+ PLonit nt 1,1 — PLont 1 1,041
+16.L 11— 16.L0 1 i1 4L 1 01,1
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- 4‘DS/ﬂmf Ln+1,r+1 — 4Zn+l n—1,r—1 + 4Zn+l n—1,r+1
- 16‘>§/ﬂm+l,n,r71 + 16‘>§/ﬂm+l,n,r+l

— 4L 11— +4Zn+1,n+1,r+1>,

2
J aﬁn!’r = 961kq ( (P—4) L 11,1

+ (P =4 L1101+ PLm— 111
—PLn 11 F 2P Lo 1,—1 = 2P L1 141

=20 L1514+ 20 L1541 — PLontt n—1 r—1
+PLmitn1r41 T PLnt 1t 11— PLont L nt et 1
— 4L i1 F AL 1 1 F 16D 1
—16. L n—1 41— 16. L pi1 r—1 + 16 L0 1 r41
+4. L 11— 4L i1 041

— 4L 11— +4Zn+1,n+1,r+1>,

3 S r 1

= *Z —1l,n—1,r— Z —1l,n—1,r
9x0y02 8hkq< n—1n—1,r—1+F ZLm—1n—1,r+1
+ Lt 11— L1t 1,041

+ Lniin—1r-1— Lt 1—1,r+1

— <Zm+1,n+1,r—1 +$m+1,n+1,r+1) )

(1)

O Hynr _ P+2

2 11522 ("gml’"l’”(p_él)z

—2(p*4+4p —32) Loty + P Lo tnt 1

80 L1141 H16.L0 1 n1 41

—20° L1 — 8P Lon—tmr—1 + 4L 1 1
+40° L1 s+ 640 L 1 s+ 256 Ly 10

—20° Lt mrit — 8P L1 + 64 L1 i

+0? Lt ni 11— 8Lttt 1+ 16Dt i1 1
— 202 Lt st — 8P Lot i1+ 64 Lt i1

+0° Lt ni 11— 8P Lottt i1 + 16Dt it
— 20 Ln 1,1+ 16p L1 1 —32Ln1 51
+40° L1160 Lo 1= 128 L0 1

=20 Lnnt1s41 +16p Ly ntp1 — 32 L wn1 11
402 L1 +16p Lnnr1 — 128 L

— 89 Lnr = 1280 Loy — 512L0 0

4> L1 16 L it — 128 L5011

— 20 Lnni 1+ 16p Ly pit -1 — 32 L1 1
+4p2 Lt +16p Loy ity — 128 L ni1 5

— 202 Lt i1 F16pLoni1 i1 — 32 L mni 1 1

+ P L1t =8P Lottt 1+ 16 L 1yt 1
— 20 Lt =8P Lt + 64 L1 1

4P L tn 11— 80 Lottt 16 Lt 1 i1
- ZPZZnH,n,rfl =80 Lt 101+ 64 L st -1
+40° L1+ 640 L+ 256 Li 10

- 2P2'$m+1,n,r+1 =8P Lt r+1+ 604 L1 prt1
+p2‘>§/ﬂM+l,n+l,r71 — 8P Lont1 1 =1+ 16. L0001 ppt 1
— 202 L tnitr =8P Lot nit s+ 64 Lot i1

+p2$m+l,n+l,r+l - 8p$m+l,n+l,r+l + 16Zn+l,n+l,r+l) )

82 %n,n,r p+ 2

2 11522 ('Z"l’""”(p — 4

—2(p*+4p —32) Loty t P2 Lot

— 8P Lt 1 H 16 L1t 1 — 2P Lot 1
+16p Lyt = 32L w1 + 4P Loty
+16p Lty — 128 L1y — 202 Lot i

F16p Lt pri1 = 32Lom 1 i1 + P> Loy 1 -1

— 8P Lt -1 + 16 L1 it o1 = 202 L1
— 8P Lt i1+ 4L i1+ PELo i1 a1

80 Lt i 1t1 + 16D 1t i1 — 2P Lo -1
— 8P L1 + 64 Lot 1 AP L1

+64p L1 +256 L n1 = 20 L1 41

=80 L1, +04 L0 1 1+ 4p2Zn,n,r71
+16PLnr 1 — 128Lnr 1

—80° Ly — 1280 Lor = 512L0 0

+40% Lot + 160 Lpp i1 = 12800041

=202 Lnit o1 — 80 Lot o1 + 64 L 1

+ 4P L+ 64D Lot + 256 Lot

- 2P2-$m,n+1,r+1 =8P Lt 1,41+ 64 L0 i1 11

+ P2 Lt 1 — 80 Lot o1 + 16 Lt et
202 Lt — 8P Lot 1yt + 64 Lo 1 1

+ 02 L 111 — 8P Lot it 1 + 16 Lt 141
— 2> Lyt 1 + 160 Lot pr—1 — 32 L i
+4p> Lty +16p Loy — 128 L1 s

- 2P2-$m+1,n,r+1 +16p L1 01 — 32 L1 i1

+ P2 Lot i 10-1 — 8P Lot it -1 + 16 L 1 1
— 20’ Lt nit s — 80 Lot nit r+ 64 L it

+p2$m+l,n+l,r+l - 8p$m+l,n+l,r+l + 16Zn+l,n+l,r+l) 5
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> Hpny P2

92 11524 (”g’"l’”l’”(p 4

- 2cgmfl,nfl,r(p - 4)2 + p2$m717n,17r+1

- 8p$n71,n71,r+1 + 16‘>§/ﬂm71,n71,r+l - 2p2Zn71,n,rfl
- 8p$nfl,n,rfl + 64Zm71,n,r71 + 4p2‘>§/ﬂm7],n,r

+ 16pogmfl,n,r - 128agmfl,n,r - 2pzcgmfl,n,H»l

- 8p$mfl,n,r+l + 64gn1fl,n,r+1 + p2$m717n+17r,1

- 8p$n71,n+l,rfl + 16‘>§/ﬂm71,n+l,r71 - ZPZZm—I,nH,r
+ 16p$m71,n+l N 32-’Zn71,n+l ,r+ ngmfl,nJrl,hLl

- 8p$mfl,n+l,r+1 + 160gm71,n+1,r+1 - 2P2«$m,n71,r71
- 8p$n,n71,rfl + 64Zm,n71,r71 + 4p2‘>§/ﬂm,n7],r

+ 16p"gm,n71,r - 128wzﬂm,rzfl,r - 2pzwgfﬂm,rzfl,rJrl

- 8pgm,n71,r+l + 64gm,nfl,r+1 + 4P2$m,n,r71

+ 64P$m,n,r4 + 256agm,n,rfl - 8p2$m,rz,r

- 128p"gm,n,r -5 12"gm,n,r + 4p2‘>§/ﬂm,n,r+l

+ 64pZn,n,r+l + 256‘>§/ﬂm,rz,r+l - ZPZXm,nH =1

- 8pgm,n+1,r71 + 64gm,n+1,r71 + 4p2$m,n+l,r

+ 16p"gm,n+l,r - 128‘>§/ﬂm,rz+l b 2p2‘§/ﬂm,n+l 741

- 8p$n,n+l,r+l + 64Zn,n+l,r+l + p2$m+l n—1r—1

- 8P-$m+1,n71,r71 + 16agm+1,nfl,r71 - 2p2«>gm+1,n71,r
+ 16P$m+1,n71,r - 32ogm{»l,nfl,r + p2$m+l,n71,r+1

- 8p$n+l,rzfl,r+l + 16‘>§/ﬂm+l,n71,r+l - ZPZZnJrI,n,rfl
- 8pgm+1,n,r71 + 64gm+1,n,r71 + 4p2$m+1,n,r

+ 16p«>gm+1,n,r - 12Sagm+1,n,r - 2p2$m+l,n,r+1

- 8p$n+l,n,r+l + 64Zn+l,n,r+l + p2$m+l a+1r—1

- 8p$n+l,n+l,rfl + 16‘>§/ﬂm+l,n+l,r71 - ZPZZnJrI,nH,r
+ 16pgm+1,n+l,r - 32$n1+1,n+1,r + p2$m+l,n+1,r+1

- 8p$n+l,n+l,r+l + 16$m+l,n+l,r+l> .

(12)

3
aajfg,;,r = 56—;1_236 ((P _4)$m71,n71,r—1
—2(P+8)Ln—1n—1,+PLn—t p—1,r+1
— P L1 n+1,r=1 T 20 L1 1, — PLon—1 041,041
- 2pcgm,nfl,rfl + 4'pagm,nfl,r - 2P«$m,n71,r+1
+ 2pcgm,n+1,r71 - 4p$m,n+1,r + 2p$n1,n+1,r+1
FPL st 1,1 =20 Lot 1 n—1,r+ PLo 1 n—1,r41
— P L1 1 F 20 Lt 1 - — PLont 1t 1,541
— 4L 11 F AL 1 1 10 L g
+ 4Zn71,rz+l 741 + 8Zn,n71,r7] + 32$m’nfl,r
+8Ln—1,41—8Lnns1.r-1— 32 L0 ns 1

- 8Zn,n+l,r+l *4$m+l,n71,r71 - 16‘>§/ﬂm+l,nfl,r
- 4Zn+l n—1,r+1 + 4Zn+l n+1r—1

+ ]6gm+1,n+l,r+4$m+1,n+1,r+1) )

O Hpnr  P+2

920z 96k ((P — )Lyt 11
- (P - 4)$mfl,n71,r+1 - 2P$m71,n,r71
+20 L1t T PLn— 11— PLin—1nt 1,41
- 2pcgm,nfl,rfl + 2P$m,n71,r+1 + 4P$m,n,r4
- 4p$m,n,r+1 - ngm,nﬂ,rq + 2p$n1,n+1,r+1
+P Lt 11,1 = PLni 11,41 = 2P Lot 1 nr—1
+20 Lt 1 T PLint 1t 1,—1— PLont L nt et 1
—16. L1 p—1 + 1680 1 i1 — 4Lt 10— 1
+4 L 101 8L 1-1— 8L 1,41
+ 32Zn,n,rfl - 329%n,n,r+l + 8Zn,n+l,rfl
—8Lmnt1r11 = 4L 1n-1,-1 T 4L 1 n- 141
- ]6gm+1,n,r—1 + 16$m+1,n,r+1

— 4Lt 11 +4Zn+1,n+1,r+1) ,

3
aaﬁ’Z’r = 56;;231 ((P —4) L 1,01
—(P—B) L1151 =20 Lon 1 1
F20 L1 i1+ PLon—1 1,1 — PL—1 nt1,r+1
=20 Lnn-1,-1+20Lnn1,r11+4P L1
—4p Lnr1 = 20 Lonni1 -1 F 20 Lnng 1541
+PL i in—1,-1—PLmr 10141 = 2P Lt 1 nr—1
+20 L1 i1 F PLon i 11— PLont it 141
+ 8L 1nr—1 =8 L1 1 — 4 L1 1,1
+ 4gn1fl,n+1,r+1 - ]6$n1,n71,r71 + ]6gm,n71,r+1
+ 320%»1,;1,}*71 - 32$n1m,r+1 - ]6$m,n+1,r71
+ ]6$m,n+1,r+1 - 4agm+1,nfl,r71 + 4gm+1,n71,r+1
+8 L1 -1 — 8Lttt 1

- 4gm+1,n+1,r71 + 4gm+l,n+1,r+l) ;

3
B (LR
- 2(P - 4)$n171,n71,r + pgmfl,nfl,H»l
“PLn 1120 L 11— PLon— 141
- 2pcgm,nfl,rfl + 4'pagm,nfl,r - 2P«$m,n71,r+1
+ 2pcgm,n+1,r71 - 4p$m,n+1,r + 2p$n1,n+1,r+1
+PLinr1n—1,-1—20Lint 101+ PLint 101,041
—PLni 11120 L 11— PLont Lt 1r41
— 4L 11 F AL 1 -1 — 8L L g1
+A4 L 11 — 1680 1 1 32 L1
—16. L0 n—1,4+1+ 16 L0 py1,r—1 — 32 L i1 1
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+ 16‘>§/ﬂm,rz+l,r+l - 4Zn+l,rzfl,rfl + 8w§/ﬂm+l,n71,r
- 4">§/ﬂm+l na—1,r+1 + 4“>§/ﬂm+l a+1r—1

— 8Zm+l,n+l,r+4Zn+l,n+l,r+l)7

3
aaﬁg’r = 56—)1—22 ((P —4) L1101
_2(P 4) m—1,n— 1r+pgm IL,n—1,r+1
- 2p$n1717n7r71 + 4'pogmfl,n,r - ngmfl,n,ﬂrl
+ pgmfl,rwl,rfl - ngmfl,nJrl,r"" pgmfl,n+1,r+1
— P Lt 11420 Lt 1 — PLont 1 1,41
+20 L1 nr—1 — 4P L1y +20 Lt nrt
— P Lt nt1r—1 2P Lt i1 r — PLont 141
4L 11 =16 L0 1 +32L 0 10
- 16$m7],n,r+1 - 4anl,n+l,rfl + 8$mfl,n+l,r
— 4Lt 1 4L i1 -1 — 8 L -1 s
+4. L1001+ 1680 10— 1 — 32 L0 1
+16. L0 10041 4Lt pt 1 -1

— 8$m+l,n+l,r+4Zn+l,n+l,r+l>7

3
aaijff;rzl,f = 56:;](22 <(P 74)Zn71,n71,r71
- 2(P + 8)Zm71,n71,r+ pws/ﬂmfl,nfl,rqtl
- 2p-’?ﬁnfl,rz,rfl + 4p$nfl,n,r - 2pws/ﬂmfl,n,rJrl
+ panl,thl,rfl - ngmfl,n+l,r+ panl,thl,rJrl

—PLnt1n-1r-11F20L i1 01— PLimt 1 n—1r+1
+ 2P$m+1,n,r4 - 4P«$m+1,n,r + 2p$m+1,n,r+1
—PLni 111+ 20 L1 1 — PLint Lt 1,41
- 4$m71,n71,r+1 + ngfl,n,rfl + 32$n1fl,n,r

F8 L1 — 4L 11 — 1680 1y

- 4$m71,n+1,r+1 + 4$m+1,n71,r71 + ]6gm+1,n71,r
+ 4$m+1,n71,r+1 - 8cgm+1,n,r71 - 32ongrl,n,r

—8 L1 1 + 4Lt =1

+ 16$m+1,n+1,r+4gm+1,n+1,r+l) P

(13)

In all n-dimensional PDE’s with collocation method
we get a system of algebraic equations in this form

AL = b, (14)

We solve the above system using newton’s method to find
the unknown values of .Z.

3 The error estimates

Lemma 1.Suppose that A is an estimation of smoothness
class C?. At that point error gauges of the insertion on a
square work of side h are

oA  OH
17 = A1 < Boh*, | === ——I < Bir,
9 8% oH &%ﬂ
1~ S < B | % - < ok
<
2 32% 82% 82%
” 02 - 02 ” —B4h2a H ayz - a 2 ” _B5h27
A A
| 97 > 9z 2 H = ﬁ()hz
PH  IPH ) OPH A 2
< — <
Haxay axa ||_ﬁ7h ) Ha aZ 8x8z ||_ﬁ8h P
PEY ALY 4
|5 I < Boh?,
dydz  Jydz

where the B; are constants.

The proof of above lemma see [9].

4 The numerical results

Presently, we must know whether this method, which was
developed by presenting its constructions in different
dimensional, is accurate and effective or not. To prove
that this method is of high accuracy, we present in this
section various numerical examples in different
dimensional. We also show some figures of the results
obtained. In addition to providing comparisons of our
results with pre-existing results.

The first test problem: [18]
We take the first test problem in the 2-dimensional in this
form:

Mxx(xay) + M}’)’(xay) + ux(x,y) + u}’(xvy)
— 36T (x?(18y* — 4y —5)

+x(5-8y*—6y)) =3y’ +3y) =0, x,y€ [a,b]

(15)
The exact solution to that problem given as follows:
ux,y) =3e* ¥ (x—x%)(y —y?). (16)

We take the boundary conditions to the first problem in this
form:

By substitution from (4)-(6) into (15) with (17) we obtain
the numerical results as in the next table:
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Table 1: The computational results to the first problem at
y=0.5,x,y €[0,1]

x | Numerical | Exact Absolute Quadratic
results results error B-Spline
[18]
0.1 0.36856 0.36949 9.228 E-4 | 1.069 E-3
0.2 0.80015 0.80230 2.150E-3 | 2.323E-3
0.3 1.28295 1.28617 3.217E-3 | 3.409 E-3
0.4/ 1.79122 1.79535 4.129E-3 | 4316E-3
0.5| 2.27931 2.28422 4908 E-3 | 5.042E-3
0.6| 2.67274 2.67835 5.612E-3 | 5.606 E-3
0.7 2.85609 2.86243 6.341 E-3 | 6.054E-3
0.8] 2.65652 2.66375 7.237E-3 | 6.468 E-3
0.9 1.82167 1.83010 8.433E-3 | 6.931 E-3
In Table 1, we compared the results about the
2-dimensional Extended cubic B-spline method

employing a work of 50 x 50 and the exact results
together. We show that our results are accepted with
regard to the exact results. In Fig. 1, we introduce the
numerical arrangements with the exact solution at
y =0.5. In Fig. 2, we show the numerical results and the
exact solution at x = 0.5.

u(x,0.5)

Fig. 1: The numerical results with the exact results at y = 0.5.

u(0.5y)

y

Fig. 2: The numerical results with the exact results at x = 0.5.

The second test problem: MHD duct flow [7-9,16]

The cross-section of an infinitely long rectangular duct is
oriented with its sides parallel to the x— and y—axes and
the origin of coordinates at its center. The duct width is 2a
and height 26 so that the sides of the duct have equations
X = Fa and y = +b. A conducting fluid flows in the z
direction along the duct and is subjected to a constant
applied magnetic field M acting in a direction lying in the
xy-plane and making an angle A with the y-axis. The
equations governing the flow may be expressed in the
normalized form [7,15].

oP Ao OP. A, OP.
— =uvVAV, X T 8 18
az Z + ax, ,LL() ay, 9 ( )
and the z-component of the curl of Ohm’s law,
U, U,
VzAz+§No(A0xa—x,Z +Aoya—y,z) =0, (19)

with the boundary conditions: U = A = 0 at
X =+a,y = +b,

where v, u and & are, respectively, the kinematic
viscosity, density and electric conductivity of the fluid; ug
is the magnetic permeability in vacuum; dP/dz is the
constant axial pressure gradient; U, and Uy, are the X
and y' components of the applied magnetic field; and U,
and A; are the z components of velocity and induced
magnetic field, respectively. Following the notation of P.
C. Lu [15], who solved this problem using the
Kantorovieh method, Egs. (18) and (19) become in
non-dimensionalized form,

2> 92 0A 0A
[ [ —_— y_ = — 20
(axﬁayz)UJ“anxH/[’ay 1, (20)
and
22 92 oU U
- 4+ - = 21
(ax2 +ay2)A+Mx o +M, N 1, @

with boundary conditions U = A = 0,x = o,y = £1.
Distance has been scaled to the duct semi-height b so that
x =x/b, y =9y/b, and o = a/b. The following
normalisations have also been used.
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v=—2%
- b2 dP’
vu dz

— AZ

. —
S 2o (vué)?

M, = Aoub(=-)F = Msin(A), (22)

v

E
M, :Aoy/b(w) 2 = Mcos(A),

D=

1
M = Hartmann no. = (M; +M,)? :Aob(f—”) :
The Hartmann number is the ratio of magnetic to fluid
viscosity. If M = 0, the flow field is the classieal laminar
pipe flow. If M > 1, the flow field is determined primarily
by the E x A drift. To uncouple (20) and (21), the
functions

Hy =U+A, 23)
and
H, =U —A, (24)
& e 2 2 s)
o2 gyt T ox Yoy 7
and
2>  9° 0H, 0H,
[ —_— _— —_— §—_— = — 26
(8x2 +8y2) 2= M; ox M, dy L (26)

with boundary conditions H; = H, =0,x = +a,y = £1.
Thus, if Hy is solved as H (M, M,) from (26), then

HZ(MmMy) :Hl(_an_My)' (27)

So that the solution is completely determined when either
H; or H,, are known. Having determined H; the function
H, is found from (27) and hence the velocity field U from

U= %(HlJer)- (28)

Now, we will intreduce some numerical resultes for the
flow in a square duct with an applied magnetic field
parallel to the x—axis so that My = 0. To compare with
earlier results [7-9, 14], we give to M, the following
values M, =0,2,5 and 8.

By substituting from (4)-(6) in (25) and (26) we get the
numerical solutions as follows:

Table 2: U at the centre of the duct

In Table 2, the results of the 2-dimensional Extended cubic
B-spline method using a mesh of 20 x 20 were compared with
those the numerical [7-9, 16] and also with the analytic solution
of Shercliff [14].

In Fig. 3, we show The profile of velocity with Hartmann
numbers O (top curve), to 8 (bottom curve) at [—1,1] using a
mesh of 20 x 20 .

0101

0.05}

0.00k
-1.0 -05 0.0 0.5 1.0

X

Fig. 3: The profile of velocity with various values of Hartmann
numbers

In Table 3, some other results are presented where the
period with from [-1, 1] to [-0.5, 0.5] is changed and we also
compare these results with Finite difference method [16] and the
analytical solution found in the research [14].

Table 3: U at the centre of the duct. Finite difference and
analytic simulations compared

M| [7] [8] [9] FDM | Our | Anal-| AE
[16] | meth.| ytic

[14]

M, | Finite 2- Analytic Absolute
differenc dimensional | [14] error
method Extended
using cubic
a mesh of | B-spline
50x50[16] | method

50 x 50

0 | 0.073648 0.0736279 0.073671 431 E-5

2 | 0.071109 0.0710908 0.071128 | 3.72 E-5

5 | 0.060838 0.0608273 0.060846 1.87 E-5

8 | 0.049359 0.0493563 0.049363 | 6.70 E-6

0 | 0298 | 0.298 | 0.294| 0.294| 0.293| 0.294| 1.1E-3
2 | 0.263| 0.263| 0.258 | 0.258| 0.258| 0.258 | 6.2E-4
5 | 0.174| 0.174| 0.171| 0.171| 0.171| 0.171| 1.2E-4
8 | 0.120| 0.120| 0.118| 0.118| 0.118| 0.118| 3.0E-5

In Fig. 4, we show the profile of the velocity with various values
of Hartmann numbers at [—0.5,0.5] using a mesh of 50 x 50 .
For diverse values of the Hartmann number, the course of action
for the speed profile along the x—axis has shown up in figs 4 and
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0.07F

0.06 ¢

0.05¢

= 004}
003}

0.02¢

0.01¢

0.00

0.2 0.4

Fig. 4: The profile of velocity with various values of Hartmann
numbers.

5. As would be expected, growing the appealing field (growing
the Hartmann number) has an affect on the speed of the fluid
where it is the speed reduces near to the center of the channel,
this clear affect of the alluring field concentrated is as of
presently known. In this way, we see that the comes about are
totally congruous with the physical meaning of the affect of the
alluring field.

The third test problem: [18,33-36]
We take the third test problem in the 2-dimensional in this form:
uxx(xvy) + M}'}'(xvy) - Sin(ﬂx) Sin(ﬂy) = 07 X,y € [avb} (29)
the exact solution to that problem given as follows:
sin(7x) sin(7y)
272

We take the boundary conditions to the third problem in this
form:

: (30)

u(xvy) =

u(a,y) =u(x,a) = o, u(b,y)=u(x,b)=p. @31

By substitution from (4)-(6) into (29) with (31) we obtain the
numerical results as in the next table:

In Table 4, we compared the results of the 2-dimensional
Extended cubic B-spline strategy employing at 15 x 15 and the
exact results together. From our results we can say that results
are accepted with regard to the exact results. In Figs. 5, 6 we
show the numerical results with the exact results at y = 0.5.

0.00F 7
-0.01F 1

—

< o002} ]

S e Exact

x

S -0.03f == App. 1
-0.04r ]
- 0.05E I I I I =

0.0 0.2 0.4 0.6 0.8 1
X

Fig. 5: The numerical results with the exact results at y = 0.4.

0.00F T T T T =

-0.01 b
—_
> _o.02f ]
<
3 i E xact

-0.031 ]
= — App.

-0.04F .

- 0.05 = . . . . J

0.0 0.2 0.4 0.6 0.8 1
y

Fig. 6: The numerical results with the exact results at x = 0.4.

Let 15 x 15 grid points, we compar between the results of the
proposed method and the results of using different methods that
shown in Table 6 [18,33-36].

Table 5: Maximum absolute error according to the method used
for third problem.

Table 4: The numerical resultes for third problem at Our QBS MCBDQ| SDQM | Haar CBS
y=04, x,y€[0,1] method | method | method | method | wavelet | method
- [18] [33] [34] method | [36]
x | Numerical Exact results Absolute 135]
results error 16E4 | 37E-5 | 21E-5 | 16E4 | 3.1E-4 | 16E4
0.2| -0.0282154 -0.0283201 1.04701 E-4
0.4] -0.0456535 -0.0458229 1.69408 E-4 The fourth test problem: [18]
0.6| -0.0456535 -0.0458229 1.69408 E-4
0.8 -0.0282154 -0.0283201 1.04701 E-4 We take the fourth test problem in the 3-dimensional in this
@© 2021 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 15, No. 5, 599-611 (2021) / www.naturalspublishing.com/Journals.asp

form:

e (X,7,2) + tyy (x,,2) + 1tz (x,7,2) — xy2(€"F) Byxz + yx + 2x

—5x+zy—5y—5z49) =0, x,y,z€ [a,b]
(32)

The exact solution to that problem given as follows:

u(x,y,2) = (x=27) (y =y?) (2= 22)e T (33)

We take the boundary conditions to the fourth problem in this
form:

u(a,y,z) =u(x,a,z) = u(x,y,a) = a,

u(b,y,z) = u(x,b,z) = u(x,y,b) = p.
By substitution from (12) into (32) with (34) we obtain the
numerical results as in the next table:

(34)

Table 6: The numerical resultes for test problem at
z=y=05, x,y,z€[0,1]

x | Numericgql Exact Absolute Quadratic
solution | solution error B-spline
method [18]
0.1] 0.0168635 0.0168984 | 3.48852 E-5 | 3.24947 E-5
0.2] 0.0331304 0.0332012 | 7.07378 E-5 | 6.49943 E-5
0.3] 0.0480531 0.0481595 | 1.06445 E-4 | 9.65554 E-5
0.4] 0.0606859 0.0608280 | 1.42149 E-4 | 1.27075 E-4
0.5| 0.0698464 0.0700264 | 1.79967 E-4 | 1.57835 E-4
0.6 0.0740704 0.0742955 | 2.25088 E-4 | 1.92337 E-4
0.7| 0.071558B 0.0718456 | 2.87275 E-4 | 2.37433 E-4
0.8| 0.0601139 0.0604965 | 3.82576 E-4 | 3.04639 E-4
0.9 0.037073p 0.0376082 | 5.34586 E-4 | 4.11161 E-4

In Table 6, we compared the results of the 3-dimensional
Extended cubic B-spline strategy employing at 20 x 20 and the
exact results together. From our results we can say that results
are accepted with regard to the exact results. In Fig. 7, we show
the numerical results with the exact results at y =z = 0.5.

0.07

0.06

0.05

0.04

0.03

u(x,0.5,0.5)

0.02 == Exact

0.01 = App.

0.00

0.0 0.2 0.4 0.6 0.8 1.0
X

Fig. 7: The numerical results with the exact results aty =z =0.5.

5 Conclusion

Perhaps by the end of this work, we will have made a clear
contribution to solving some of the problems facing most
researchers in various fields through how to deal with
mathematical models of different dimensional. The topic studied
is very important and we believe that most researchers are
waiting for its results. Thinking about this work came after we
followed what was presented by some researchers in solutions
of partial differential equations in one, two and three
dimensional, and we noticed how difficult it is for them to deal
with these models as the dimension increases. So we thought to
develop the Extended cubic B-spline method that was used
previously in solving one-dimensional mathematical problems
and we were able to present a shape for this method in two and
three dimensional. We tested the accuracy and effectiveness of
the derived shapes by providing some numerical examples with
different dimensional. The numerical results were compared
with the real solution, and the inferred formulas were found
effective and accurate. From this perspective, we can say that a
clear contribution has been made to overcome the problems of
partial differential equations of different dimensional. Amid
long-term work, we are going moreover generalize a few other
B-Splines shapes to serve as a solution to differential equations
in n-dimensional.
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