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Abstract: In this paper, we consider a novel multiple rogue wave solutions of a (3 +1)-dimensional Kudryashov-Sinelshchikov

equation by using a symbolic computation approach.Some higher order rogue wave solutions of a (3 +1)-dimensional Kudryashov-

Sinelshchikov equation are presented. Some properties of the multi-rogue waves and their collision structures are given through

numerical examples. Finally, some expected applications and extension have been mentioned.
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1 Introduction

Rogue waves observed in the water tanks [1,2],deep
ocean [3,4], and optical fibers [5,6].To construct rogue
wave solutions, many several methods have been
proposed, including the inverse scattering method [7], the
Hirota bilinear method [8], Darboux transformation
method [9] and Backlund transformation method [10] and
so on. Recently [11,12,13], the first order rogue wave and
rational solutions to some (3+1) and (2+1)-dimensional
systems are constructed by the symbolic computation
approach.

In this paper, we mainly focus on a
(3 + 1)-dimensional Kudryashov-Sinelshchikov
equation.The description of the proposed method in [14]
is given in section 2, the bilinear form and multi rogue
waves for (3+1)-dimensional Kudryashov-Sinelshchikov
equation derived in section 3, the first-order, second-order
and third-order rogue wave solutions for
(3+1)-dimensional Kudryashov-Sinelshchikov equation
derived in section 4-6. Finally, conclusions are given in
Section 7.

2 Analytical method

Suppose the nonlinear partial differential equations
(NLEEs), take the form

H(u,ut ,ux,uy,uz,uxt ,uxy,uxz...) = 0, (1)

where H is a polynomial in unknown function u(x,y,z, t)
and its derivatives.

The main steps for the used method are consists of the
following steps

Step 1. According the transformation to the Painlève
analysis

u(x,y,z, t) = u( f ), (2)

is made by a dependent variable function f .
Step 2. The NLEEs(1) using (2) converted into

Hirota’s bilinear form

F(Dζ ,Dz) = 0, (3)

where ζ = x+ y− et, e is a real parameter and e is a wave
speed D-operator [15] is defined by

Dk
xDm

y Dn
z Dl

t f (x,y,z, t) ·g(x,y,z, t) =

(
∂

∂x
− ∂

∂x′
)k(

∂

∂y
− ∂

∂y′
)m(

∂

∂ z
− ∂

∂ z′
)n
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(
∂

∂ t
− ∂

∂ t ′
)l [ f (x,y,z, t)g(x′,y′,z′, t ′)] |x′=x,y′=y,z′=z,t′=t (4)

. Step 3. Suppose

F = Gn+1(ζ ,z;α,β ) = Fn+1 (ζ ,z)+ 2α zPn (ζ ,z)

+ 2β (ζ ) Qn (ζ ,z)+
(

α2 +β 2
)

Fn−1 (ζ ,z) , (5)

Fn(ζ ,z;α,β ) =
1
2 n(n+1)

∑
k=0

(

k

∑
i=0

an(n+1)−2k,2 iz
2 iζ n(n+1)−2k

)

,

Pn(ζ ,z) =
1
2 n(n+1)

∑
k=0

(

k

∑
i=0

bn(n+1)−2k,2 iz
2 iζ n(n+1)−2k

)

,

Qn(ζ ,z) =
1
2 n(n+1)

∑
k=0

(

k

∑
i=0

cn(n+1)−2k,2 iz
2 iζ n(n+1)−2k

)

, (6)

where F0 = 1,F−1 = P0 = Q0 = 0, α,β ,am,l ,bm,l and
cm.l ,(m, l = 0,2,4, ....,n(n + 1)) are real numbers and
α,β are used to control the rogue-wave center.

Step 4. The systems obtained Solved by inserting (5)
into (2) and equating all the coefficients of ζ and z to zero
we can obtain a system of polynomials and using the
symbolic software Maple to solve the system.

Step 5. Substituting the values of am,l ,bm,l and cm,l into
(1) to get the multi rogue wave solutions in terms of ζ and
z.

3 The bilinear form for (3+1)-dimensional

Kudryashov-Sinelshchikov equation

In this section, we consider the (3 + 1)-dimensional
Kudryashov-Sinelshchikov equation [16]

(ut + f1uux + f2uxxx)x + f3uyy + f4uzz = 0, (7)

where u(x,y,z, t) is a differentiable function and
f1, f2, f3, f4 are arbitrary constants.

To derive the rogue-waves solutions for (7), we find the
Hirota bilinear form by setting ζ = x+y−et, to obtain the
ordinary differential equation (ODE) for (7) as follows

f2uζζζζ +( f1u+ f3 − e)uζζ + f1u2
ζ + f4uzz = 0. (8)

Assume that the variable transformation has the following
form

u = u0 +
12 f2

f1

(lnF)ζζ . (9)

Then the Hirota bilinear form for (7) can be obtained by
inserting (9) into (8) as

( f2D4
ζ +( f1u0 + f3 − e)D2

ζ + f4D2
z )F.F = 0. (10)

The multi rogue wave solutions for the for a (3 +
1)-dimensional Kudryashov-Sinelshchikov equation (7)
can be obtained as follows

4 First-order rogue waves n = 0

In this case, we select

F = G1 = a2,0ζ 2 + a0,2z2 + a0,0. (11)

Let a2,0 = 1 without loss of generality. Substituting (11)
into (10) and setting the coefficients of all powers of ζ and
z to zero, we can obtain the coefficients a0,0 and a0,2 as
follows

a0,0 =
3 f2

−u0 f1 + e− f3

,a0,2 =−−u0 f1 + e− f3

f4

(12)

Inserting (12) in (11), then the first-order rogue waves for
Eq. (7) takes the form

u = u0 +
12 f2

f1

(lnF)ζζ . (13)

where

F = − (−u0 f1 + e− f3) (z−α)2

f4
+

(ζ −β )2 − 3 f2

u0 f1 − e+ f3

. (14)

The first-order rogue wave solutions (13) when
α = β = 0 are shown in Fig.1, has three center (0,0) and

(∓3

√

f2
−U0 f1+e− f3

,0) in three-dimensional, contour plot

and the corresponding density plot, we notice that in this
case,we have one peaks, the first-order rogue wave has

the minimum amplitude u0 +
−8u0 f1+8e−8 f3

f1
at (0,0) and

maximal amplitude u0 − −u0 f1+e− f3
f1

at

(∓3
√

f2
−u0 f1+e− f3

,0) when f2 > 0, f1u0 + f3 < e. But the

first-order rogue wave solutions (14) at α = −2,β = −2
the center of rogue wave will be (−2,−2) and

( 2U0 f1+3
√−u0 f1 f2+e f2− f2 f3−2e−2 f3

−u0 f1+e− f3
,−2) as shown in Fig.2,

moreover, the minimal and maximal amplitudes also

change into u0 + −8u0 f1+8e−8 f3
f1

and −−2u0 f1+e− f3
f1

,

respectively.

Fig.1 The first-order rogue wave solution (13)
propagation in three-dimensional plot (a), contour plot (b)
and density plot (c) with α = β = 0

c© 2021 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 15, No. 5, 613-619 (2021) / www.naturalspublishing.com/Journals.asp 615

(a)

(b)

(c)

Fig. 1: The first-order rogue wave solution (13) propagation in

three-dimensional plot (a), contour plot (b) and density plot (c)

with α = β = 0

(a)

(b)

(c)

Fig. 2: The first-order rogue wave solution (13) propagation in

three-dimensional plot (a), contour plot (b) and density plot (c)

with α = β =−2
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5 Second-order rogue waves n=1

In this section, we will find the second-order rogue wave
of Eq. (7) by setting n = 1 in Eq. (5) as follows































F = G2 (ζ ,z;α,β ) = F2(ζ ,z)+ 2α zP1 (ζ ,z)+
2β ζ Q1 (ζ ,z)+

(

α2 +β 2
)

F0 (ζ ,z) =
a6,0ζ 6 +

(

z2a4,2 + a4,0

)

ζ 4 + 2ζ 3β c2,0+
(

z4a2,4 + 2α zb2,0 + z2a2,2 + a2,0

)

ζ 2 + 2β
(

c0,2z2 + c0,0

)

ζ + a0,6z6 + a0,4z4 + 2α z3b0,2

+a0,2z2 + 2α zb0,0 + a0,0

(

α2 +β 2 + 1
)

.

(15)

Substituting (14) into (10) and setting all coefficients
of all powers for ζ and z to zero, we can get a set of
parameters am,l ,bm,l ,cm.l ,(m, l = 0,2,4,6) as follows

a0,0 =
1

(α2 +β 2 + 1)(−u0 f1 + e− f3)3

(−9β 2(−u0 f1 + e− f3)
3c2,0

2 +

α2u0
2b2,0

2 f1
2 f4 − 2b2,0

2α2u0 f4(e− f3) f1

+α2e2b2,0
2 f4 − 2α2eb2,0

2 f3 f4 +

α2b2,0
2 f 2

3 f4 − 16875 f2
3),

a0,2 = −475
f2

2

f4 (−u0 f1 + e− f3)
,

a0,4 = 17
(−U0 f1 + e− f3) f2

f4
2

,

a0,6 = − (−u0 f1 + e− f3)
3

f4
3

,

a2,0 = −125
f2

2

(−u0 f1 + e− f3)
2
,

a2,4 = 3
(−u0 f1 + e− f3)

2

f4
2

,

a4,0 = 25
f2

−u0 f1 + e− f3
,

a4,2 =−3
−u0 f1 + e− f3

f4

,

b0,0 =
f4 b2,0 f2

−3u0 f1 + 3e− 3 f3
,

b0,2 =
b2,0 (−u0 f1 + e− f3)

3 f4

,

c0,0 =− c2,0 f2

−u0 f1 + e− f3

,

c0,2 = 3
(−u0 f1 + e− f3)c2,0

f4

,

a2,2 =−90
f2

f4

(16)

where b2,0 and c2,0 is an arbitrary constant. The second-
order rogue wave for Eq. (7) takes the form

u = u0 +
12 f2

f1

(lnG2 (ζ ,z;α,β ))ζζ . (17)

In Fig 3.,4 show the second-order rogue waves for (13)
for different values of α,β , the second-order peak breaks
apart and for sufficiently big parameters, where the set of
three first order rogue waves forms and these centers is
formed a triangle, this is called a rogue wave triplet.

6 Third-order rogue waves n = 2

The third-order rogue wave of Eq. (7) is obtained by taking
n = 2 in Eq.(5) as follows



















































































































F = G3 (ζ ,z;α,β )
= F3(ζ ,z)+ 2α zP2 (ζ ,z)+ 2β ζ Q2 (ζ ,z)
+
(

α2 +β 2
)

F1 (ζ ,z)
= a12,0ζ 12 + a10,0ζ 10 + a10,2z2ζ 10

+a8,0ζ 8 + a8,2z2ζ 8 + a8,4z4ζ 8

+ζ 6 + a6,2z2ζ 6 + a6,4z4ζ 6

+a6,6z6ζ 6 + a4,0ζ 4 + a4,2z2ζ 4

+a4,4z4ζ 4 + a4,6z6ζ 4 + a4,8z8ζ 4

+a2,0ζ 2 + a2,2z2ζ 2 + a2,4z4ζ 2 + a2,6z6ζ 2

+a2,8z8ζ 2 + a2,10z10ζ 2 + 2β (c6,0ζ 6 + c4,2z2ζ 4 + c4,0ζ 4

+c2,4z4ζ 2 + c2,2z2ζ 2 + c2,0ζ 2

+c0,6z6 + c0,4z4 + c0,2z2 + c0,0)(ζ )+ (α2 +β 2)
×(a2,0ζ 2 + a0,2z2 + a0,0)+ a0,0+ 2α z(b6,0ζ 6

+b4,2z2ζ 4 + b4,0ζ 4 + b2,4z4ζ 2

+b2,2z2ζ 2 + b2,0ζ 2 + b0,6z6

+b0,4z4 + b0,2z2 + b0,0)+ a0,2z2 + a0,4z4 + a0,6z6

+a0,8z8 + a0,10z10 + a0,12z12.

(18)
Inserting (18) into (10), then setting all coefficients of all
powers of ζ and z to zero, we can get a set of parameters
am,l ,bm,l ,cm.l ,(m, l = 0,2,4,6)where b2,0 and c4,0 are
arbitrary constants.Then the third-order rogue wave
solution for Eq. (7) takes the form

u = u0 +
12 f2

f1

(lnG3 (ζ ,z;α,β ))ζζ . (19)

In Fig. 5,6. show the third-order rogue waves for (13) for
big values of α,β , the third-order rogue waves consists of
five first-order rogue waves are located in the corners of a
pentagon and other one sites in the center

Fig.6. The third-order rogue wave solution (20)
propagation in three-dimensional plot (a), contour plot (b)
and density plot (c) with α = β = 108. It is shown that
multiple rogue waves solutions for a (3+1)-dimensional
Kudryashov-Sinelshchikov equation can be used in
different application such as matter-field interaction and
Schrödinger equation [16]-[21].
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(a)

(b)

(c)

Fig. 3: The second-order rogue wave solution (17) propagation

in three-dimensional plot (a), contour plot (b) and density plot (c)

with α = β = 0

(a)

(b)

(c)

Fig. 4: Fig.4. The second-order rogue wave solution (17)

propagation in three-dimensional plot (a), contour plot (b) and

density plot (c) with

α = β = 2000
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(a)

(b)

(c)

Fig. 5: The third-order rogue wave solution (20) propagation in

three-dimensional plot (a), contour plot (b) and density plot (c)

with α = β = 0

(a)

(b)

(c)

Fig. 6: The third-order rogue wave solution (20) propagation

in three-dimensional plot (a), contour plot (b) and density plot (c)

with α = β = 108
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7 Conclusion

In this paper, we have discussed a novel multiple rogue
wave solutions of a (3 +1)-dimensional
Kudryashov-Sinelshchikov equation contain two free
parameters α and β , which are used to control the center
of the rogue waves.This exact solutions include higher
order rogue wave solutions of a (3 +1)-dimensional
Kudryashov-Sinelshchikov equation.
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