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Abstract: This paper attempts to solve the linear fractional programming problem with fully fuzzy normalized heptagonal fuzzy

numbers using the close interval approximation of normalized heptagonal fuzzy number, which is one of the best interval

approximations. The maximization (minimization) problem with interval objective function is converted into multi- objective based

on order relations introduced by the decision makers’ preference between interval profits (costs). Finally, an example is presented to

illustrate the proposed method.
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1 Introduction

Fractional programming problem (FPP) is defined as a
decision making problem that arises to optimize the ratio
subject to constraints. Fractional programming can be
applied in the fields of traffic planning [1], network
flows [2], ...etc. [3] proposed the fractional programming
problems and their duality theory. In the meantime, some
applications of fractional programming and the
algorithms to solve this kind of problems were presented
by [4, 5]. [6] showed that if the LFP problem has positive
or negative denominator, it is sufficient to solve only one
of the equivalent linear programming based on the sign of
the denominator. [7] proposed the multiple objective
linear fractional programming. [8] developed some fuzzy
approaches to solve the multiple objective linear
fractional optimization. [9] proposed an interactive fuzzy
satisficing method for multi objective linear fractional
programming problems. Many authors employed the
fuzzy goal programming technique to solve the
multi-level multi-objective linear programming problems,

such as [10–12] and others. Few decades ago, the
multiple objective fractional programming problems were
proposed by many authors [13, 15, 41].

In literature, [16] proposed the philosophy of fuzzy
sets. [17] introduced fuzzy programming and linear
programming with multiple objective functions. Later
several researchers addressed fuzzy set theory. [18]
studied the theory and applications of fuzzy sets and
systems. [19] investigated several fuzzy applications to
engineering and management sciences. Linear
programming problems with fuzzy random variable
coefficient and their applications in the area of
distribution problems were presented by [20]. [21]
presented the fuzzy linear programming problem with
fuzzy numbers. [22] studied the effect of tolerance in
fuzzy linear fractional programming. [23] presented a
comment on some fuzzy approaches for multiple criteria
linear fractional optimization. [24] presented a fuzzy
programming technique to solve the fuzzy linear
fractional programming with fuzzy coefficients. [25]
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presented an approach to solve the fully fuzzified linear
fractional programming problems.

[26] presented the interval numbers and some
techniques to handle the applications. [27] explored the
multiple objective decision making techniques
theoretically and provided their methodology. [28]
derived a model for expected value of fuzzy variable and
fuzzy expected value models. There are many approaches
proposed for solving MOLFP problems [29–38].

In this paper, a linear fractional programming problem
with normalized heptagonal fuzzy number in all of the
parameters is introduced. A close interval approximation
for the normalized heptagonal fuzzy number is defined. A
solution procedure for solving the problem is proposed.

The remainder of the paper is organized as follows:
Section 2 introduces some preliminaries required in this
paper. Section 3 introduces fully fuzzy linear fractional
programming formulation. In Section 4, solution
procedure is suggested. Section 5, a numerical example is
provided for illustration. Conclusion is presented in
Section 6.

2 Preliminaries

This section introduces some basic concepts and results
related to fuzzy numbers, heptagonal fuzzy numbers, close
interval approximation and their arithmetic operations.

Definition 2.1. [37]. A fuzzy set P̃ defined on ℜ is said to
be fuzzy numbers if its membership function

µP̃ : ℜ → [0,1],

has the following properties:

1. µP̃(x) is an upper semi-continuous membership
function;

2. P̃ is convex fuzzy set, i.e. µP̃(δx + (1 − δ )y
≥ min{µP̃(x),µP̃(y)}

3. P̃ is normal, i.e. existsx0 ∈ Re for which µP̃(x0) = 1;
4. Supp(P̃) = {x ∈ ℜ : µP̃(x) > 0} is the support of P̃,

and the closure cl(Supp(P̃)) is compact set.

Definition 2.2. [30]. A fuzzy number C̃H = (c1,c2,c3,c4,
c5,c6,c7) is a heptagonal fuzzy number (HFN), whereas
c1 ≤ c2 ≤ c3 ≤ c4 ≤ c5 ≤ c6 ≤ c7 ∈ ℜ and its membership
function are defined by:

µC̃H
=






1
3

(
x−c1
c2−c1

)
for c1 ≤ x ≤ c2,

1
3
+ 1

3

(
x−c2
c3−c2

)
for c2 ≤ x ≤ c3,

2
3
+ 1

3

(
x−c3
c4−c3

)
for c3 ≤ x ≤ c4,

1− 1
3

(
x−c4
c5−c4

)
for c4 ≤ x ≤ c5,

2
3
− 1

3

(
x−c5
c6−c5

)
for c5 ≤ x ≤ c6,

1
3

(
x−c6
c7−c6

)
for c6 ≤ x ≤ c7,

0 for x < c1 and x > c7.

A HFN can be characterized by the so called interval of

Fig. 1: Graphical representation of normal heptagonal fuzzy

numbers

confidence at level α as

C̃Hα (x) = {x ∈ X : µ
C̃H

≥ α}

=





[P−(t),P+(t)] for α ∈
[
0, 1

3

]
,

[Q−(u),Q+(u)] for α ∈
[

1
3
, 2

3

]
,

[R−(v),R+(v)] for α ∈
[

2
3
,1
]
,

Definition 2.3. An interval approximation [C] = [c−α ,c
+
α ]

of a HFN C̃ is called closed interval approximation if

c−α = inf
{

x ∈ ℜ : µC̃ ≥
1

3

}
,

and

c+α = sup
{

x ∈ ℜ : µC̃ ≥
1

3

}
.

Definition 2.4. The center of HFN corresponding to the
closed interval approximation [C] = [c−α ,c

+
α ] is defined as

CC =
c−α + c+α

2
.

Definition 2.5. The associated ordinary (crips) number
corresponding to the HFN c̃H = (c1,c2,c3,c4,c5,c6,c7) is
defined by âH = c1,c2,c3,c4,c5,c6,c7

8
.

Definition 2.6. Let [A] = [a−α ,a
+
α ], and [B] = [b−α ,b

+
α ] be

two interval approximations of HFN. Then the arithmetic
operations are:

1. Addition: [A](+)[B] = [a−α + b−α ,a
+
α b+α ],

2. Subraction: [A](−)[B] = [a−α b+α ,a
+
α b−α ],

3. Scalar multiplication: k[A] =

{
[ka−α ,ka+α ], k > 0,

[ka−α ,ka+α ], k < 0,

k ∈ ℜ,

4. Multiplication: [A](×)[B] =
[ a+α b−α +a−α b+α

2
, a−α b−α +a+α b+α

2

]
,

5. Division:

[A](÷)[B] =






[ 2a−α
b−α +b+α

, 2a+α
b−α +b+α

]
, [B]> 0, b−α + b+α 6= 0,

[ 2a+α
b−α +b+α

, 2a−α
b−α +b+α

]
, [B]< 0, b−α + b+α 6= 0,
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6. The order relation (≤)

[A](≤)[B]⇔ a−α ≤ b−α ∧a+α ≤ b+α ∨a−α +a+α ≤ b−α +b+α .

Definition 2.7. Let C̃ = (c1,c2,c3,c4,c5,c6,c7) and D̃ =
(d1,d2,d3,d4,d5,d6,d7). Then

1. Addition:

C̃H(+)D̃H = (c1,c2,c3,c4,c5,c6,c7)⊕ (d1,d2,d3,d4,

d5,d6,d7)

= (c1 + d1,c2 + d2,c3 + d3,c4 + d4,c5 + d5,

c6 + d6,c7 + d7),

2. Subraction:

C̃H(−)D̃H = (c1,c2,c3,c4,c5,c6,c7)⊖ (d1,d2,d3,d4,

d5,d6,d7)

= (c1 − d7,c2 − d6,c3 − d5,c4 − d4,c5 − d3,

c6 − d2,c7 − d1),

3. Scalar multiplication:

kC̃H =

{
k(c1,c2,c3,c4,c5,c6,c7), k ≥ 0,

k(c7,c6,c5,c4,c3,c2,c1), k < 0.

3 Problem Statement

A heptagonal fuzzy linear fractional programming
problem

max (or min)Z̃ =

n

∑
j=1

c̃ jx j + c̃0

n

∑
j=1

d̃ jx j + d̃0

subject to

M̃ =

(
n

∑
j=1

ãi jx j ≤ b̃i, i = 1,2, · · · ,r0, (1)

n

∑
j=1

ãi jx j ≥ b̃i, i = r0 + 1,r0 + 2, · · · ,m,

x j ≥ 0, j = 1,2, · · · ,n

)
.

Problem (1) can be rewritten using the close interval
approximation form as follows:

max (or min)Z =

n

∑
j=1

[c j]x j +[c0]

n

∑
j=1

[d] jx j +[d0]

subject to

M =

(
n

∑
j=1

[ai j]x j ≤ [bi], i = 1,2, · · · ,r0, (2)

n

∑
j=1

[ai j]x j ≥ [bi], i = r0 + 1,r0 + 2, · · · ,m,

x j ≥ 0, j = 1,2, · · · ,n

)
.

Where [ai j] = [(ai j)
−
α ,(ai j)

+
α ], [bi] = [(bi)

−
α ,(bi)

+
α ],

[c j] = [(c j)
−
α ,(c j)

+
α ], [d j] = [(d j)

−
α ,(d j)

+
α ], are closed

interval numbers. Assume that all of [ai j], [bi], [c j], [d j],
[c0], and [d0] ∈ F(ℜ), where F(ℜ) denotes the set of all
closed intervals on ℜ.

Definition 2.8. A point x j, j = 1,2, · · · ,n which satisfies
the constraints in problem (2) is called a feasible solution.
Any feasible solution x∗j ∈ Mα (the set of all feasible
solutions of problem (2)) is said to be an optimal solution
if:

[c j]x
∗
j

[d j]x∗j
(≥ or ≤)

[c j]x j

[d j]x j

; ∀ j = 1,2 · · · ,n.

Proposition 2.1. Problem (1) and problem (2) are
equivalent.

Proof. Assume that M1 and M2 are two sets of feasible
solutions of problem (1) and problem (2), respectively.

Then x ∈ M1 if and only if
n

∑
j=1

ãi jx j ≤ b̃i, i = 1,2, · · · ,r0,

n

∑
j=1

[ai j]x j ≥ [bi], i = r0 + 1,r0 + 2, · · · ,m, if and only if

{ n

∑
j=1

[(ai j)
−
α ,(ai j)

+
α ]xi

}
,≤ [(bi)

−
α ,(bi)

+
α ], i = 1,2, · · · ,r0,

{ n

∑
j=1

[(ai j)
−
α ,(ai j)

+
α ]xi

}
,≤[(bi)

−
α ,(bi)

+
α ],

i = r0 + 1,r0 + 2, · · · ,m.

if and only if

{ n

∑
j=1

[(ai j]
−
α ,(ai j)

+
α ]xi

}
, i = 1,2, · · · ,r0,

{ n

∑
j=1

[(ai j]
−
α ,(ai j)

+
α ]xi

}
, i = r0 + 1,r0 + 2, · · · ,m.

If and only if
n

∑
j=1

(ai j)
−
α x j ≤ (bi)

−
α ,
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n

∑
j=1

(ai j)+α x j ≤ (bi)
+
α , i = 1,2, · · · ,r0,

n

∑
j=1

(ai j)
−
α x j ≥ (bi)

+
α ,

n

∑
j=1

(ai j)+α x j ≤ (bi)
−
α , i = r0 + 1,r0 + 2, · · · ,m.

n

∑
j=1

[ai j]x j ≤ [bi], i = 1,2, · · · ,r0,

n

∑
j=1

[ai j]x j ≥ [bi], i = r0 + 1,r0 + 2, · · · ,m.

If and only if x ∈ M2. Thus M1
∼= M2.

On the other hand, suppose that x∗j be an optimal solution
for problem (1), then

n

∑
j=1

c̃ jx
∗
j + c̃0

n

∑
j=1

d̃ jx
∗
j + d̃0

; ∀ x ∈ M1.

If and only if

n

∑
j=1

[(ci j)
−
α ,(c j)

+
α ]x

∗
j +[c0]

n

∑
j=1

[(d j)
−
α ,(d j)

+
α ]x

∗
j +[d0]

(≥ or ≤)

n

∑
j=1

[(c j)
−
α ,(c j)

+
α ]x j +[c0]

n

∑
j=1

[(d j)
−
α ,(d j)

+
α x j +[d0]

.

If and only if

n

∑
j=1

[c j]x
∗
j +[c0]

n

∑
j=1

[d j]x∗j +[d0]
(≥ or ≤)

n

∑
j=1

[c j]x j +[c0]

n

∑
j=1

[d j]x j +[d0]
.

Thus, x∗j is an optimal solution of problem (2).

For minimization problem, the solution can be
obtained as the pareto optimal solution of the following
multiobjective linear fractional programming problem
(Ishibuchi and Tanaka, 1990, [16]).

min((ZC,ZU) : x ∈ M ⊂ ℜn). (3)

Where ZC is defined as in Definition 2.4.

Similarly, for maximization problem the optimal solution
is the pareto optimal solution of

max((ZC,ZL) : x ∈ M ⊂ ℜn). (4)

Definition 2.9. A point x ∈ M is a solution of problem (2)
if and only if there is no x◦ ∈ M which satisfies Z(x) ≤LC

Z(x◦)

Problem (4) can be rewritten as:

max

(
Zc =

∑n
j=1

(c j)
−
α +(c j)

+
α

2
x j +

(c0)
−
α +(c0)

+
α

2
n

∑
j=1

(d j)
−
α +(d j)

+
α

2
x j +

(d0)
−
α+(d0)

+
α

2

,

ZL =

n

∑
j=1

(c j)
−
α x j +(c0)

−
α

n

∑
j=1

(d j)
+
α x j +(d0)

+
α

)
.

subject to (5)

M =

(
n

∑
j=1

(ai j)
−
α x j ≤ (bi)

−
α ,

n

∑
j=1

(ai j)
+
α x j ≤ (bi)

+
α , i = 1,2, · · · ,r0,

n

∑
j=1

(ai j)
−
α x j ≥ (bi)

+
α ,

n

∑
j=1

(ai j)
+
α x j ≥ (bi)

−
α ,

i = 1,2, · · · ,r0 + 1,r0 + 2, · · · ,m,

x j ≥ 0, j = 1,2, · · · ,n

)
.

For solving problem (5), let us apply the method proposed
by Guzel (2013) [41], as:

max

(
n

∑
j=1

(c j)
−
j +(c j)

+
j

2
x j +

(c0)
−
α +(c0)

+
α

2
−ZC

opt

(
n

∑
j=1

(d j)
−
α +(d j)

+
α

2
x j +

(d0)
−
α +(d0)

+
α

2

)

+
n

∑
j=1

(c j)
−
j x j +(c0)

−
α −ZL

opt

(
n

∑
j=1

(d j)
+
α x j

+(d0)
+
α

))
(6)

subject to

M =

(
n

∑
j=1

(ai j)
−
α x j ≤ (bi)

−
α

n

∑
j=1

(ai j)
+
α x j ≤ (bi)

+
α , i = 1,2, · · · ,r0,

n

∑
j=1

(ai j)
−
α x j ≥ (bi)

+
α ,

n

∑
j=1

(ai j)
+
α x j ≥ (bi)

−
α ,

i = 1,2, · · · ,r0 + 1,r0 + 2, · · · ,m,

x j ≥ 0, j = 1,2, · · · ,n

)
.

Where
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ZC
opt =

∑
j=1

n
(c j)

−
α +(c j)

+
α

2
x∗j +

(c0)
−
α+(c0)

+
α

2

n

∑
j=1

(d j)
−
α+(d j)

+
α

2
x∗j +

(d0)
−
α +(d0)

+
α

2

= max

{ ∑
j=1

n
(c j)

−
α+(c j)

+
α

2
x j +

(c0)
−
α +(c0)

+
α

2

n

∑
j=1

(d j)
−
α+(d j)

+
α

2
x j +

(d0)
−
α +(d0)

+
α

2

, x ∈ M

}
,

(7)

and

ZL
opt =

∑
j=1

n(c j)
−
α x∗j +(c0)

−
α

n

∑
j=1

(d j)
−
α + x∗j +(d0)

+
α

= max

{ n

∑
j=1

(c j)
−
α x j +(c0)

−
α

n

∑
j=1

(d j)
+
α x j +(d0)

+
α

, x ∈ M

}
. (8)

4 Solution Approach

In this section, a solution method for solving fuzzy linear
fractional programming problem is illustrated as in the
following steps:

Step 1: Consider the linear fractional programming
(HFNLPEP) problem with normalized pentagonal fuzzy
parameters in the objective function and constraints.

Step 2: Covert the HFNLFP problem into the
corresponding close interval approximation linear
fractional Programming (IALFP) problem.

Step 3: Apply th multiobjective optimization for IALFP
problem.

Step 4: Find ZC
opt and ZL

opt as in (7) and (8), respectively.

Step 5: Formulate the equivalent linear programming of
problem (5) as in (6).

Step 6: Solve problem (6) using Software GAMS to
obtain the optimal solution which is the efficient solution
of problem (5).

5 Numerical Example

Consider a HFNLFP problem as:

Step 1:

max Z̃ = (1,2,3,5,7,8,9)x1(+)(0.5,1,2,3,4,6,7)x2

/((1,2,3,4,6,8,9)x1(+)(0.5,1,1.5,2,2.5,3,4)x2

(+)(0.25,0.5,0.751,1.5,2,3))

subject to (9)

(0.5,1,2,3,4,5,6)x1(+)(1,2,4,5,6,8,9)x2 ≤

(12,13,14,15,16,17,18),

(0.5,12,4,7,8,6)x1(+)(0.5,1,2,3,4,5,6)x2 ≤

(6,8,9,10,12,13,15),

x1 ≥ 0 and x2 ≥ 0.

Step 2: Applying the close interval approximation for
problem (9), we have

maxZ =
[2,8]x1(+)[1,6]x2

[2,8]x1(+)[1,3]x2(+)[0.5,2]

subject to

[2,5]x1(+)[2,8]x2 ≤ [13,17], (10)

[1,8]x1(+)[1,5]x2 ≤ [8,13],

x1 ≥ 0 and x2 ≥ 0.

Step 3: Multiobjective optimization for problem (10) is

max

(
ZC =

5x1 + 3.5x2

5x1 + 3x2+ 1.25
,ZL =

2x1 + x2

8x1 + 3x2 + 0.5

)

subject to

x1 + 2x2 ≤ 13,

5x1 + 8x2 ≤ 17, (11)

x1 + x2 ≤ 8,

8x1 + 5x2 ≤ 13,

x1 ≥ 0 and x2 ≥ 0.

Step 4: ZC
opt = 0.9754 at x∗1 = 0, x∗2 = 2.126 and

ZL
opt = 0.3091 at x∗1 = 0, x∗2 = 2.124.

Steps 5, 6: Formulate and solve the following linear
programming:

maxZ =−0.349x1+ 0.6465x2− 1.3738

subject to

x1 + 2x2 ≤ 13,

5x1 + 8x2 ≤ 17,

x1 + x2 ≤ 8,

8x1 + 5x2 ≤ 13,

x1 ≥ 0 and x2 ≥ 0.

The optimal solution is ZC
opt = −0.0019 at x∗1 = 0, x∗2 =

2.125.
Hence the optimal solution of problem (10) is
Z∗

opt = [0.2537,48571] at x∗1 = 0, x∗2 = 2.125, and the
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fuzzy optimum value is equal to Z̃ = (0.0435,0.1194,
0.2936,0.5714,1.0159,2.2857,5.333) with crisp value
equals 1.2792.
It is obvious that the results obtained by the proposed
method are more satisfactory than those obtained by
Guzel (2013) [41].

6 Conclusions

In this paper, close interval approximation for normalized
heptagonal fuzzy linear fractional programming problem
has been developed. The close interval approximation
LFP problem has converted into multiobjective LFP
problem with two objectives: One is the maximization of
the lower interval and the other is the maximization of the
center. Hence the method proposed by Guzel (2013) [41]
is applied for solving the multiobjective LFP problems.
The solution set of the close interval approximation
objective functions is defined as the efficient solution of
the corresponding multiobjective fractional programming
problems. The solution method is illustrated through a
numerical example.
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