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Abstract: The paper presents a new direction to the maximal flow problem. A maximal-flow problem involves finding the largest

flow rate a network supply can have from the source to sink. The proposed algorithm solves the flow problem by merging flow

routes iteratively until there is only one route left. It has the strength that the problem reduces in size at every iteration. The route

merging algorithm belongs to a family of algorithms that solves by reducing the complexity of the flow problem. The flow problem has

applications in the networking of pipes and road transportation networks.
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1 Introduction

A maximal-flow problem is the problem of finding the
largest flow rate a network can supply from the source to
sink. The network can be a road or pipe network system.
The first algorithm to solve this problem is the
Ford-Fulkerson algorithm that was developed in 1955 [1].
There have been other developments which provide many
methods available for solving the maximal-flow problem
today. These methods are classified as three main families
by Verma and Batra [2]. The families are
augmenting-path, push relabel and pseudoflow

algorithms. Augmenting-path algorithms always satisfy
the capacity and flow conservation constraints [3,4]. The
push-relabel algorithms satisfy the capacity constraints
but may violate the conservation constraints. With these
algorithms we may have flow excesses at nodes but no
flow deficits [5]. The third family which is the
Hochbaum’s pseudoflow algorithms satisfy the capacity
constraints but sometimes violate the conservation
constraints such that we have flow excess or deficit at
nodes [6,7]. We refer the reader to Verma and Batra [2]
for detailed information. The maximal-flow model has
direct application in road and pipe network systems. In
road network systems, the objective is to find the

maximum amount of traffic that can flow from a starting
point (source) to some destinantion or sink while in fluid
network systems, the objective is to find the maximum
amount of liquid/gas that can flow from a source to a sink.
Besides the direct application in traffic and pipe
transportation, the flow problem has other applications, as
follows:

Binary assignment problem: The binary assignment
problem can be reduced to a standard maximal-flow
problem. For example passenger airlines with thousands
of routes are scheduled using maximum-flow models
saving huge amounts of money in terms of costs.

Match elimnation problem: Some games such as
baseball can be modelled as maximum-flow problems.
With this model match analysts can tell which teams are
mathematically eliminated even before all the matches are
played.

Edge - disjoint paths: Maximum-flow model is used
to find the maximum number of edge-disjoint paths
between two specified vertices in a directed graph. If we
have capacities on both verices and edges then we call
these vertex-disjoint paths.

Energy function: A large class of energy functions can
be efficiently optimized by modelling them as maximum-
flow problems [4,8].
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Maximum matching in bipartite graphs:

Maximum-flow problems are used in bipartite graphs.The
problem is to find a matching with the maximum number
of edges in a given bipartite graph. This can be modelled
as a maximum-flow problem.

Dancing problem: Suppose we have the same number
(p) of ladies and gentlemen at party and each man knows
exactly a number (e) of women and each woman knows
exactly a number (e) of men. The problem of arranging a
dance so that each man dances with a different woman that
he knows can be formulated as maximum-flow model.

Project selection: Suppose we have n projects such
that some projects depend on the completion of others
before they can commense. If each project is associated
with some profit or loss, then the problem of finding the
set of projects including all its depedences that give the
maximum profit can be formulated as a maximum-flow
model.

Image segimentation: The image processing problem
can also be modelled as maximum-flow problem [9].

This paper presents an algorithm which solves the
maximum-flow network model by merging routes. The
proposed node merging algorithm for the maximum-flow
problem belongs to a family of algorithms we can call
complexity reduction family of algorithms. This family of
algorithms solve the flow problem by reducing the size or
complexity of the problem in stages or iterations. The
worst case complexity of the algorithm together with
computational experiments are presented.

2 Maximum flow problem

2.1 Single source single sink

Suppose a maximum - flow network problem is
represented as shown in Figure 1.

Fig. 1: Maximum-flow network problem.

Where fkl is the flow into node l from node k,
f̄kl is the flow into node k from node l,

Sois the source and

Siis the sink.
The objective is to find the maximum-flow from source

(So)to sink (Si).

2.2 Multi - source and multi-sink problem

The problem given in Figure 1 is a single source and a
single sink. In real life, we usually have more than one
source or sink. In such a case, the multi-source to
multi-sink problem can be transformed into a
single-source to single-sink one. The new source and sink
are called supersource and supersink, respectively.
Readers are encouraged to see Ahuja et al. [10] for more
information and examples on transforming multi-source
multi-sink maximum flow problem into a single-source
single-sink maximum flow problem. The hunt for more
efficient algorithms is an ongoing exercise [8,11].

3 Merging routes

Routes in the maximum-flow network diagram can be
merged into one. This simplifies and reduces the
complexity of the problem. There are several ways and
rules of merging routes. The various rules, ways or
theorems for merging routes in a maximum-flow network
diagram are presented in this section.

3.1 Theorem 1

Suppose a single route maximum - flow network diagram
is represented as shown in Figure 2.

Fig. 2: Single route flow network diagram.

In Figure 2 the maximal - flow Pf ,from So to Si is given
by (4.1).

Pf = min[ f01, f12, ..., fki] (1)

The reverse maximal-flow (i.e. from Si to So) is given
by (2).

P̄f = min[ f̄01, f̄12, ..., f̄ki] (2)
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3.1.1 Proof by linear programming

Suppose Pf is the maximum-flow as shown in Figure 3.

Fig. 3: Maximum-flow for single route network diagram.

Then linear programming (LP) can be used to prove
Theorem 1. In other words the same maximum-flow
problem given in Figure 3, in linear programming form is
(3).

MaximizePf , (3)

Subject to: f01 −Pf ≥ 0, f12 −Pf ≥ 0,. . . , fki −Pf ≥ 0.
Where Pf ≥ 0and constants f01, f12, ..., fki ≥ 0.

This is a single variable LP and the optimal solution is
given as (4).

Pf = min[ f01, f12, ..., fki]. (4)

Similarly it can also be shown that the maximum
reverse flow is (5).

P̄f = min[ f̄01, f̄12, ..., f̄ki]. (5)

3.2 Theorem 2 (special case - two routes)

Suppose a flow network diagram is presented as given in
Figure 4.

Fig. 4: Two route flow network diagram.

The maximum-flow (Pf )from So to Si is given in (6).

Pf = min[ f01, f12, ..., fki]+min[ f01̄, f1̄2̄, ..., fk̄i]. (6)

3.2.1 Proof

From the diagram given in Figure 4 we have (7).

Pf = P1
f +P2

f . (7)

Where P1
f is the maximum-flow in the first route and

P2
f is the second one. Then,

P1
f = min[ f01, f12, ..., fki]. (8)

P2
f = min[ f01̄, f1̄2̄, ..., fk̄i]. (9)

Since there are two separate or different routes then the
maximum-flow(Pf )is the sum of (8) and (9) and is given
in (10).

Pf = min[ f01, f12, ..., fki]+min[ f01̄, f1̄2̄, ..., fk̄i]. (10)

3.3 Theorem 3 (general case - more than two

routes)

Theorem 3 is the general case of Theorem 2 in which the
number of separate or different routes is greater than 2.
This is represented as shown in Figure 5 and the maximum
flow

Pf is given in (11).

Fig. 5: Multi-route flow network diagram.

Pf = min[ f01, f12, ..., fki]+min[ f01̄, f1̄2̄, ..., fk̄i]+

min[ f
0¯̄1
, f ¯̄1 ¯̄2

, ..., f ¯̄ki
].

(11)
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3.3.1 Proof

Each of the multiple routes is treated separately, then the
maximum-flow is the sum of all these routes. Suppose
there are m routes and the maximum flow of the mth route
isPm

f , then

Pf = P1
f +P2

f + ....+Pm
f . (12)

From Figure 5,

P3
f = min[ f

0¯̄1
, f ¯̄1 ¯̄2

, ..., f ¯̄ki
]. (13)

Then,

Pf = min[ f01, f12, ..., fki]+min[ f01̄, f1̄2̄, ..., fk̄i]+

min[ f
0¯̄1
, f ¯̄1 ¯̄2

, ..., f ¯̄ki
]

(14)

3.4 Theorem 4 (Factorization rule)

Given (15),

Pf = min[ f0c + fi1, f0c + f j1]. (15)

Wherei 6= jand f0c is common then this is simplified as
(16).

Pf = f0c +min[ fi1, f j1]. (16)

3.4.1 Proof by linear programming

Flows are nonnegative, i.e., f0c, fi1, f j1 ≥ 0. Modelling
(16) as an LP becomes (17).

MaximizePf , (17)

Subject to: f0c + fi1 −Pf ≥ 0, f0c + f j1 −Pf ≥ 0.
Where f0c, fi1, f j1 ≥ 0.

Rearranging we have (18),

MaximizePf , (18)

Subject to: Pf ≤ f0c + fi1,Pf ≤ f0c + f j1.

Where f0c, fi1, f j1 ≥ 0.
The optimal solution of (18) is given in (19).

Pf = f0c +min[ fi1, f j1]. (19)

3.5 Theorem 5a (Triangle rule-1 for merging

routes)

The two routes i− j−kand i−kpresented in Figure refFig6
can be merged into a new route i ∗− j ∗−k∗ as presented
in Figure refFig7.

Fig. 6: Triangle rule for merging routes.

Fig. 7: Merged route way 1.

3.5.1 Proof

The theorem is valid if the maximum-flow of the two
original routes and the maximum-flow of the merged
route are the same.The maximum-flow (Pf ) from node i

to node k in Figure refFig6 is given in (19). Using
Theorem 2,

Pf = min[ fi j, f jk]+ fik. (20)

Using Theorem 1, the maximum-flow (Pf )of merged
route from node i* to node k* given in Figure 7 , becomes
(21).

Pf = min[ fi j + fik, fik + f jk]. (21)

Using Theorem 1 in this case. Since fikis common and
by the Factorization Theorem.

Pf = fik +min[ fi j , f jk]. (22)

This is exactly equal to the maximum-flow before
merging.

3.6 Theorem 5b (Triangle rule-2 for merging

routes)

The two routes i− j− kand i− kin Figure refFig6 can
also be merged into a new route i∗−k∗as given in Figure
8.
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Fig. 8: Merged route way.

3.6.1 Proof

As stated in the proof of way 1, the theorem is valid if
the maximum-flows of the original routes and the merged
route are the same. The flow leaving i* is given in (23).

Pf = min[ fi j , f jk]+ fik. (23)

This is the same as the maximum-flow given in (20)

3.7 Theorem 6 (Kite rule for merging routes)

Given a kite as shown in Figure 9, the maximum-flow
(Pf )from i to l is given as (24).

Fig. 9: Kite rule for merging routes.

Pf = min[ fi j + fik, fik + f jk + f jl , fkl + f jl ]. (24)

3.7.1 Proof

Using Theorem 5A we can merge i-j-k and i-k as shown in
Figure 10. Theorem 5A is used again to merge j-l and j-k-l

as shown in Figure 10.

Fig. 10: Merging routes i-j-k and i-k.

Theorem 1 is then used to determine the maximum-
flow in Figure 11 as given in (25).

Pf = min[ fi j + fik, fik + f jk + f jl , fkl + f jl ]. (25)

Fig. 11: Maximum-flow for single route network diagram.

The reverse maximum-flow can be shown as (26).

Pf = min[ f̄i j + f̄ik, f̄ik + f̄ jk + f̄ jl , f̄kl + f̄ jl ]. (26)

An alternate way is to merge i-j and i-k-j. This will give
the maximum-flow as shown in (27).

Pf = min[ fi j + fik, fi j + f̄ jk + fkl , f jl + fkl ]. (27)

The reverse maximum-flow is (28).

Pf = min[ f̄i j + f̄ik, f jk + f̄i j + f̄kl , f̄ jl + f̄kl ]. (28)
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4 Applying the route merging approach

4.1 Illustrative example

Question: A road network system is shown in Figure
12. The numbers by the nodes represent the traffic flow in
hundreds of cars per hour. What is the maximum-flow of
cars from node S0 to node Si?

Fig. 12: Road network system.

Solution: Triangle rule-2 is applied to outermost arcs
to get Figure 13 which is iteration 1.

Fig. 13: Triangle rule - 1 applied to outmost arcs: iteration 1.

Then triangle rule-2 is applied to outmost arcs to obtain
Figure 14 which is iteration 2.

The kite rule is used to merge routes 2-4-7 and 2-5-7
to get a single route flow problem shown in Figure 15.

Fig. 14: Triangle rule - 2 applied to outmost arcs: iteration 2.

Fig. 15: Kite rule used to merge routes 2-4-7 and 2-5-7: iteration

3.

Maximum flow for kite rule is given in (29) which is
simplified to (30).

Pf = min[8+ 13,7+ 1+ 13,7+14], (29)

Pf = min[21,21,21] = 21. (30)

The reverse maximum-flow is given in (31) and then
simplified to (32).

P̄f = min[1+ 5,0+ 1+ 13,0+4], (31)

P̄f = min[6,14,4] = 4. (32)

Using Theorem 1, the maximum-flow in hundreds of
cars is given in (33).

Pf = min[19,21,19] = 19. (33)

The maximum-flow of cars is 1 900 cars per hour.
Applying the the available maximum-flow algorithm [12]
we have the iterations given in Table .

Table 1: Iterations using the proposed route merging approach.

S0 1 6 Si : Pf = 1.

S0 1 4 6 Si : Pf = 2.

S0 1 2 4 6 Si : Pf = 2.

S0 1 2 4 6 7 Si : Pf = 1.

S0 2 4 7 6 Si : Pf = 1.

S0 2 4 5 7 Si : Pf = 1.

S0 2 5 7 Si : Pf = 4.

S0 3 2 5 7 Si : Pf = 1.

S0 3 5 7 7 Si : Pf = 1.

S0 3 5 8 7 Si : Pf = 5.

Sum Pf = 19.
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5 Complexity of the route merging algorithm

Using worst case complexity analysis the route
merging algorithm can be found to be quadratic. A flow
network diagram can be viewed as a structure of nodes
and polygons. The smallest of these polygons is the
triangle which connects any three neigbouring nodes. The
other types of polygons are pentagon, hexagon or any
other polygon that can connect a higher number of
neighbouring nodes. The route merging algorithm works
on collapsing a polygon at time until the whole network
reduces to a set of arcs in a line. In this paper, we define

1.A small polygon as one that connects a small number
of neigbouring nodes.

2.A route merging iteration as the collapsing of a
polygon in a flow network diagram.

From (ii), we can conclude that the more the number
of polygons in a flow network, the more route merging
iterations are required to solve the problem and the more
complex is the problem. In other words the flow problem
is more complex if it is made up of triangles only. The
route merging algorithm works on collapsing a polygon
connecting some neighbouring nodes. Thus we can
determine the worst case number of route merging
iterations as the largest number of triangles(τ)that can be
formed in an n-node flow network diagram.

When the number of nodes is n = 3.

Fig. 16: Largest number of triangles when n = 3.

When the number of nodes is n = 4.

Fig. 17: Largest number of triangles when n = 4.

When the number of nodes n = 5.

Fig. 18: Largest number of triangles when n = 5.

Fig. 19: Largest number of triangles when n = 8.

Table 2: Largest number of triangles as number of nodes

increases.

Nodes 3 4 5 6 7 8 9 ... N

No. of triangles 1 4 10 20 35 56 84 ... τ

When the number of nodes n = 8.
From Table 2 given above, it can be shown that the

largest numbers of triangles from n = 3 form a sequence

whose nth term is given by,

τ = 1
2 (n−1)(n−2)+ 1

2 (n−2)(n−3)+ ...+ 1
2 (n− r+1)(n− r).

(34)

Where,

n− r = 1. (35)

Thus, the route merging algorithm has a quadratic
(worst) case complexity. It is also noticeable that the
number of nodes on its own is enough to determine the
complexity of a maximum flow when the choice is to
apply the route merging algorithm.

6 Conclusion

The paper presented a route merging algorithm which
solves the maximum - flow network problem. The
algorithm solves the flow problem by merging routes until
there is only one route left. The proposed algorithm has
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the strength that the problem reduces in size at every
iteration. The flow problem has direct application in road
and pipe networks. The route merging algorithm belongs
to a family of algorithms solved by reducing the
complexity of the flow problem. The flow problem has
applications in the networking of pipes and road
transportation networks.

6.1 Further research

There is need for computational experiments to define the
ways that improve the proposed algorithm. More
algorithms in parallel form [13] are also required for the
flow problem. Some of the existing approaches, such as
[14], [15], [16], [17] and [18].
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