
Appl. Math. Inf. Sci. 15, No. 4, 487-495 (2021) 487

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/150411

A New Direction to The Maximal Flow Problem: A Route

Merging Approach

Elias Munapo 1,∗ Santosh Kumar2,3 and Kolentino Mpeta 1

1School of Economics and Decision Sciences, North West Uiversity, Mafikeng Campus Private Bag X2046, Mafikeng, 2735, South

Africa
2School of Mathematical and Geospatial Sciences, RMIT University,124 La Trobe Street, Melbourne VIC 3000, Australia
3Department of Mathematics and Statistics, University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia

Received: 2 Mar. 2021, Revised: 2 May 2021, Accepted: 7 Jun. 2021

Published online: 1 Jul. 2021

Abstract: The paper presents a new direction to the maximal flow problem. A maximal-flow problem involves finding the largest

flow rate a network supply can have from the source to sink. The proposed algorithm solves the flow problem by merging flow

routes iteratively until there is only one route left. It has the strength that the problem reduces in size at every iteration. The route

merging algorithm belongs to a family of algorithms that solves by reducing the complexity of the flow problem. The flow problem has

applications in the networking of pipes and road transportation networks.

Keywords: Maximal flow, Route merging, Linear programming, Source and sink

1 Introduction

A maximal-flow problem is the problem of finding the
largest flow rate a network can supply from the source to
sink. The network can be a road or pipe network system.
The first algorithm to solve this problem is the
Ford-Fulkerson algorithm that was developed in 1955 [1].
There have been other developments which provide many
methods available for solving the maximal-flow problem
today. These methods are classified as three main families
by Verma and Batra [2]. The families are
augmenting-path, push relabel and pseudoflow

algorithms. Augmenting-path algorithms always satisfy
the capacity and flow conservation constraints [3,4]. The
push-relabel algorithms satisfy the capacity constraints
but may violate the conservation constraints. With these
algorithms we may have flow excesses at nodes but no
flow deficits [5]. The third family which is the
Hochbaum’s pseudoflow algorithms satisfy the capacity
constraints but sometimes violate the conservation
constraints such that we have flow excess or deficit at
nodes [6,7]. We refer the reader to Verma and Batra [2]
for detailed information. The maximal-flow model has
direct application in road and pipe network systems. In
road network systems, the objective is to find the

maximum amount of traffic that can flow from a starting
point (source) to some destinantion or sink while in fluid
network systems, the objective is to find the maximum
amount of liquid/gas that can flow from a source to a sink.
Besides the direct application in traffic and pipe
transportation, the flow problem has other applications, as
follows:

Binary assignment problem: The binary assignment
problem can be reduced to a standard maximal-flow
problem. For example passenger airlines with thousands
of routes are scheduled using maximum-flow models
saving huge amounts of money in terms of costs.

Match elimnation problem: Some games such as
baseball can be modelled as maximum-flow problems.
With this model match analysts can tell which teams are
mathematically eliminated even before all the matches are
played.

Edge - disjoint paths: Maximum-flow model is used
to find the maximum number of edge-disjoint paths
between two specified vertices in a directed graph. If we
have capacities on both verices and edges then we call
these vertex-disjoint paths.

Energy function: A large class of energy functions can
be efficiently optimized by modelling them as maximum-
flow problems [4,8].

∗ Corresponding author e-mail: Elias.Munapo@nwu.ac.za

c© 2021 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/150411

488 E. Munapo et al. : A new direction to the maximal flow problem:...

Maximum matching in bipartite graphs:

Maximum-flow problems are used in bipartite graphs.The
problem is to find a matching with the maximum number
of edges in a given bipartite graph. This can be modelled
as a maximum-flow problem.

Dancing problem: Suppose we have the same number
(p) of ladies and gentlemen at party and each man knows
exactly a number (e) of women and each woman knows
exactly a number (e) of men. The problem of arranging a
dance so that each man dances with a different woman that
he knows can be formulated as maximum-flow model.

Project selection: Suppose we have n projects such
that some projects depend on the completion of others
before they can commense. If each project is associated
with some profit or loss, then the problem of finding the
set of projects including all its depedences that give the
maximum profit can be formulated as a maximum-flow
model.

Image segimentation: The image processing problem
can also be modelled as maximum-flow problem [9].

This paper presents an algorithm which solves the
maximum-flow network model by merging routes. The
proposed node merging algorithm for the maximum-flow
problem belongs to a family of algorithms we can call
complexity reduction family of algorithms. This family of
algorithms solve the flow problem by reducing the size or
complexity of the problem in stages or iterations. The
worst case complexity of the algorithm together with
computational experiments are presented.

2 Maximum flow problem

2.1 Single source single sink

Suppose a maximum - flow network problem is
represented as shown in Figure 1.

Fig. 1: Maximum-flow network problem.

Where fkl is the flow into node l from node k,
f̄kl is the flow into node k from node l,

Sois the source and

Siis the sink.
The objective is to find the maximum-flow from source

(So)to sink (Si).

2.2 Multi - source and multi-sink problem

The problem given in Figure 1 is a single source and a
single sink. In real life, we usually have more than one
source or sink. In such a case, the multi-source to
multi-sink problem can be transformed into a
single-source to single-sink one. The new source and sink
are called supersource and supersink, respectively.
Readers are encouraged to see Ahuja et al. [10] for more
information and examples on transforming multi-source
multi-sink maximum flow problem into a single-source
single-sink maximum flow problem. The hunt for more
efficient algorithms is an ongoing exercise [8,11].

3 Merging routes

Routes in the maximum-flow network diagram can be
merged into one. This simplifies and reduces the
complexity of the problem. There are several ways and
rules of merging routes. The various rules, ways or
theorems for merging routes in a maximum-flow network
diagram are presented in this section.

3.1 Theorem 1

Suppose a single route maximum - flow network diagram
is represented as shown in Figure 2.

Fig. 2: Single route flow network diagram.

In Figure 2 the maximal - flow Pf ,from So to Si is given
by (4.1).

Pf = min[f01, f12, ..., fki] (1)

The reverse maximal-flow (i.e. from Si to So) is given
by (2).

P̄f = min[f̄01, f̄12, ..., f̄ki] (2)

c© 2021 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 15, No. 4, 487-495 (2021) / www.naturalspublishing.com/Journals.asp 489

3.1.1 Proof by linear programming

Suppose Pf is the maximum-flow as shown in Figure 3.

Fig. 3: Maximum-flow for single route network diagram.

Then linear programming (LP) can be used to prove
Theorem 1. In other words the same maximum-flow
problem given in Figure 3, in linear programming form is
(3).

MaximizePf , (3)

Subject to: f01 −Pf ≥ 0, f12 −Pf ≥ 0,. . . , fki −Pf ≥ 0.
Where Pf ≥ 0and constants f01, f12, ..., fki ≥ 0.

This is a single variable LP and the optimal solution is
given as (4).

Pf = min[f01, f12, ..., fki]. (4)

Similarly it can also be shown that the maximum
reverse flow is (5).

P̄f = min[f̄01, f̄12, ..., f̄ki]. (5)

3.2 Theorem 2 (special case - two routes)

Suppose a flow network diagram is presented as given in
Figure 4.

Fig. 4: Two route flow network diagram.

The maximum-flow (Pf)from So to Si is given in (6).

Pf = min[f01, f12, ..., fki]+min[f01̄, f1̄2̄, ..., fk̄i]. (6)

3.2.1 Proof

From the diagram given in Figure 4 we have (7).

Pf = P1
f +P2

f . (7)

Where P1
f is the maximum-flow in the first route and

P2
f is the second one. Then,

P1
f = min[f01, f12, ..., fki]. (8)

P2
f = min[f01̄, f1̄2̄, ..., fk̄i]. (9)

Since there are two separate or different routes then the
maximum-flow(Pf)is the sum of (8) and (9) and is given
in (10).

Pf = min[f01, f12, ..., fki]+min[f01̄, f1̄2̄, ..., fk̄i]. (10)

3.3 Theorem 3 (general case - more than two

routes)

Theorem 3 is the general case of Theorem 2 in which the
number of separate or different routes is greater than 2.
This is represented as shown in Figure 5 and the maximum
flow

Pf is given in (11).

Fig. 5: Multi-route flow network diagram.

Pf = min[f01, f12, ..., fki]+min[f01̄, f1̄2̄, ..., fk̄i]+

min[f
0¯̄1
, f ¯̄1 ¯̄2

, ..., f ¯̄ki
].

(11)

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

490 E. Munapo et al. : A new direction to the maximal flow problem:...

3.3.1 Proof

Each of the multiple routes is treated separately, then the
maximum-flow is the sum of all these routes. Suppose
there are m routes and the maximum flow of the mth route
isPm

f , then

Pf = P1
f +P2

f ++Pm
f . (12)

From Figure 5,

P3
f = min[f

0¯̄1
, f ¯̄1 ¯̄2

, ..., f ¯̄ki
]. (13)

Then,

Pf = min[f01, f12, ..., fki]+min[f01̄, f1̄2̄, ..., fk̄i]+

min[f
0¯̄1
, f ¯̄1 ¯̄2

, ..., f ¯̄ki
]

(14)

3.4 Theorem 4 (Factorization rule)

Given (15),

Pf = min[f0c + fi1, f0c + f j1]. (15)

Wherei 6= jand f0c is common then this is simplified as
(16).

Pf = f0c +min[fi1, f j1]. (16)

3.4.1 Proof by linear programming

Flows are nonnegative, i.e., f0c, fi1, f j1 ≥ 0. Modelling
(16) as an LP becomes (17).

MaximizePf , (17)

Subject to: f0c + fi1 −Pf ≥ 0, f0c + f j1 −Pf ≥ 0.
Where f0c, fi1, f j1 ≥ 0.

Rearranging we have (18),

MaximizePf , (18)

Subject to: Pf ≤ f0c + fi1,Pf ≤ f0c + f j1.

Where f0c, fi1, f j1 ≥ 0.
The optimal solution of (18) is given in (19).

Pf = f0c +min[fi1, f j1]. (19)

3.5 Theorem 5a (Triangle rule-1 for merging

routes)

The two routes i− j−kand i−kpresented in Figure refFig6
can be merged into a new route i ∗− j ∗−k∗ as presented
in Figure refFig7.

Fig. 6: Triangle rule for merging routes.

Fig. 7: Merged route way 1.

3.5.1 Proof

The theorem is valid if the maximum-flow of the two
original routes and the maximum-flow of the merged
route are the same.The maximum-flow (Pf) from node i

to node k in Figure refFig6 is given in (19). Using
Theorem 2,

Pf = min[fi j, f jk]+ fik. (20)

Using Theorem 1, the maximum-flow (Pf)of merged
route from node i* to node k* given in Figure 7 , becomes
(21).

Pf = min[fi j + fik, fik + f jk]. (21)

Using Theorem 1 in this case. Since fikis common and
by the Factorization Theorem.

Pf = fik +min[fi j , f jk]. (22)

This is exactly equal to the maximum-flow before
merging.

3.6 Theorem 5b (Triangle rule-2 for merging

routes)

The two routes i− j− kand i− kin Figure refFig6 can
also be merged into a new route i∗−k∗as given in Figure
8.

c© 2021 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 15, No. 4, 487-495 (2021) / www.naturalspublishing.com/Journals.asp 491

Fig. 8: Merged route way.

3.6.1 Proof

As stated in the proof of way 1, the theorem is valid if
the maximum-flows of the original routes and the merged
route are the same. The flow leaving i* is given in (23).

Pf = min[fi j , f jk]+ fik. (23)

This is the same as the maximum-flow given in (20)

3.7 Theorem 6 (Kite rule for merging routes)

Given a kite as shown in Figure 9, the maximum-flow
(Pf)from i to l is given as (24).

Fig. 9: Kite rule for merging routes.

Pf = min[fi j + fik, fik + f jk + f jl , fkl + f jl]. (24)

3.7.1 Proof

Using Theorem 5A we can merge i-j-k and i-k as shown in
Figure 10. Theorem 5A is used again to merge j-l and j-k-l

as shown in Figure 10.

Fig. 10: Merging routes i-j-k and i-k.

Theorem 1 is then used to determine the maximum-
flow in Figure 11 as given in (25).

Pf = min[fi j + fik, fik + f jk + f jl , fkl + f jl]. (25)

Fig. 11: Maximum-flow for single route network diagram.

The reverse maximum-flow can be shown as (26).

Pf = min[f̄i j + f̄ik, f̄ik + f̄ jk + f̄ jl , f̄kl + f̄ jl]. (26)

An alternate way is to merge i-j and i-k-j. This will give
the maximum-flow as shown in (27).

Pf = min[fi j + fik, fi j + f̄ jk + fkl , f jl + fkl]. (27)

The reverse maximum-flow is (28).

Pf = min[f̄i j + f̄ik, f jk + f̄i j + f̄kl , f̄ jl + f̄kl]. (28)

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

492 E. Munapo et al. : A new direction to the maximal flow problem:...

4 Applying the route merging approach

4.1 Illustrative example

Question: A road network system is shown in Figure
12. The numbers by the nodes represent the traffic flow in
hundreds of cars per hour. What is the maximum-flow of
cars from node S0 to node Si?

Fig. 12: Road network system.

Solution: Triangle rule-2 is applied to outermost arcs
to get Figure 13 which is iteration 1.

Fig. 13: Triangle rule - 1 applied to outmost arcs: iteration 1.

Then triangle rule-2 is applied to outmost arcs to obtain
Figure 14 which is iteration 2.

The kite rule is used to merge routes 2-4-7 and 2-5-7
to get a single route flow problem shown in Figure 15.

Fig. 14: Triangle rule - 2 applied to outmost arcs: iteration 2.

Fig. 15: Kite rule used to merge routes 2-4-7 and 2-5-7: iteration

3.

Maximum flow for kite rule is given in (29) which is
simplified to (30).

Pf = min[8+ 13,7+ 1+ 13,7+14], (29)

Pf = min[21,21,21] = 21. (30)

The reverse maximum-flow is given in (31) and then
simplified to (32).

P̄f = min[1+ 5,0+ 1+ 13,0+4], (31)

P̄f = min[6,14,4] = 4. (32)

Using Theorem 1, the maximum-flow in hundreds of
cars is given in (33).

Pf = min[19,21,19] = 19. (33)

The maximum-flow of cars is 1 900 cars per hour.
Applying the the available maximum-flow algorithm [12]
we have the iterations given in Table .

Table 1: Iterations using the proposed route merging approach.

S0 1 6 Si : Pf = 1.

S0 1 4 6 Si : Pf = 2.

S0 1 2 4 6 Si : Pf = 2.

S0 1 2 4 6 7 Si : Pf = 1.

S0 2 4 7 6 Si : Pf = 1.

S0 2 4 5 7 Si : Pf = 1.

S0 2 5 7 Si : Pf = 4.

S0 3 2 5 7 Si : Pf = 1.

S0 3 5 7 7 Si : Pf = 1.

S0 3 5 8 7 Si : Pf = 5.

Sum Pf = 19.

c© 2021 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 15, No. 4, 487-495 (2021) / www.naturalspublishing.com/Journals.asp 493

5 Complexity of the route merging algorithm

Using worst case complexity analysis the route
merging algorithm can be found to be quadratic. A flow
network diagram can be viewed as a structure of nodes
and polygons. The smallest of these polygons is the
triangle which connects any three neigbouring nodes. The
other types of polygons are pentagon, hexagon or any
other polygon that can connect a higher number of
neighbouring nodes. The route merging algorithm works
on collapsing a polygon at time until the whole network
reduces to a set of arcs in a line. In this paper, we define

1.A small polygon as one that connects a small number
of neigbouring nodes.

2.A route merging iteration as the collapsing of a
polygon in a flow network diagram.

From (ii), we can conclude that the more the number
of polygons in a flow network, the more route merging
iterations are required to solve the problem and the more
complex is the problem. In other words the flow problem
is more complex if it is made up of triangles only. The
route merging algorithm works on collapsing a polygon
connecting some neighbouring nodes. Thus we can
determine the worst case number of route merging
iterations as the largest number of triangles(τ)that can be
formed in an n-node flow network diagram.

When the number of nodes is n = 3.

Fig. 16: Largest number of triangles when n = 3.

When the number of nodes is n = 4.

Fig. 17: Largest number of triangles when n = 4.

When the number of nodes n = 5.

Fig. 18: Largest number of triangles when n = 5.

Fig. 19: Largest number of triangles when n = 8.

Table 2: Largest number of triangles as number of nodes

increases.

Nodes 3 4 5 6 7 8 9 ... N

No. of triangles 1 4 10 20 35 56 84 ... τ

When the number of nodes n = 8.
From Table 2 given above, it can be shown that the

largest numbers of triangles from n = 3 form a sequence

whose nth term is given by,

τ = 1
2 (n−1)(n−2)+ 1

2 (n−2)(n−3)+ ...+ 1
2 (n− r+1)(n− r).

(34)

Where,

n− r = 1. (35)

Thus, the route merging algorithm has a quadratic
(worst) case complexity. It is also noticeable that the
number of nodes on its own is enough to determine the
complexity of a maximum flow when the choice is to
apply the route merging algorithm.

6 Conclusion

The paper presented a route merging algorithm which
solves the maximum - flow network problem. The
algorithm solves the flow problem by merging routes until
there is only one route left. The proposed algorithm has

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

494 E. Munapo et al. : A new direction to the maximal flow problem:...

the strength that the problem reduces in size at every
iteration. The flow problem has direct application in road
and pipe networks. The route merging algorithm belongs
to a family of algorithms solved by reducing the
complexity of the flow problem. The flow problem has
applications in the networking of pipes and road
transportation networks.

6.1 Further research

There is need for computational experiments to define the
ways that improve the proposed algorithm. More
algorithms in parallel form [13] are also required for the
flow problem. Some of the existing approaches, such as
[14], [15], [16], [17] and [18].

Acknowledgement

We are grateful to the editors and the anonymous
reviewers.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

[1] L. R. Ford and D. R. Fulkerson, Maximal Flow Through

a Network, Canadian , Journal of Mathematics, 399-404

(1956).

[2] T. Verma and D. Batra, MaxFlow Revisited: An Empirical

Comparison of Maxflow Algorithms for Dense Vision

Problems, BMVC, 1-12 (2012).

[3] Y. Boykov and V. Kolmogorov, An experimental comparison

of mini-cut/max-flow algorithms for energy minimization in

vision, PAMI, 26(9), 1124-1137 (2004).

[4] V. Kolmogorov and R. Zabih, What energy functions can be

minimized via graph cuts?, PAMI, 26(2), 147-159 (2004).

[5] B. V. Cherkassky and A. V. Goldberg, On implementing

the push-relabel method for the maximum flow problem,

Algorithmica, 19(40)390-410 (1997).

[6] B. G. Chandran and D. S. Hochbaum, A computational

study of the pseudoflow and push-relabel algorithms for the

maximum flow problem, Operations Research, 57, 358-376

(2009).

[7] D, Goldfarb and M. D. Grigoriadis, A computational

comparison of the Dinic and network simplex methods for

maximum flow, Annals of Operations Research, 13, 83-123

(1988).

[8] C. Rother, P. Kohli, W. Feng and J. Y. Jia, Minimizing sparse

higher order energy functions of discrete variables. In CVPR,

1382-1389 (2009).

[9] M. Rubinstein, A. Shamir and S. Avidan, Improved seam

carving for video retargeting, ACM Transactions on Graphics

(SIGGRAPH), 27(3), 1-9 (2008).

[10] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows:

Theory, Algorithms and Applications, Prentice Hall. (1993).

[11] D. S. Johnson and C. C. McGeoch, Network flows and

matchings. DIMACS series in discrete mathematics and

theoretical computer science, Providence, R1: American

Mathematical Society, 12 (1993).

[12] B. Render, R. M. Stair and M. E. Hanna, (2012).

Quantitative analysis for management, 11th edition,

Pearson, 453-459. (2012).

[13] O. M. Surakhi, M. Qatawneh and A. Hussein, A

Parallel Genetic Algorithm for Maximum Flow Problem,

International Journal of Advanced Computer Science and

Applications, 8(6), 159-164 (2017).

[14] C. Caliskan, A computational study of the capacity

scaling algorithm for maximum flow problem, Computers &

Operations Research, 39, 2742-2747(2012).

[15] D. S. Hochbaum, D.S., The pseudoflow algorithm: A

new algorithm for the Maximum-Flow problem, Operations

Research, 56(4), 992-1009 (2008).

[16] Y. Hu, X. Zhao, J. Liu, B. Liang and C. Ma, An Efficient

Algorithm for Solving Minimum Cost Flow Problem with

Complementarity Slack Conditions, Mathematical Problems

in Engineering, 1-5 (2020).

[17] A. V. Goldberg, S. Hed, H. Kaplan, R. E. Tarjan, and R.

F. Werneck, Maximum flows by incremental breadth-first

search. In Proceedings of the 19th European conference on

Algorithms, ESA’11, 457-468 (2011).

[18] R. Masadeh, A. Alzaqebah, A. Sharieh, Whale Optimization

Algorithm for Solving the Maximum Flow Problem, Journal

of Theoretical and Applied Information Technology, 96

(2018).

Elias Munapo has
a PhD from N.U.S.T.,
Zimbabwe which he obtained
in 2010 and is a Professor
of Operations Research
at the North West University,
Mafikeng Campus in South
Africa. He is a guest editor of
the Applied Sciences journal,
has published two books,

edited a number of books, a reviewer of a number
journals, he has published a significant number of
journal articles and book chapters. In addition he has
presented at both local and international conferences
and has supervised a couple of doctoral students to
completion. His research interests are in the broad area of
operations research. Professor Munapo is a member of the
Operations Research Society of South Africa (ORSSA),
South African Council for Natural Scientific Professions
(SACNASP) as a Certified Natural Scientist, European
Conference on Operational Research (EURO) and the
International Federation of Operations Research Societies
(IFORS).

c© 2021 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 15, No. 4, 487-495 (2021) / www.naturalspublishing.com/Journals.asp 495

Santosh Kumar
is author and co-author of
195 papers and 3 books in the
field of Operations Research.
His contributions to the field
of OR have been recognized
in the form of ?Ren Pot
Award? from the Australian
Society for Operations
Research in 2009 and a

recognition award from the South African OR society as a
non-member of the society in 2011. He has served as the
President of the Asia Pacific Operations Research
societies (1995-97), where ASOR was a member along
with China, India, Japan, Korea, Malaysia, New Zealand,
and Singapore. He is currently an Adjunct Professor at
the RMIT University, Melbourne. He is a Fellow of the
Institute of Mathematics and its Applications.

Kolentino Mpeta
has a PhD from NWU, South
Africa which he obtained in
2019 and is a Senior Lecturer
of Statistics at the North
West University, Mafikeng
Campus in South Africa.
He is a budding researcher
and a reviewer for a number
of journals. In addition he
has presented at international

conferences and has supervised a couple of masters’
students to completion. His research interests are in the
broad area of Statistics. He also has research interests in
Operations research. Dr Mpeta is a member of the
Operations Research Society of South Africa (ORSSA)
and Statistics Association of South Africa (SASA).

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Maximum flow problem
	Merging routes
	Applying the route merging approach
	Complexity of the route merging algorithm
	Conclusion

