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Abstract: In this work, we revisit the algorithm proposed in [Results in Physics 15 (2019) 102549] for solving an extended variant

of the Deutsch-Jozsa problem. This algorithm classifies an arbitrary oracle U f to one of 2n classes based on the concurrence measure.

Here, we reformulate the mathematical proof of this algorithm in detail based on the first technique of the degree of entanglement

quantum computing model.
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1 Introduction

Quantum algorithms have an enormous technological and
recent progress to solve the problem that needs high
performance computers[1,2]. Nowadays, quantum
technologies stand at the crossroads between many areas
of study, such as quantum information, computational
complexity, machine learning, and quantum statistical
mechanics [3,5,4,6][16]-[28]. Boolean functions play a
critical role in cryptography, particularly in the design of
symmetric key algorithms and information technology [8,
9]. Analyzing these functions can be done via many
techniques such as spectral techniques. It was proved that
quantum computers can solve some problems that can not
be achieved by traditional computers even if those
problems are simple [7]. This will make significant
progress in information science, quantum chemistry and
drug discovery [10].

Deutsch’s algorithm is a cornerstone of quantum
computing techniques. He suggested the first problem

[11,12] that can be solved quantum mechanically quicker
than traditional techniques. In 1985, the initial version of
Deutsch’s algorithm was proposed [11]. This algorithm
classifies an oracle U f , which represents an unknown
Boolean function of a single input, into one of two
categories: balanced or constant. Therefore, in 1992, the
second form is proposed which is called Deutsch–Jozsa
algorithm [12]. This algorithm classifies an oracle U f that
represents an unknown Boolean function of n inputs into
balanced function or constant function only. Later, in
2019, Zidan et al. proposed a more generalized algorithm
[13] for Deutsch–Jozsa algorithm to classify an oracle U f

that represents an unknown Boolean function of n inputs
into one of 2n classes. Although this algorithm was
proved in [13], however it is not quite rigorous. In this
paper,we will reformulate a rigorous mathematical proof
of this algorithm based on the first technique of the degree
of entanglement quantum computing model [13] to cover
some gaps of the proof that was performed in [14].

The following is a breakdown of the paper’s structure:
The key steps of the Extended Deutsch–Jozsa algorithm
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are shown in Section 2. In Section 3, the complete
analysis of this algorithm is investigated. Section 4
concludes the main findings of the paper.

1.1 The Extended Deutsch–Jozsa algorithm

Here, we present the steps of the Extended Deutsch–Jozsa
algorithm [13] based on entanglement measure computing
model [14] as follows:

1.Register Preparation: initialize the two quantum
registers as tensor product of |χ〉 and two ancilla
qubits |rs〉 that are initialized in state |0〉 as follows

|ξ0〉= |χ〉⊗ |rs〉= |0〉⊗n ⊗|0〉⊗2.

2.|ξ1〉= H⊗n|χ〉⊗ I⊗2|rs〉.
3.|ξ2〉=U f |χ ,r〉⊗ I|s〉.
4.To acquire another copy of |rs〉, repeat steps 1, 2, and

3 since Mz operator requires two copies to measure
the degree of entanglement between the qubits |rs〉
[14].
Remark: This step does not contradict the
non-cloning theorem [15], since when steps 1, 2, and
3 are repeated, a new distinct system is initialized in
the first step, and when the second and third steps are
applied, a new copy of |rs〉 is produced separately,
without cloning the original state.

5.Apply the operator Mz, illustrated in Figure 1, on the
two copies of the qubits |rs〉 and estimate P0011 and
P1100 to quantify the concurrence value C and estimate
the P0000 and P1111. Where P0000, P0011, P1100 and P1111

represent the probabilities of the states |0000〉, |0011〉,
|1100〉 and |1111〉, respectively.

(i) If P0000 > P1111 then U f ∈ class r,

r =
N

2
(1−

√

1−C2).

(a) If r = 0 then U f is the constant function
f (x1,x2, ...,xn) = 0.

(b) If r = N
2

then U f is a balanced function.

(b) If 0 < r and r 6= N
2

then U f ∈ r.
(ii) If P0000 < P1111 then U f ∈ class r,

r =
N

2
(1+

√

1−C2).

(a) If r = 0 then U f is the constant function
f (x1,x2, ...,xn) = 1.

(b) If r = N
2

then U f is a balanced function.

(c) If 0 < r and r 6= N
2

then U f ∈ r.

The quantum circuit of this algorithm is shown in Figure 2.

|r〉 •

|s〉

|r〉 •

|s〉

Fig. 1: The circuit model of the operator Mz.

1.2 The Performance analysis of the Extended

Deutsch–Jozsa algorithm

Here, we will analyze and prove the Extended
Deutsch–Jozsa algorithm via the degree of entanglement
based computing model. Particularly, we will develop our
prove using the first technique of this model (see Ref.
[14]).
In step 1, We initialize the system by the quantum
registers |χ〉 of size n qubit and two extra qubits |r〉⊗ |s〉,
where all the qubits are initialized in the state |0〉. In step
2, n of Hadamard gates are applied on each qubit of
register |χ〉 to generate a uniform superposition, that
contains all possible values of the independent variables
x1,x2, ...,xn, therefore the state of the quantum system is
as follows:

|ξ1〉=
1√
2n

2n−1

∑
k=0

|k〉|00〉.

In step 3, the oracle U f is applied on the register |χ〉 and
the qubit |r〉 as U f : |χ ,r〉 = |χ ,r⊕ f (χ)〉, so the state of
the quantum system is as follows:

|ξ2〉=
1√
2n

2n−1

∑
k=0

|k,0⊕ f (k)〉|0〉.

Consequently, this implies to

|ξ2〉=
√

r

N
|β1〉 |00〉+

√

r1

N
|β2〉 |10〉, (1)

such that

|β1〉=
1√
r

∑
k={k| f (k)=0}

|k〉, |β2〉=
1√
r1

∑
k={k| f (k)=1}

|k〉.

Where r represents the number of the states that
correspond to f (k) = 0, and r1 represents the number of
the states that correspond to f (k) = 1, k = 0,1, ...,2n − 1,
therefore

N = r+ r1. (2)
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|χ〉= |0〉⊗n /n
H⊗n

U f Mz Operator

|r〉= |0〉 •

|s〉= |0〉

|s〉= |0〉

|r〉= |0〉 •

|χ〉= |0〉⊗n /n
H⊗n

U f

Fig. 2: the Extended Deutsch–Jozsa algorithm that classifies an oracle U f into one of 2n classes.

Because the Mz operator requires two copies to quantify
the degree of entanglement between the qubits |r〉 and |s〉,
steps 1, 2 and 3 are repeated in step 4 to produce a copy
of the two-qubit system |rs〉. This step does not contradict
the non-copying theorem [15], since when steps 1, 2, and
3 are repeated, a new different system is initialized in the
first step, and when the second and third steps are applied,
a new copy of |rs〉 is produced separately, without cloning
the original state. As a result of this process, we now have
two identical replicas in the form

|ξ3〉= |ξ c1
2 〉⊗ |ξ c2

2 〉

=
r

N
|β1〉⊗2 |0000〉+

√

r

N

√

r1

N
|β1〉|β2〉 |0010〉

+

√

r

N

√

r1

N
|β2〉|β1〉 |1000〉+ r1

N
|β2〉⊗2 |1010〉. (3)

Finally, in step 5, the Mz operator is applied on the two
copies of |rs〉, which allows application of two
consequence operations. In the first operation, the Mz

operator applies the CNOT-gate, for each replica, between
the two qubits |r〉 and |s〉. After applying this operation,
the state of the system is described as follows:

|ξ4〉= |ξ c1
2 〉⊗ |ξ c2

2 〉

=
r

N
|β1〉⊗2 |0000〉+

√

r

N

√

r1

N
|β1〉|β2〉 |0011〉

+

√

r

N

√

r1

N
|β2〉|β1〉 |1100〉+ r1

N
|β2〉⊗2 |1111〉. (4)

The Mz operator quantifies the concurrence value C

between the two qubits |r〉 and |s〉 in the second operation
by measuring them and calculating the probability of the
states |0011〉 and/or |1100〉, then using Eq. (5) to quantify
the concurrence value C. Considering that the
concurrence is measured via the Mz operator as [14]

C = 2
√

P0011, C = 2
√

P1100, or C =
√

2(P1100 +P1100).
(5)

Therefore the concurrence value C is calculated as follows:

C = 2
√

2(P1100 +P1100) = 2

√
r1r

N
= 2

√

r(N − r)

N
. (6)

So, it is clear that this function is a quadratic equation in
terms of r as follows:

r2 −Nr+
C2N2

4
= 0.

which has the following two roots

r =
N

2
(1±

√

1−C2), (7)

one of these roots represents the number of states that
satisfy f (x1,x2, ...,xn)=1. The other root represents the
number of states that satisfy f (x1,x2, ...,xn)=0. To
determine which root among Eq. (7) represents the class
label r of U f , we need to determine the most likelihood
probability among the states |0000〉 and |1111〉 in state
defined by Eq. (4). Because if the number of states that
satisfy f (x1,x2, ...,xn) = 1 are greater than the number of
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states that satisfy f (x1,x2, ...,xn) = 0. This makes the
probability of the state |1111〉 most significant compared
with the probability of the state |0000〉 in Eq. (4).
Consequently, the entanglement between the qubit |r〉 and
the qubit |s〉 exists with degree C. Therefore,
N
2
(1+

√
1−C2) represents the class label r for the oracle

U f . On the other hand, if the number of states that satisfy
f (x1,x2, ...,xn) = 0 is greater than the number of states
that satisfy f (x1,x2, ...,xn) = 1 this implies that the
probability of the state |0000〉 is most significant
compared with the probability of the state |1111〉 in Eq.
(4). Consequently, the entanglement between the qubit |r〉
and the qubit |s〉 exists with degree C. Therefore,
N
2
(1−

√
1−C2) represents the class label r of the oracle

U f . It is worth mentioning that, if all the states satisfy that
f (x1,x2, ...,xn) = 0 this implies that the probability of the
state |0000〉 is 1 in Eq. (4). Consequently, the probability
of the state |0000〉 is 1 in Eq. (4) and the concurrence
value C vanishes. Therefore, r = 0 indicates that the
oracle U f represents the constant function f (k) = 0,
∀k = 0,1, ...,2n − 1. However, if all the states satisfy that
f (x1,x2, ...,xn) = 1, this implies that the probability of the
state |1111〉 is 1 in Eq. (4). Consequently, the probability
of the state |1111〉 is 1 in Eq. (4) and the concurrence
value C vanishes as well. Therefore, r = N indicates that
the oracle U f represents the constant function f (k) = 1,
∀k = 0,1, ...,2n − 1. Finally, if the number of states that
satisfy f (x1,x2, ...,xn) = 1 equals to the number of states
that satisfy f (x1,x2, ...,xn) = 0. The probability of the
state |1111〉 is equal to the probability of the state |0000〉
in Eq. (4). Consequently, the probability of the state
|1111〉 equals the probability of the state |0000〉 in Eq.

(4), Hence the concurrence is maximal. Therefore, r = N
2

indicates that the oracle U f belongs to the balanced
function class.

2 Perspective

In this work, the Extended Deutsch–Jozsa algorithm is
proofed based on the degree of entanglement based
computing model.
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