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Abstract: This paper presents a method of estimation parameters and acceleration factor of Kumaraswamy-Inverse Weibull

Distribution based on constant stress partially accelerated life tests. Depending on progrssive type-II censoring, we present the

maximum likelihood, Bayes, and two parametric bootstrap methods. In addition, we use the asymptotic variance covariance matrix

of the estimators to construct the approximate confidence intervals, bootstrap and credible confidence intervals. Furthermore, we apply

Markov Chain Monte Carlo method to compute the Bayes estimators. Also, generating Markov Chain Monte Carlo samples from the

posterior density functions using Gibbs within the Metropolis-Hasting algorithm is studied. Finally, a numerical example is discussed

to illustrate different methods of point estimation and confidence intervals.
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Abbreviations:

ALT Accelerated Life Test
PALT Partially Accelerating Life–Tests
CSALT Constant-Stress ALT
CSPALT Constant-Stress Partially Accelerating Life–Tests
SSALT Step-Stress Accelerated Life Test
SSPALT Step-Stress Partially Accelerated Life Test
Kum-IW Kumaraswamy-Inverse Weibull Distribution
PDF Probability Density Function
CDF Cumulative Distribution Function
HRF Hazard Rate Function
SF Survival Function
MLE Maximum Likelihood Estimation
ProgT-II-C Progrssive Type-II Censored
CIs Confidence Intervals
ACIs Approximate Confidence Intervals
BP-CI Percentile Bootstrap Confidence Interval
BT-CI Bootstrap-T Confidence Interval

1 Introduction

Recently, there has been a growing interest in improving
the performance of products. The manufacureres make
great efforts to increase the demand and create trust with
the consumers. Thus, they challenge difficulty in

controlling the failure of the product during the available
test time. Accelerated life testing is a very effective
method for improvement the performance of the products,
and identifying the causes of failures in a short life time.

The continuous improvement in modern industries
creates a problem in obtaining information about the
lifetime of some products and materials with high
reliability at the time of testing under normal conditions.
Under such conditions, life testing becomes very
expensive and time consuming. To get enough failures
data in a short time, we need accelerated conditions, such
as stresses, voltage, temperature, pressure, ... etc. This
type of testing is called accelerated life testing, where
products are run higher than usual stress conditions to
induce early failures in a short time. The life data from
the high stresses are used to estimate the life distribution
at design condition, see [1].

ALT generally deals with three types of stress
loadings: constant stress, step stress and progressive
stress. Constant stress is the most common type of stress
loading, where every item is tested under a constant level
of the stress, which is higher than normal level. In this
kind of testing, we may have several stress levels, which
are applied for different groups of the tested items. This
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means that every item is subjected to only one stress level
until the item fails or the test stops for other reasons. If
stress level of the test is not high enough, many of the
tested items will not fail during the available time and one
has to be prepared to handle several censored data. To
avoid this problem, step-stress testing can be applied,
where all items are first subjected to a specified constant
stress for a specified period of time. Items that do not fail
will be subjected to a higher level of stress for another
specified time. Level of stress increases step by step until
all items fail or the test stops for other reasons.
Progressive-stress loading is quite similar to the step of
stress testing with the difference that the stress level
increases continuously. These three types can reduce the
testing time and save much material and money, see [2]
and [3].

The main assumption in ALT is that the mathematical
model related to the lifetime of the unit and stress is
known or can be assumed. In some cases, such life stress
relationships are unknown and cannot be assumed, i.e, the
data obtained from ALT cannot be extrapolated to use
condition. Hence, in such cases, another approach can be
used; it is partially accelerated life tests. In PALT, test
units are run at both usual and higher-than usual stress
conditions see, [4].

Many authors have studied ALT, see for example [5,
6,7,8]. For step ALT, we change the test condition at a
given time or the fixed number of failures. [9] and [10]
studied optimal designs of SSALT for many distributions.
[11] and [2] investigated statistical inference for SSPALT
model based on ProgT-II-C data from Lomax and Rayleigh
distribution.

In this paper, we deal only with the PALT. There are
two kinds of PALT: CSPALT and SSPALT. The items are
run at the accelerated and normal conditions. The
SSPALT allows the test to change from normal to
accelerated condition at a pre-determined time. However,
in CSPALT, we divide sample size into two parts: One of
them runs under nomal conditions and the other under
accelerated conditions, see for example [12,13,14,15].

In life-tests, some units may fail, so this sample is
called censored sample. There are different methods of
censoring: The first one is ”Type I censored sample”, and
the second is ”Type-II censored sample”. In this paper, we
only deal with Type-II censored sample. Schematically, a
progressively Type-II censored sample can be described,
as follows: Suppose that n independent items are put on a
life test with continuous identically distributed failure
times X1,X2, ...,Xn. Also, suppose that a censoring
scheme (R1,R2, ...,Rm) is previously fixed such that
immediately following the first failure X1,R1 surviving
items are removed from the experiment at random, and
immediately following the second failure X2,R2 surviving
items are removed from the experiment at random. This
process continues until, at the time of the m-th observed
failure Xm, the remaining Rm surviving items are removed
from the test. The m ordered observed failure times
denoted by X

(R1,...,Rm)
1:m:n , X

(R1,...,Rm)
2:m:n , ...,X

(R1,...,Rm)
m:m:n are

called progressively Type-II right censored order statistics
of size m from a sample of size n with progressive
censoring scheme (R1,R2, ...,Rm). This censoring was
explored by several authors, see [16,17,18].

Kum-IW was introduced by [19]. This distribution is
an extension of the inverse Weibull distribution. The PDF,
CDF, SF, and HRF of the Kum-IW(a,b,c,d) are, as
follows:

f1 (y) =abcdy−(d+1)exp{−acy−d}(1− exp{−acy−d})b−1
,

y > 0;a,b,c,d > 0,

(1)

F1 (y) = 1− (1− exp{−acy−d})b
, (2)

G1(y) = (1− exp{−acy−d})b
, (3)

and

h1 (y)= abcdy−(d+1) exp{−acy−d}(1−exp{−acy−d})−1
.

(4)
Some basic properties and applications for Kum-IW are
studied by [19]. If c = 1 and d = 2, the resulting
distribution is called Kumaraswamy-Inverse Rayleigh
distribution, see [20].

The rest of the paper is organized, as follows: Section
2 describes the model and the basic assumptions. The
maximum-likelihood estimators and corresponding
approximate confidence intervals of the unknown
parameters are presented in Section 3. Two parametric
bootstrap confidence intervals for the parameters are
presented in Section 4. Section 5 is devoted to the
MCMC method. A numerical example is analysed in
Section 6. Section 7 is dedicated to conclusion.

2 Assumptions

We start by investigating the experiment, as follows: We
divide the items into two groups: The first group contains
n1 items which are randomly chosen from n test items
placed on normal condition and the second group contains
n2 = n − n1; the remaining items under accelerated
condition. Based on ProgT-II-C, in group j, j = 1,2 the
time of the first failure, S j1 items are randomly withdrawn
from the remaining n1 − 1 surviving j1 items. At the
second failure,S j2 items from the remaining n j − 2− S j1

are randomly withdrawn. The test continues

until the mth
j failure T

Sm
jm j :mJ :n j

at which time, all

remaining S jm j
= n j −m j −

m j−1

∑
k=1

S jk for j = 1,2.

The S ji , i = 1, ...,m are fixed before the study. The
lifetime of an item tested at normal condition follows
Kum-IW(a,b,c,d) distribution with PDF, CDF, SF and
HRF given in (1), (2), (3) and (4). The hazard rate of an
item tested at accelerated condition is given by
h2(y) = λ h1(y), where λ is an acceleration factor
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satisfying (λ > 1). Thus, the HRF, SF, CDF and PDF
under accelerated condition as follows respectively:

h2 (y)= λ abcdy−(d+1)exp{−acy−d}(1−exp{−acy−d})−1
,

(5)

G2(y) = exp

{
−
∫ y

0
h2 (w)

}
dw = (1− exp{−acy−d})λ b

,

(6)

F2(y) = 1− (1− exp{−acy−d})λ b
, (7)

f2(y) = λabcdy−(d+1) exp{−acy−d}(1−exp{−acy−d})λb−1
.

(8)

If the failure times of the n j items originally in the test are
from a continuous population with CDF Fj(x) and PDF

f j(x), the joint PDF for Y
S j

j1:m j :n j
<Y

S j

j2:m j :n j
< ... <Y

S j

ji:m j :n j

and j = 1,2

L(a,b,c,d,λ p y) =

2

∏
j=1

A j

{
m j

∏
i=1

f j(y ji:m j :n j
)[1−Fj(y ji:m j :n j

)]S ji

}
,

(9)

where y j = (y j1 ,y j2 , ...,y jm j
), j = 1,2, and

A j = n j(n j −1−S j1 )(n j −2−S j1 −S j2 )...(n j −m j −
m j−1

∑
k=1

S jk ).

3 Maximum likelihood Inference

The maximum likelihood function plays an important role
in statistical estimation. Thus, we use maximum
likelihood parameter estimation to define the parameter
that maximizes the likelihood of the sample data. Let, for
j = 1,2,

Y

(
S j1

,...,S jm j

)

j1:m j :n j
< Y

(
S j1

,...,S jm j

)

j2:m j :n j
< ... < Y

(
S j1

,...,S jm j

)

jm j :m j :n j
denote

two progressively type-II censored samples from two
populations whose CDFs and PDFs are as given in (1),
(2), (7) and (8) with (S j1 , ...,S jm j

). The log-likelihood

function l(a,b,c,d,λ |y) = logL(a,b,c,d,λ |y) based on
two progressive Type-II censored samples is given by:

l(a,b,c,d,λ |y) = (m1 +m2) log(abcd)+m2 logλ

−(d+ 1)

(
m1

∑
i=1

log(y1i:m1:n1
)+

m2

∑
i=1

log(y2i:m2:n2
)

)

−
m1

∑
i=1

acy−d
1i:m1:n1

−
m2

∑
i=1

acy−d
2i:m2:n2

+
m1

∑
i=1

(b(S1i + 1)− 1) log(1− exp{−acy−d
1i:m1:n1

})

+
m2

∑
i=1

(λ b(S2i + 1)− 1) log(1− exp{−acy−d
2i:m2:n2

}), (10)

Calculating the first partial derivatives of (10) with
respect to the involved parameters and equating each to
zero yield

m1 +m2

a
−

m1

∑
i=1

cy−d
1i:m1:n1

−
m2

∑
i=1

cy−d
2i:m2:n2

+
m1

∑
i=1

(b(S1i+ 1)− 1)(cy−d
1i:m1:n1

)exp{−acy−d
1i:m1:n1

}
(1− exp{−acy−d

1i:m1:n1
})

+
m2

∑
i=1

(bλ (S2i+ 1)− 1)(cy−d
2i:m2:n2

)exp{−acy−d
2i:m2:n2

}
(1− exp{−acy−d

2i:m2:n2
})

= 0, (11)

m1 +m2

b
+

m1

∑
i=1

(S1i + 1) log(1− exp{−acy−d
1i:m1:n1

})

+
m2

∑
i=1

(λ (S2i + 1)) log(1− exp{−acy−d
2i:m2:n2

})

= 0, (12)

m1 +m2

c
−

m1

∑
i=1

ay−d
1i:m1:n1

−
m2

∑
i=1

ay−d
2i:m2:n2

+
m1

∑
i=1

(b(S1i+ 1)− 1)(ay−d
1i:m1:n1

)exp{−acy−d
1i:m1:n1

}
(1− exp{−acy−d

1i:m1:n1
})

+
m2

∑
i=1

(bλ (S2i+ 1)− 1)(ay−d
2i:m2:n2

)exp{−acy−d
2i:m2:n2

}
(1− exp{−acy−d

2i:m2:n2
})

= 0, (13)

m1 +m2

d
−

m1

∑
i=1

log(y1i:m1:n1
)−

m2

∑
i=1

log(y2i:m2:n2
)

+(ac)

(
m1

∑
i=1

y−d
1i:m1:n1

log(y1i:m1:n1
)+

m2

∑
i=1

y−d
2i:m2:n2

log(y2i:m2:n2
)

)

−
m1

∑
i=1

(b(S1i +1)−1)(acy−d
1i:m1:n1

log(y1i:m1:n1
))(exp{−acy−d

1i:m1:n1
})

(1− exp{−acy−d
1i:m1:n1

})

−
m2

∑
i=1

(bλ (S2i +1)−1)(acy−d
2i:m2:n2

log(y2i:m2:n2
))(exp{−acy−d

2i:m2:n2
})

(1− exp{−acy−d
2i:m2:n2

})
= 0, (14)

and

m2

λ
+

m2

∑
i=1

(b(S2i + 1)) log(1− exp{−acy−d
2i:m2:n2

})

= 0, (15)

Since Eqs. (11)-(15) cannot be solved analytically, we use
Newton-Raphson method to find approximate numerical
solution of these equations, see EL-Sagheer [21].

The final estimates of (a,b,c,d,λ ) are the MLEs of the

parameters, denoted as
(

â, b̂, ĉ, d̂, λ̂
)
.

3.1 Approximate CIs

We use Ii j(θ ) = −∂ 2l | ∂θi∂θ j to construct asymptotic
confidence intervals of MLEs. The observed Fisher
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information matrix has second partial derivatives of
log-likelihood function (10), with respect to a, b, c, d and
λ as the entries, which can be easily obtained, see the
Appendix.

[Ii j(θ )]
−1

=




− ∂ 2l
∂a2 − ∂ 2l

∂a∂b
− ∂ 2l

∂a∂c
− ∂ 2l

∂a∂d
− ∂ 2l

∂a∂λ

− ∂ 2l
∂b∂a

− ∂ 2l
∂b2 − ∂ 2l

∂b∂c
− ∂ 2l

∂b∂d
− ∂ 2l

∂b∂λ

− ∂ 2l
∂c∂a

− ∂ 2l
∂c∂b

− ∂ 2l
∂c2 − ∂ 2l

∂c∂d
− ∂ 2l

∂c∂λ

− ∂ 2l
∂d∂a

− ∂ 2l
∂d∂b

− ∂ 2l
∂d∂c

− ∂ 2l
∂d2 − ∂ 2l

∂d∂λ

− ∂ 2l
∂λ ∂a

− ∂ 2l
∂λ ∂b

− ∂ 2l
∂λ ∂c

− ∂ 2l
∂λ ∂d

− ∂ 2l
∂λ 2




−1

(â,b̂,ĉ,d̂,λ̂ )

=




var(â) cov(âb̂) cov(âĉ) cov(âd̂) cov(âλ̂)

cov(b̂â) var(b̂) cov(b̂ĉ) cov(b̂d̂) cov(b̂λ̂)

cov(ĉâ) cov(ĉb̂) var(ĉ) cov(ĉd̂) cov(ĉλ̂ )

cov(d̂â) cov(d̂b̂) cov(d̂ĉ) var(d̂) cov(d̂λ̂ )

cov(λ̂ â) cov(λ̂ b̂) cov(λ̂ ĉ) cov(λ̂ d̂) var(λ̂ )




(16)

Thus, the 100(1 − τ)% ACIs for a,b,c,d and λ are

obtained as â ± e τ
2

√
q

11
, b̂ ± e τ

2

√
q

22
, ĉ ± e τ

2

√
q

33
and

d̂ ± e τ
2

√
q

44
and λ̂ ± e τ

2

√
q

55
, respectively, where

q
11
,q

22
,q

33
,q

44
and q

55
are the elements on the main

diagonal of the variance-covariance matrix F−1 and e τ
2

is

the percentile of the standard normal distribution with
right-tail probability τ

2
.

The
(
1− τ

2

)
100% ACIs for for the parameters a,b,c,d

and λ take the following forms:

(âL, âU ) = â±w1− τ
2

√
var(â)

(ĉL, ĉU ) = ĉ±w1− τ
2

√
var(ĉ)

(b̂L, b̂U ) = b̂±w1− τ
2

√
var(b̂)

(d̂L, d̂U ) = d̂ ±w1− τ
2

√
var(d̂)

(λ̂L, λ̂U ) = λ̂ ±w1− τ
2

√
var(λ̂ )





,

(17)

where w1− τ
2

is the percentile of the standard normal

distribution with left-tail probability 1 − τ
2

and

var(â),var(b̂),var(ĉ),var(d̂),var(λ̂ ) , represent the
asymptotic variances of maximum likelihood estimates
which can be calculated using the inverse of the Fisher
information matrix.

4 Bootstrap Confidence Intervals

The bootstrap is widely used to estimate CIs and
hypothesis tests. [22] and [23] introduced two parametric
boatstrap methods: Percentile Bootstrap Confidence
Interval and Bootstrap-T Confidence Interval. In this
section, the two parametric Bootstrap methods are used to
construct CIs for the unknown parameters a,b,c,d and λ .
The Bootstrap samples are obtained using the following
steps:

1.Let the original progressively Type-II sample, y j1:m j :n j
<

y j2:m j :n j
< ... < y jm j

:m j :n j
for j = 1,2, compute â, b̂, ĉ, d̂

and λ̂ .
2.Depending on the values of n j and m j (1 < m j < n j)

with the same censoring scheme in step 1, S ji

(i = 1,2, ...,m j), j = 1,2, we use the algorithm in [24]
to generate two independent progressive samples of
sizes m1 and m2 from Kum-IW(a,b,c,d,λ ),
y∗ = (y∗j1;m j ,n j

< y∗j2;m j ,n j
< ... < y∗jm j:m j :n j

).

3.Also, in step 1, based on y∗, compute the bootstrap

sample estimates of â, b̂, ĉ, d̂ and λ̂ . say â∗, b̂∗, ĉ∗, d̂∗

and λ̂ ∗ .
4.Repeat steps 2 and 3 L times representing L different

bootstrap samples. The value of L has been taken to be
1000.

5.Rearrange all â∗, b̂∗, ĉ∗, d̂∗ and λ̂ ∗ in ascending order to

obtain the bootstrap sample (ϑ̂
∗[1]
k , ϑ̂

∗[2]
k , ..., ϑ̂

∗[L]
k ), k =

1,2,3,4,5, where ϑ̂ ∗
1 = â∗, ϑ̂ ∗

2 = b̂∗, ϑ̂ ∗
3 = ĉ∗, ϑ̂ ∗

4 = d̂∗

and ϑ̂ ∗
5 = λ̂ ∗.

4.1 BP-CI

Let Ψ(g) = P(ϑ̂ ∗
k ≤ g) be the CDF of ϑ̂ ∗

k . Define ϑ̂ ∗
kBoot =

Ψ−1(g) for given g. The approximate bootstrap-p 100(1−
τ)% CI of ϑ̂ ∗

k is given by

[ϑ̂ ∗
k Boot(

τ

2
), ϑ̂ ∗

k Boot(1−
τ

2
)] (18)

4.2 BT-CI

Let ζ̂
∗[1]
w ≤ ζ̂

∗[2]
w ≤ ...≤ ζ̂

∗[L]
w be the order statistics where

ζ̂
∗[ j]
k =

√
L∗ (ϑ̂ ∗[ j]

k − ϑ̂w)√
Var(ϑ̂

∗[ j]
w )

, j = 1,2, ...,L; w = 1,2,3,4,5.

(19)

Where ϑ̂k = â, ϑ̂k = b̂, ϑ̂k = ĉ, ϑ̂k = d̂ and ϑ̂k = λ̂ , while

Var(ϑ̂
∗[ j]
k ) is obtained from inverse of the Fisher

information matrix. Let V (g) = P(ζ ∗
w < g),

w = 1,2,3,4,5 be the CDF of ζ ∗
w. For a given g, define

ϑ̂ ∗
wBoot−t = ϑ̂w +L− 1

2

√
Var(ϑ̂ ∗

w)V
−1(g). (20)

Thus, the approximate bootstrap-t 100(1− τ)% CI of ϑ̂ ∗
w

is given by

[ϑ̂ ∗
wBoot−t(

τ

2
), ϑ̂ ∗

wBoot−t(1−
τ

2
)]. (21)
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5 Bayesian Estimation Using MCMC

Bayesian estimation has been important recently. It deals
with a wide variety of problems in many scientific and
engineering areas. We also use non-Bayesian principles
as maximum likelihood when we need some conclusions
from observed data. For example, we use it in statistics,
signal processing, speech analysis, image processing,
computer vision, astronomy, telecommunications, neural
networks, pattern recognition, machine learning, artificial
intelligence, psychology, sociology, medical decision
making, econometrics, and biostatistics. The joint prior of
the parameters a,b,c,d and λ can be written as

π(a,b,c,d,λ ) ∝ (a,b,c,d,λ )−1
,a > 0, b > 0, c > 0,

d > 0, λ > 1.
The joint posterior density function of a,b,c,d and λ ,

denoted by π∗(a,b,c,d,λ |y), can be written as

π∗(a,b,c,d,λ |y)∝ (abcd)m1+m2−1λ m2−1

×exp

{
−(d +1)

(
m1

∑
i=1

log(y1i:m1 :n1
)+

m2

∑
i=1

log(y2i:m2:n2
)

)}

×exp

{
−(ac)

(
m1

∑
i=1

y−d
1i:m1:n1

+
m2

∑
i=1

y−d
2i:m2 :n2

)}

×exp

{
m1

∑
i=1

(b(S1i +1)−1) log(1−exp{−acy−d
1i:m1 :n1

})
}

×exp

{
m2

∑
i=1

(bλ (S2i +1)−1) log(1−exp{−acy−d
2i:m2 :n2

})
}
.

(22)

The conditional posterior densities function of a,b,c,d and
λ are, as follows:

π∗
1 (a|b,c,d,λ ,y)∝ am1+m2−1

2

∏
j=1

m j

∏
i=1

exp{−acy−d
ji:m j:n j

}

×(1− exp{−acy−d
ji:m j :n j

})λ j−1b(S ji+1)−1
,

(23)

π∗
2 (b|a,c,d,λ ,y)∝

bm1+m2−1
2

∏
j=1

m j

∏
i=1

(1− exp{−acy−d
ji:m j:n j

})λ j−1b(S ji
+1)

,

(24)

π∗
3 (c|a,b,d,λ ,y)∝ cm1+m2−1

2

∏
j=1

m j

∏
i=1

exp{−acy−d
ji:m j:n j

}

×(1− exp{−acy−d
ji:m j :n j

})λ j−1b(S ji
+1)−1

, (25)

π∗
4 (d|a,b,c,λ ,y)∝ dm1+m2−1

2

∏
j=1

m j

∏
i=1

y−d−1
ji:m j :n j

exp{−acy−d
ji:m j :n j

}

×(1−exp{−acy−d
ji:m j :n j

})λ j−1b(S ji
+1)−1

, (26)

and

π∗
5 (λ |a,b,c,d,y)∝

λ m2−1 exp

{
−λ

(
m2

∑
i=1

[
−b
(
S ji +1

)]
log(1−exp{−acy−d

ji:m j :n j
})
)}

(27)

1.Start with a(o),b(o),c(o),d(o) and λ (o)
.

2.Put j = 1.

3.Generate λ ( j) from

Gamma

(
m2,

m2

∑
i=1

−b
(
S ji +1

)
log(1−exp{−acy−d

ji:m j :n j
})
)
.

4.Use the following M-H algorithm as well as generate

a( j),b( j),c( j)and d( j) from (23), (24), (25) and (26)
with the normal suggested distribution

N
(

a( j−1)
,var (a)

)
, N
(

b( j−1)
,var (b)

)
, N
(

c( j−1)
,var (c)

)

and N
(

d( j−1),var (d)
)

, respectively, where var (a),

var(b), var (c) and var (d) can be obtained from the
main diagonal in the inverse fisher information
matrix.

(i) Generate a proposal a∗ from N
(

a( j−1),var (a)
)
, b∗

from N
(

b( j−1),var (b)
)
, c∗ from N

(
c( j−1),var (c)

)
and

d∗ from N
(

d( j−1),var (d)
)
.

(ii) Evaluate the acceptance probabilities

ρa = min

[
1,

π∗
1 (a

∗|b( j),c( j−1),d( j−1),λ ( j−1),y)

π∗
1 (a

( j−1)|b( j),c( j−1),d( j−1),λ ( j−1),y)

]
,

ρb = min

[
1,

π∗
2 (b

∗|a( j),c( j),d( j),λ ( j−1),y)

π∗
2 (b

( j−1)|a( j),c( j),d( j),λ ( j−1),y)

]
,

ρc = min

[
1,

π∗
3 (c

∗|a( j)
,b( j)

,d( j)
,λ ( j−1)

,y)

π∗
3 (c

( j−1)|a( j),b( j),d( j),λ ( j−1),y)

]
,

ρd = min

[
1,

π∗
4 (d

∗|a( j),b( j),d( j),λ ( j),y)

π∗
4 (d

( j−1)|a( j),b( j) ,d( j),λ ( j),y)

]
.





.

5.Compute a( j),b( j),c( j),d( j) and λ ( j).

6.Put j = j+ 1.
7.Repeat Steps 3-6 L times.
8.In order to guarantee the convergence and to remove the

influence of the selection of initial values, the first B

simulated varieties are ignored. Then the selected

samples are a( j)
,b( j)

,c( j) and d( j)
, j = B + 1, ....,L,

for sufficiently large L, which forms a set of
approximate posterior samples that can be used to
obtain the Bayes MCMC point estimates of a,b,c,d

and λ as

âMCMC = 1
L−B

L

∑
j=B+1

a( j), b̂MCMC = 1
L−B

L

∑
j=B+1

b( j)

ĉMCMC = 1
L−B

L

∑
j=B+1

c( j), d̂MCMC = 1
L−B

L

∑
j=B+1

d( j)

λ̂MCMC = 1
L−B

L

∑
j=B+1

λ ( j),





.
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9.To calculate the credible interval (CRIs) of Ωk where
Ω1 = a,Ω2 = b,Ω3 = c,Ω4 = d and Ω5 = λ , we take
the quantiles of the sample as the endpoints of the
interval. Sort

{
Ω B+1

k ,Ω B+2
k , ...,Ω L

k

}
as{

Ω
[1]
k ,Ω

[2]
k , ...,Ω

[L−B

k

}
. The 100(1− τ)% symmetric

credible interval of Ωk is

[
Ωk(

τ

2
(L−B),Ωk((1−

τ

2
)(L−B))

]
.

6 Numerical Example

Using the algorithm in [24], we generate two samples from
Kum-IW(a,b,c,d,λ ) with the parameters (a,b,c,d,λ ) =
(2,2,2.5,3,2) using progressive censoring schemes n1 =
n2 = n = 50, m1 = 20, m2 = 30, S1 = (5, 0, 0, 5, 0, 0, 3, 0,
0, 5, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0) and S2 = (3, 0, 0, 0, 2, 0, 0,
0, 2, 0, 0, 0, 2, 0, 0, 3, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 2, 0).
The two progressively censored data have been presented
as follows:
Data 1: 1.1266, 1.1519, 1.2033, 1.2485, 1.2499, 1.3088,
1.3109, 1.3317, 1.3863, 1.4388, 1.4555, 1.5001, 1.5042,
1.5183, 1.5518, 1.6014, 1.6507, 1.9107, 2.1392, 2.2489.
Data 2: 0.9617, 1.0821, 1.1063, 1.1178, 1.1258, 1.1490,
1.1505, 1.1674, 1.1714, 1.2025, 1.2109, 1.2214, 1.2233,
1.3169, 1.3198, 1.3315, 1.3539, 1.3541, 1.3574, 1.3698,
1.3831, 1.3896, 1.4107, 1.4214, 1.5018, 1.5100, 1.5213,
1.6335, 1.6464, 1.6949.

Figure 2 presents the PDFs under normal and
accelerated conditions. We compute the MLE of the
parameters by solving equations (11-15) using the
quasi-Newton-Raphson algorithm. In MCMC apporach,
we run the chain for 30000 times and discard the first
5000 values as ”burn-in” and we use informative gamma
prior distributions. Table 1 presents the MLEs (-)ML,
bootstrap (-)BP, bootstrap (-)BT and Bayes MCMC
(-)MCMC point estimates of the parametes. Tables (2-3)
present 90%, 95%the approximate confidence interval
(ACIs), bootstrap confidence intervals (B-CIs) and
MCMC confidence intervals.

Table 1: Different point estimates for a, b, c, d and λ .
Table 2: 90% confidence intervals for a, b, c, d and λ .
Table 3: 95% confidence intervals for a, b, c, d and λ .

(a)

(b)

(c)

(d)

Fig. 1: The conditional posterior densities function of a,b,c and

d
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Table 1: Different point estimates for a, b, c, d and λ .

Parameters (.)ML (.)BP (.)BT (.)MCMC

a 2.2362 2.3120 2.2242 2.2147

b 1.9866 2.0147 2.0997 1.9989

c 2.7952 2.5759 2.7155 2.4331

d 3.2438 3.3119 3.1994 2.9972

λ 2.2673 2.3564 2.1546 2.1010

Table 2: 90% confidence intervals for a, b, c, d and λ .

Method a Length b Length c Length

ACI (1.6630,3.0069) 1.3438 (0.2951,3.2819) 2.9868 (2.1807,3.2819) 1.1012

BPCI (1.3554,3.3832) 2.0278 (1.5516,3.8645) 2.3130 (1.6076,3.7822) 2.1746

BTCI (1.5247,2.9521) 1.4274 (1.5807,3.8351) 2.2544 (1.7076,3.4839) 1.7763

CRI (1.4333,3.2394) 1.8061 (0.6753,3.1988) 2.5235 (1.5577,2.9231) 1.3654

Method d Length λ Length

ACI (1.5891,6.6214) 5.0322 (1.7363,4.7351) 2.9988

BPCI (2.4832,7.3444) 4.8612 (1.5313,3.9261) 2.3948

BTCI (1.8686,6.4285) 4.5599 (1.3378,3.8644) 2.5266

CRI (1.4742,5.2388) 3.7646 (1.6135,4.2388) 2.6252

Table 3: 95% confidence intervals for a, b, c, d and λ .

Method a Length b Length c Length

ACI (1.6862,3.9779) 2.2916 (0.8048,4.2681) 3.4633 (1.3087,3.3942) 2.0855

BPCI (1.3462,4.1837) 2.8375 (1.5311,3.9450) 2.4139 (1.0624,2.8370) 1.7746

BTCI (1.4877,3.8786) 2.3909 (1.5285,3.8874) 2.3589 (1.4878,2.9766) 1.4888

CRI (1.3292,4.3357) 3.0065 (0.4253,3.9541) 3.5288 (0.9883,3.2999) 2.3116

Method d Length λ Length

ACI (1.3862,7.5908) 6.2046 (1.5772,5.2125) 3.6352

BPCI (1.5595,6.5359) 4.9764 (1.4545,5.9777) 4.5232

BTCI (1.7614,7.5237) 5.7623 (1.3181,4.9878) 3.6697

CRI (1.3059,5.6998) 4.3939 (1.4892,4.7999) 3.3107

Fig. 2: PDFs under normal and accelerated conditions

7 Conclusion

Based on progressively Type-II censored samples, this
paper is related to Bayesian procedures for the analysis of
the constant-partially accelerated life testing using the
Kum-IW model. Based on the maximum likelihood
estimates; Bayes and parametric bootstrap methods, the
point estimations and confidence intervals for the
distribution parameters and the acceleration factor are
obtained. The classical Bayes estimates cannot be
obtained in explicit form. One can see the scope of
MCMC based Bayesian solutions which make every
inferential development routinely available. A numerical
example was conducted to examine and compare the
performance of the proposed methods, different CSs,
different acceleration factors, and different parameter
values.
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