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Abstract: In this work we define a generalized Laplace transform and establish some of its fundamental properties, in addition, we

show that it contains as particular cases, several known from the literature, including the classical Laplace transform. In addition, its

application to the resolution of generalized differential equations is shown.
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1 Introduction

One of the mathematical areas that is in constant
development is that of Differential Equations (with
different operators and in different functional spaces), and
their solution methods, in particular, due to the
multiplicity of applications and its own theoretical
development, over time, researchers and productions
related to this area have been increasing, you can consult
in [1,2,3,4] different aspects of this increase and its
overlaps with the development of Mathematics itself.

In particular, one of the main difficulties is finding
methods to find analytical solutions to some classes of
differential equations, within these methods are those that
use different integral transformations (Laplace, Mellin
and Fourier, for example) some attempts in this direction,
to fractional and generalized differential equations can be
found in [5,6,7,8,9,10,11,12,13,14].

In [15] (see also [16] and [17]) a generalized fractional
derivative was defined in the following way.

Definition 1.Given a function f : [0,+∞) → R. Then the

N-derivative of f of order α is defined by

Nα
F f (t) = lim

ε→0

f (t + εF(t,α))− f (t)

ε
(1)

for all t > 0, α ∈ (0,1) being F(α, t) is some function.

Here we will use some cases of F defined in function of

Ea,b(.) the classic definition of Mittag-Leffler function with

Re(a),Re(b)> 0. Also we consider Ea,b(t
−α)k is the k-nth

term of Ea,b(.).
If f is α−differentiable in some (0,α), and

lim
t→0+

Nα
F f (t) exists, then define Nα

F f (0) = lim
t→0+

Nα
F f (t),

note that if f is differentiable, then Nα
F f (t) = F(t,α) f ′(t)

where f ′(t) is the ordinary derivative.

The function Ea(z) was defined and studied by
Mittag-Leffler in the year 1903. It is a direct
generalization of the exponential function. This
generalization was studied by Wiman in 1905, Agarwal in
1953 and Humbert and Agarwal in 1953, and others,
additional details and more information can be found in
[18,19,20,21,22,23,24,25,26,27].

This generalized differential operator contains many
of the known local operators (for example, the
conformable derivative of [28] and the non-conformable
of [29])) and has shown its usefulness in various
applications, as it can be consulted, for example, in [30,
31,32,33,34,35,36,37]. One of the most required
properties of a derivative operator is the Chain Rule, to
calculate the derivative of compound functions, which
does not exist in the case of classical fractional derivatives
Nα

Φ( f ◦ g)(t) = Nα
Φ f (g(t)) = f (́g(t))Nα

Φ g(t) .

Now, we give the definition of a general fractional
integral (cf. [38]). Throughout the work we will consider
that the integral operator kernel T defined below is an
absolutely continuous function.
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Definition 2.Let I be an interval I ⊆R, a, t ∈ I and α ∈R.

The integral operator Jα
T,a+, right and left, is defined for

every locally integrable function f on I as

Jα
T,a+( f )(t) =

∫ t

a

f (s)

T (t − s,α)
ds, t > a. (2)

Jα
T,b−( f )(t) =

∫ b

t

f (s)

T (s− t,α)
ds,b > t. (3)

Remark.As pointed out in [38], many fractional integral
operators can be obtained as particular cases of the
previous one, under certain choices of the F kernel. For
example, if F(t − s,α) = Γ (α)(t − s)1−α the right
Riemann-Liouville integral is obtained (similarly to the
left), further details on Fractional Calculus and fractional
integral operators linked to the generalized integral of the
previous definition, can be found in [39,40,41,42,43,44,
45,46].

Remark.In certain applications, it is necessary to work
with the “central” operator defined by

Jα
T,a( f )(t) =

∫ t
a

f (s)
T (s,α)

ds, t > a.

Remark.We can define the function space L
p
α [a,b] as the

set of functions over [a,b] such that (Jα
T,a+[ f (t)]

p(b)) <
+∞.

The following property is one of the fundamental
ones and links the integral operator with the generalized
derivative, defined above.

Proposition 1.Let I be an interval I ⊆R, a ∈ I, 0 < α ≤ 1
and f a α-differentiable function on I such that f ′ is a

locally integrable function on I. Then, we have for all t ∈ I

Jα
F,a

(
Nα

F ( f )
)
(t) = f (t)− f (a).

Proposition 2.Let I be an interval I ⊆ R, a ∈ I and α ∈
(0,1].

Nα
F

(
Jα

F,a( f )
)
(t) = f (t),

for every continuous function f on I and a, t ∈ I.

Remark.In [28] it is defined the integral operator Jα
F,a for

the choice of the function F given by F(t,α) = t1−α , and
[28, Theorem 3.1] shows

Nα Jα
t1−α,a

( f )(t) = f (t),

for every continuous function f on I, a, t ∈ I and
α ∈ (0,1]. Hence, Proposition 2 extends to any F this
important equality.

The following result summarizes some elementary
properties of the integral operator Jα

T,a+.

Theorem 1.Let I be an interval I ⊆ R, a,b ∈ I and α ∈R.

Suppose that f ,g are locally integrable functions on I, and

k1,k2 ∈ R. Then we have

(1) Jα
T,a+

(
k1 f + k2g

)
(t) = k1Jα

T,a+ f (t)+ k2Jα
T,a+g(t),

(2) if f ≥ g, then Jα
T,a+ f (t) ≥ Jα

T,a+g(t) for every t ∈ I

with t ≥ a,

(3)
∣
∣
∣Jα

T,a+ f (t)
∣
∣
∣≤ Jα

T,a+ | f | (t) for every t ∈ I with t ≥ a,

(4)
∫ b

a
f (s)

T (s,α)ds = Jα
T,a+ f (t)−Jα

T,b− f (t) = Jα
T,a+ f (t)(b)

for every t ∈ I.

Let C1[a,b] be the set of functions f with first ordinary
derivative continuous on [a,b], we consider the following
norms on C1[a,b]:

‖F‖C =max
[a,b]

| f (t)|, ‖F‖C1 =

{

max
[a,b]

| f (t)|+max
[a,b]

∣
∣ f ′(t)

∣
∣

}

The Propositions 1 and 2 were obtained under the case
that the kernel of both operators coincide (as is the case
with local operators), we will give some results in the event
that this does not happen.

Theorem 2.For a function f ∈ C1[a,b] and x ∈ [a,b], we

have

∣
∣Nα

F,a+ f (t)
∣
∣ ≤ K(α)‖F‖C max

t∈[a,x]
| f (t)|. (4)

∣
∣Nα

F,b− f (t)
∣
∣ ≤ K(α)‖F‖C max

t∈[x,b]
| f (t)|. (5)

Remark.The constant K(α) of the theorem can depend on
other parameters, as in the case of the Katugampola
operator, where some parameter ρ will appear.

Theorem 3.The fractional derivatives Nα
F,a+ f (t) and

Nα
F,b− f (t) are bounded operators from C1[a,b] to C[a,b]

with

∣
∣Nα

F,a+ f (t)
∣
∣≤ K‖F‖C‖ f‖C1 , (6)

∣
∣Nα

F,b− f (t)
∣
∣≤ K‖F‖C‖ f‖C1 , (7)

where the constant K, may be depend of derivative

frame considered.

Remark.From previou results we obtain that the derivatives
Nα

F,a+ f (t) and Nα
F,b− f (t) are well defined.

Theorem 4.(Integration by parts) Let f ,g : [a,b] → R

differentiable functions and α ∈ (0,1]. Then, the

following property hold

Jα
F,a+(( f )(Nα

F,a+g(t)))= [ f (t)g(t)]ba−Jα
F,a+((g)(N

α
F,a+ f (t))).

(8)
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Theorem 5.If f : [a,b] → R is a continuous function and

α ∈ (0,1] then, the following inequality is fulfilled

∣
∣Jα

F,a+( f )(t)
∣
∣ ≤ Jα

F,a+ | f | (t). (9)

Taking into account the ideas of [47] we can define the
generalized partial derivatives as follows.

Definition 3.Given a real valued function f : Rn → R and
−→a = (a1, · · · ,an) ∈ R

n a point whose ith component is
positive. Then the generalized partial N-derivative of f of
order α in the point −→a = (a1, · · · ,an) is defined by

Nα
Fi,ti

f (−→a )

= lim
ε→0

f (a1, · · · ,ai + εFi(ai,α), · · · ,an)− f (a1, · · · ,ai, · · · ,an)

ε
(10)

if it exists, is denoted Nα
Fi,ti

f (−→a ), and called the ith

generalized partial derivative of f of the order α ∈ (0,1]
at −→a .

Remark.If a real valued function f with n variables has all
generalized partial derivatives of the order α ∈ (0,1] at −→a ,
each ai > 0, then the generalized α-gradient of f of the
order α ∈ (0,1] at −→a is

∇α
N f (−→a ) = (Nα

t1
f (−→a ), · · · ,Nα

tn
f (−→a )) (11)

Taking into account the above definitions, it is not
difficult to prove the following result, on the equality of
mixed partial derivatives.

Theorem 6.Under assumptions of Definiton 3, assume

that f (t1, t2) it is a function for which, mixed generalized

partial derivatives exist and are continuous,

N
α+β
F1,2,t1,t2

( f (t1, t2)) and N
β+α
F2,1,t2,t1

( f (t1, t2)) over some

domain of R2 then

N
α+β
F1,2,t1,t2

( f (t1, t2)) = N
β+α
F2,1,t2,t1

( f (t1, t2)) (12)

In this paper, based on the operators of the definitions
1 and 2 define us and study a Generalized Laplace
Transform, which contains as particular cases several of
those reported in the literature and apply it to the
resolution of a generalized differential equation, subject
to certain initial conditions.

2 Main Results

The following generalized exponential order will play an
important role in our work.

Definition 4.Let α ∈ (0,1] and c a real number. We define

the generalized exponential order in the following way

EN
α (c, t) = exp(cF (t,α)) .

with F (t,α) =
∫ t

0
ds

F(s,α) = Jα
F,0(1)(t).

From Definitions 1, 4 and the Chain Rule, we have
Nα

F

{
EN

α (c, t)
}
= cEN

α (c, t).

Definition 5.Let α ∈ (0,1], let g a function and s a real

number. We define the Generalized Laplace Transform in

the following way

F (s) = (L α
N {g(t)}) (s) = Jα

F,0

(
EN

α (−s, t)g(t)
)
(∞).

and its inverse transform

g(t) =
(

L
α
N {G(s)}−1

)

(t) = Jα
F,0

(

F (t,α)E
N
α (s, t)G(s)

)

(∞)

Remark.If F (t,α) = 1 then we have the usual Laplace
Transform, and if F (t,α) = t1−α then we have the
Conformable Laplace Transform defined in [39] (also see
[48,49,50]). If we put F(t,α) = 1

g′(t)
then we obtain the

generalized Laplace transform of [8] (more details in [51,
52]).

Theorem 7.The Generalized Laplace Transform has the

following properties:

L
α
N {αg(t)+β h(t)}= αL

α
N {g(t)}+βL

α
N {h(t)}

(13)

L
α
N {Nα

F g(t)}=−g(0)− sL α
N {g(t)} (14)

L
α
N

{
Jα

F,0(g(s))(t)
}
=

1

s
L

α
N {g(t)} (15)

L
α
N

{
(Nα

F )
n

g(t)
}
=−

n

∑
k=1

(−1)k
sn−k

(

(Nα
F )

k−1
)

g(0)

− sn
L

α
N {g(t)} (16)

where (Nα
F )

n = Nα
F ◦Nα

F ◦ . . . ◦Nα
F

︸ ︷︷ ︸

n times

Proof.Is easy to see that the first equality holds because the
same property of the integral.

L
α

N {αg(t)+βh(t)}=
∫ ∞

0

EN
α (−s, t)(αg(t)+βh(t))

F(t,α)
dt

= α

∫ ∞

0

EN
α (−s, t)g(t)

F(t,α)
dt

+β

∫ ∞

0

EN
α (−s, t)h(t)

F(t,α)
dt

then

L
α
N {αg(t)+β h(t)}= αL

α
N {g(t)}+βL

α
N {h(t)}

For the second property:
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L
α

N {Nα
F g(t)}=

∫ ∞

0

EN
α (−s, t)Nα

F g(t)

F(t,α)
dt

=

∫ ∞

0
EN

α (−s, t)g′ (t)dt

Integrating by parts we obtain the desired equality

For the third property we apply the second property
to the function h(t) = Jα

F,0(g(s))(t) then h(0) = 0 and its

N-derivative is Nα
F h(t) = g(t)

Finally to obtain the fourth property we iterate the
second property n times.

Theorem 8.Since the function F (t,α) has the property

F ′ (t,α) > 0 then the following relation between the

Generalized Laplace Transform and the classical one

holds:

(L α
N {g(t)})(s) =

(

L

{

g
(

F (t,α)−1
)})

(s) (17)

Proof.The proof is straightforward with the change of
variables u = F (t,α)

(L α
N {g(t)})(s) =

∫ ∞

0

EN
α (−s, t)g(t)

F(t,α)
dt

=

∫ ∞

0
e−sug

(

F (t,α)−1
)

du

=
(

L

{

g
(

F (t,α)−1
)})

(s) (18)

Definition 6.A function f : [0,∞) → R is said to be of

g(t)−exponential order if and only if there exists

non-negative constants M, c, T such that | f (t)| ≤ Mecg(t)

for t ≥ T.

Theorem 9.If f : [0,∞) → R is a piecewise function of

F (t,α)−exponential order, then the Generalized Laplace

Transform exists for s > c.

Proof.

∣
∣
(
Jα

F,0EN
α (−s, t)g(t)

)
(τ)

∣
∣ ≤

(
Jα

F,0EN
α (−s, t) |g(t)|

)
(τ)

≤ M
(

Jα
F,0e−sF (t,α)ecF (t,α)

)

(τ)

(19)

Again, we apply the change of variables u = F (t,α)
and obtain

= M

∫ τ

0
e(c−s)udu =

M

s− c

(

1− e(c−s)τ
)

τ→+∞
−−−−→

M

s− c
(20)

Theorem 10.If α ∈ (0,1] then we have

a)L α
N {1}= 1

s

b) L α
N

{
EN

α (c, t)
}
= 1

s−c

c) L α
N

{
g(t)EN

α (c, t)
}
= g(s− c)

d) L α
N {sin(cF (t,α))}= c

s2+c2

e) L α
N {cos(cF (t,α))}= s

s2+c2

f) L α
N {sinh(cF (t,α))}= c

s2−c2

g) L α
N {cosh(cF (t,α))}= s

s2−c2

Proof.a)L α
N {1} =

∫ ∞
0

EN
α (−s,t)
F(t,α) dt =

∫ ∞
0 e−sudu =

lim
τ→∞

− −e−sτ

s
= 1

s

b) L α
N

{
EN

α (c, t)
}

=
∫ ∞

0
EN

α (−s,t)EN
α (c,t)

F(t,α)
dt =

∫ ∞
0 e−(s−c)udu = lim

τ→∞
− −e−(s−c)τ

s
= 1

s−c

c) L α
N

{
g(t)EN

α (c, t)
}

=
∫ ∞

0
EN

α (−s,t)g(t)EN
α (c,t)

F(t,α) dt =
∫ ∞

0
EN

α (−s+c,t)g(t)
F(t,α)

du = g(s− c)

d) L α
N {cos(cF (t,α))} =

∫ ∞
0

EN
α (−s,t)cos(cF (t,α))

F(t,α) dt =
∫ ∞

0
e−sF(t,α)cos(cF (t,α))

F(t,α)
dt =

∫ ∞
0 e−sucos(cu)du

to obtain this result we solve the last integral by parts
twice.

e) same as the previous item

f) recall that sinh(α) = eα−e−α

2
then

L α
N {sinh(cF (t,α))} =

1
2

∫ ∞
0

EN
α (−s,t)(ecF (t,α)−e−cF (t,α))

F(t,α)
dt =

= 1
2

(
∫ ∞

0
e−(s−c)F (t,α)

F(t,α) du−
∫∞

0
e−(s+c)F (t,α)

F(t,α) du

)

=
1
2

(
1

s−c
− 1

s+c

)
= c

s2−c2

g) For cosh(α) = eα+e−α

2
we proceed in the same way

L α
N {cosh(cF (t,α))} =

1
2

∫ ∞
0

EN
α (−s,t)(ecF (t,α)+e−cF (t,α))

F(t,α)
dt =

= 1
2

(
∫ ∞

0
e−(s−c)F (t,α)

F(t,α) du+
∫∞

0
e−(s+c)F (t,α)

F(t,α) du

)

=
1
2

(
1

s−c
+ 1

s+c

)
= s

s2−c2
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To complete the theoretical body the following result
is necessary.

Definition 7.Let f and g be two functions which are

piecewise continuous at each interval [0,T ] and of

generalized exponential order. We define the

N-convolution of f and g by

( f ∗ g)N(t)

=

∫ t

0
f (τ)g

[
F

−1(F (t,α)−F (τ,α))
] dτ

F(τ,α)
, t ≤ T.

(21)

The commutativity of the N-convolution is given in the
following result.

Lemma 1.Let f and g be two functions which are

piecewise continuous at each interval [0,T ] and of

generalized exponential order. Then

( f ∗ g)N(t) = (g ∗ f )N(t). (22)

Proof.From Definition 7, we can set the proof with the
change of variables F (u,α) = F (t,α)−F (τ,α).

Below we present the N-Laplace transform of the N-
convolution.

Theorem 11.Let f and g be two functions which are

piecewise continuous at each interval [0,T ] and of

generalized exponential order. Then

L
α
N {(f∗ g)N}= L

α
N { f}L α

N {g}. (23)

Proof.It is enough to start from the right member of the
previous equality, L α

N { f}L α
N {g}, choosing u such that

F (u,α) = F (t,α)− F (τ,α) and change the order of
integration, to reach the desired result.

3 Applications to generalized differential

equations

An interesting application of the Generalized Laplace
Transform is the Generalized Cauchy Problem, which we
will consider in the form:

Nα
F (x(t)) = A(t)x(t)+ f (t,x(t))

with x(0) = x0 + g(x), and 0 ≤ t ≤ T0, A is a sectorial
operator which generates a strongly analytic semigroup
(T (t))t≥0 on the Banach Space (X ,‖ · ‖)

Now we apply the Generalized Laplace Transform in ,
and we obtain

Λ α
N {x(t)}(s)

= (s−A)−1 [x0 + g(x)]+ (s−A)−1Λ α
N { f (t,x(t))}(s)

and taking the inverse Laplace Transform

x(t) = T

(∫ t

0

ds

F (s,α)

)

[x0 + g(x)]

+
∫ t

0
T

(∫ t

0

ds

F (s,α)
−

∫ s

0

du

F (u,α)

)

f (s,x(s))ds

Where T (t) =
∫ ∞

0 est (s−A(s))−1
ds

Theorem 12.With the following assumptions

a)The functions

f (t, ·) : X → X , f (·,x) : [0,T0] → X are continuous

and there exists a function ∆r ∈ L([0,T0] ,R
+) such that

Sup
‖x‖≤r

‖ f (t,x)‖ ≤ ∆r (t)

b) There exists a constant C > 0 such that

‖g(y)− g(x)‖<C |y− x| for all x, y.

c)(T (t))t>0 is compact

the Cauchy Problem has at least one solution.

Proof.Let

r ≥

Sup
t∈[0,T0]

∣
∣
∣T

(
∫ t

0
ds

F(s,α)

)∣
∣
∣

[

‖x0‖+‖g(0)‖+
∫ T0

0
ds

F(s,α)
‖∆r‖L∞

]

1−C Sup
t∈[0,T0]

∣
∣
∣T

(
∫ t

0
ds

F(s,α)

)∣
∣
∣

, let Br

the closed ball centered at the origin and radius r and let
x ∈ Br.

we will prove that the operator

T

(∫ t

0

ds

F (s,α)

)

[x0 + g(x)]

+
∫ t

0
T

(∫ t

0

ds

F (s,α)
−

∫ s

0

du

F (u,α)

)

f (s,x(s))ds

has at least one fixed point, which is the solution for
the Cauchy Problem.

i) The expression T
(
∫ t

0
ds

F(s,α)

)

[x0 + g(x)] is an

contraction operator according with the assumptions a)
and b).

ii) Let

Ψ (x) (t) =
∫ t

0 T
(
∫ t

0
ds

F(s,α) −
∫ s

0
du

F(u,α)

)

f (s,x(s))ds we

will show that Ψ (x) is continuous and compact.
Ψ (x) is continuous: let (xn)n∈Nsuch that xn → x then

|Ψ (xn)(t)−Ψ (x)|

≤ Sup
t∈[0,T0]

∣
∣
∣
∣
T

(∫ t

0

ds

F (s,α)

)∣
∣
∣
∣
×

[∫ T0

0

ds

F (s,α)
‖ f (s,xn (s))− f (s,x(s))‖L∞

]
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for the continuity of the function f we have
‖ f (s,xn (s))− f (s,x(s))‖L∞ → 0 as n → ∞ hence
|Ψ (xn) (t)−Ψ (x)| → 0 as n → ∞.

Ψ (x) is compact:

Theorem 13.Under the assumptions

a)The function f (·,x) : [0,T0]→ X is continuous.

b) There exists a constant C > 0 such that

‖g(y)− g(x)‖<C |y− x| for all x, y.

c)There exists a constant L > 0 such that

‖g(y)− g(x)‖< L‖y− x‖ for all x, y in X.

the Cauchy Problem has a unique solution.

Proof.Let

Ψ (t) = T

(∫ t

0

ds

F (s,α)

)

[x0 + g(x)]

+
∫ t

0
T

(∫ t

0

ds

F (s,α)
−

∫ s

0

du

F (u,α)

)

f (s,x(s))ds

and let x,y in X, then

Ψ (x)(t)−Ψ (y)(t) = T

(∫ t

0

ds

F (s,α)

)

[g(x)− g(y)]+

+

∫ t

0
T

(∫ t

0

ds

F (s,α)
−

∫ s

0

du

F (u,α)

)

×

[ f (s,x(s))− f (s,y(s))]ds

taking the norm of the difference and then the supreme
for all t ∈ [0,T0] we obtain

|Ψ (x)−Ψ (y)|

≤ (F (T0,α)L+C) Sup
t∈[0,T0]

∣
∣
∣
∣
T

(∫ t

0

ds

F (s,α)

)∣
∣
∣
∣
|x− y|

Because the Banach contraction principle, we see that
the operator Ψ (t) has a unique fixed point which is the
solution for the Fractional Cauchy Problem.

Theorem 14.Let x, y be solutions for the Cauchy Problem

associated with x0,y0 respectively. Suppose that the

conditions of the previous theorem are satisfied, then we

have the estimate

|y− x| ≤

α Sup
t∈[0,T0]

∣
∣
∣T

(
∫ t

0
ds

F(s,α)

)∣
∣
∣

α −α Sup
t∈[0,T0]

∣
∣
∣T

(
∫ t

0
ds

F(s,α)

)∣
∣
∣

(

C+L
∫ t

0
ds

F(s,α)

)

Remark.In this theorem we refer to the stability of the
solution for the Cauchy Problem, that is the dependence
of the solution to the initial conditions.

Proof.For t ∈ [0,T0]

y(t)− x(t) = T

(∫ t

0

ds

F (s,α)

)

[y0 − x0 + g(y)− g(x)]+

+

∫ t

0
T

(∫ t

0

ds

F (s,α)
−

∫ s

0

du

F (u,α)

)

[ f (s,y(s))− f (s,x (s))]ds

taking the supreme on both sides we obtain

|y− x| ≤ Sup
t∈[0,T0]

∣
∣
∣
∣
T

(∫ t

0

ds

F (s,α)

)∣
∣
∣
∣
×

[

‖y0 − x0‖+

(

C+L

∫ t

0

ds

F (s,α)

)

|y− x|

]

from this inequality we find the estimate.

Remark.Others results on the stability of the solutions of
certain generalized differential equations can be consulted
in [53].

4 Conclusions

Throughout this work we first presented a function that
generalizes the exponential function, which we use for the
definitions of a Generalized Laplace Transform and the
N-convolution (a generalization of the well known
convolution of two functions of exponential order). For
the Generalized Laplace Transform we prove equivalent
to the known properties of the classical Laplace
Transform and for the N-convolution we prove an
interesting property that relates it to the Generalized
Laplace Transform. Finally we present an application to
solving a generalized differential equation with its
corresponding theorems of existence and uniqueness.
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