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Abstract: In this paper, we investigate the interpolation of surfaces which are obtained from an isoasymptotic curve in 3D-Euclidean

space. We prove that there exists a unique C0-Hermite surface interpolation related to an isoasymptotic curve under some special

conditions on the marching scale functions. Finally, we present some examples and plot their graphs.
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1 Introduction

Differential geometry is a branch of mathematics which
uses advanced calculus tools in geometry. Recently, it has
become an applicable area of mathematics in science and
technology. Since the manifold theory has been used in
general relativity in the 1900s by Einstein, differential
geometry of curves; surfaces and general manifolds have
been improving more. From medicine to social science
and from artificial intelligence to economy, it is very clear
how the differential geometry is applied. In this manner,
one can consider that applied mathematics has been
changed from numerical and computational methods to
differential geometrical tools. For example, to understand
the meaning of multiple features data, we use calculus on
manifolds in machine learning [1]. Moreover, differential
geometry presents us to work on non-euclidean spaces as
most real life problems are defined in such spaces. Thus,
it is a fundamental tool for understanding events in the
universe.

The most important kind of curves is geodesics which
play the role of straight lines in Euclidean space on a
manifold. Gauss proved that the differential geometry of a
surface is different from the geometry of ambient space.
The well known example of supporting these ideas is that
a geodesic on a unit sphere embedded in a Euclidean
space is not a geodesic in a Euclidean space. In this way,

the differential geometry of a surface has many significant
properties that we can use in applied sciences. The
minimal distance between two points on a surface is
called a geodesic. This is considered an important idea in
many applications [2,3].

A surface could be constructed using a geodesic. In
[4], a general surface obtained from a polynomial
geodesic. Also, considering a 3-dimensional polynomial
curve which is a pregeodesic, the authors constructed
ruled cubic patched in [5]. In addition, in [6], authors
investigated a developable surface that contains a given
Bezier geodesic. Wang at al. defined a parametric surface
called surface family using a geodesic curve [7]. They
used the Frenet frame of the curve and presented
necessary conditions in which the curve is an isogeodesic
on a parametric surface considering Frenet aparatus of the
curve. Later, Kasap et al. [8] generalized their methods
and presented examples. Li et al.[9] investigated the
approximation minimal surface with geodesics using the
Dirichlet function and they minimized the area of a
surface family using Dirichlet approach. This method can
be used for obtaining the minimal cost of the material
while building surfaces. The family surfaces have been
studied, for example as in [10,11,12,13,14,15,16,17,18,
19].
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The other special curve, which is as important as
geodesics, is the asymptotic curves. An asymptotic curve
is a curve always tangent to an asymptotic direction of the
surface and it has zero normal curvature. On the other
hand, one can be constructed as a surface using an
asymptotic curve. Saad et al. [20] approximated the
minimal parametric surface with an asymptotic curve by
minimizing the Dirichlet function. In [21], the authors
examined rational developable surface pencils through an
arbitrary parametric curve as its common asymptotic
curve. Moreover, Güler at al. constructed a surface
interpolating a given curve as the asymptotic curve of it
[22]. Similar to geodesics, the asymptotic curves also
have many applications in related sciences. In [23] the
authors presented a method to design strained grid
structures along asymptotic curves to benefit from a high
degree of simplification in fabrication and construction.
Also, asymptotic curves have several applications in
astronomy as in [24,25].

Lee et al. [26] introduced a new method to construct a
parametric surface in terms of curves. They defined a
surface interpolation associated with a spatial curve
passing through some m-points in Euclidean 3-space.
Motivated by the above-mentioned studies, we consider a
surface interpolation using asymptotic curves in
Euclidean space. Firstly, we give some fundamental facts
which are used throughout the paper, in Section 2. Then,
Section 3 is devoted to the surface interpolations with
isoparametric curve and examples with their graphs.

2 Preliminaries

Let γ(ω) be a curve which is arc-length ω in 3D
Euclidean space (E3). Take the Frenet frame of γ(ω) by
{V1(ω),V2(ω),V3(ω)}. Then we have the following well
known relations between κ(ω) and τ(ω) which are the
curvature and the torsion of the curve γ(ω), respectively:





V1
′
(ω)

V2
′(ω)

V3

′
(ω)



=





0 κ(ω) 0
−κ(ω) 0 τ(ω)

0 −τ(ω) 0



 .





V1(ω)
V2(ω)
V3(ω)



 .

Previous equations are called the Frenet apparatus of
a curve and are important to understand geometry of the
curve. Also, we can classify curves via the Frenet–Serret
frames. In [7], Wang et al. defined pencil surface which
could be obtained using the Frenet–Serret frames of the
curve. This surface is called a surface family or a pencil
surface and defined, as follows:

Definition 1.Let γ(ω) be a curve which is arc-length ω in

E
3 and {V1(ω),V2(ω),V3(ω)} be the Frenet frame of γ .

Then, the map

Ψ (ω ,η) =γ(ω)+ u(ω ,η) ·V1(ω)

+ v(ω ,η) ·V2(ω)+ z(ω ,η) ·V3(ω), (1)

is defined a surface in E3, where Ω ≥ω ≥ 0,Λ ≥η ≥ 0 for

a real-valued constants Ω ,Λ , and u(ω ,η),v(ω ,η) and

z(ω ,η) are C1−functions. The surface Ψ (ω ,η) is called

as surface family or pencil surface [7].

By the following definition we classify some special
curves on a parametric surface Ψ(ω ,η).

Definition 2.Take a curve γ(ω) on a parametric surface

Ψ(ω ,η) that is defined by (1). Then we have following

characterizations [27]:

•γ(ω) is said to be an isoparametric curve on Ψ(ω ,η)
if there exists a parameter η0 ∈ [0,Λ ] such that

Ψ (ω ,η0) = γ(ω).
•γ(ω) is an asymptotic curve on a parametric surface

Ψ (ω ,η) if
∂N (ω,η0)

∂ s
.V1(ω) = 0, where N (ω ,η) is

the normal vector of surface Ψ(ω ,η)·
•γ(ω) is called an isoasymptotic of the surface Ψ(ω ,η)

if it is both a asymptotic curve and an isoparametric

curve on the surface Ψ(ω ,η).

With following theorem we have the necessary and
sufficient conditions for γ to be an isoasymptotic curve on
the surface Ψ(ω ,η).

Theorem 1.[28] Let Ψ(ω ,η) be a parametric curve with

the marching-scale functions;

u(ω ,η) = k(ω)U(η),

v(ω ,η) = m(ω)V (η),

z(ω ,η) = n(ω)Z(η).

Then, γ(ω) is an isoasymptotic curve on a parametric

surface Ψ(ω ,η) if and only if we have

{

U(η0) =V (η0) = Z(η0) = 0,

n(ω) = 0 or
∂Z(η0)

∂η = 0.
(2)

If we take k(ω) = m(ω) = n(ω) = 1 and consider U(η),
V (η) and Z(η) as polynomials of the forms in (2), then
we have

U(η) =
n

∑
t=1

at(η −η0)
t
, (3)

V (η) =
n

∑
t=1

bt(η −η0)
t
,

Z(η) =
n

∑
t=1

ct(η −η0)
t
, c1 = 0,

respectively, where at ,bt ,ct are constants. Then the
polynomials U(η), V (η) and Z(η) in (3) satisfy the
isoasymptotic condition (2). Thus, we can determine
marching-scale functions of a surface family Ψ(ω ,η) by
the polynomial expressions.
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3 Surface Interpolations with Isoasymptotic

Curve

In this section, we construct a surface with an isogeodesic
curve passing through finite control points lying on E3.

Now, we give a definition for surface interpolations
with isoasymptotic curve passing through some control
points on E3.

Definition 3.Let A1,A2, ...,Am be different points on E3

and Ψ(ω ,η) : B ⊂ R2 → E3 be a parametric surface

given by (1). For some different points (ωt ,ηt) ∈ B

(t = 1, ...,m), we can construct the surface Ψ(ω ,η) such

that Ψ(ωt ,ηt ) = At . It is called a surface interpolation

associated with the given isoasymptotic curve γ(ω)
passing through m-control points At (t = 1, ...,m), simply,

C0−Hermite surface interpolation with an isoasymptotic

curve. In particular, {A1,A2, ...,Am} is called C0-Hermite

data.

Polynomials U(η), V (η) and Z(η) with degree n in
(3) have n,n and n − 1 degrees of freedom in terms of
coefficients at ,bt and ct respectively. In this case, there
are two extra degrees of freedom. To determine a unique
parametric surface with isoasymptotic curve, we may
assume an = bn = 0.

Now, we consider an isogeodesic surface
parametrization

Ψ(ω ,η) =γ(ω)+U(η) ·V1(ω)+V(η) ·V2(ω)

+Z(η) ·V3(ω), (4)

where Ω ≥ ω ≥ 0, Λ ≥ η ≥ 0, with the marching-scale
functions are given in (3) for an = bn = 0.

Theorem 2.Let A1,A2, ...,Am be different points on a

parametric surface Ψ(ω ,η) given in (4). For

Ψ(ωt ,ηt) = At , t = 1, ...,m there exists a unique

C0-Hermite surface interpolation with an isoasymptotic

curve such that the marching-scale functions are given by

U(η) =
n−1

∑
t=1

at(η −η0)
t
, V (η) =

n−1

∑
t=1

bt(η −η0)
t

Z(η) =
n

∑
t=2

ct(η −η0)
t
,

and

det











d12 η1 −η0 (η1 −η0)
2 · · · (η1 −η0)

n−1

d22 η2 −η0 (η2 −η0)
2 · · · (η2 −η0)

n−1

...
...

...
. . .

...

dn2 ηn−1 −η0 (ηn−1 −η0)
2 · · · (ηn−1 −η0)

n−1











where at ,bt and ct are constant and

dt2 =V (ηt2), t = 1,2, . . . ,n.

Proof.Let us define (n−1)-points of the surface Ψ(ωt ,ηt)
by

Ψ(ωt ,ηt) = At for ω ≥ ηn−1...≥ η1 ≥ η0 ≥ 0.

So, we have

Ψ(ωt ,ηt) = At = γ(ωt)+V1(ωt).U(ηt)

+V2(ωt).V (ηt)+V3(ωt).Z(ηt).

By taking inner product with V1(ω), V2(ω), and
V3(ω), respectively we obtain the coefficients as
following

U(ηt) = 〈At − γ(ωt),V1(ωt)〉 ,
V (ηt) = 〈At − γ(ωt),V2(ωt)〉 ,
Z(ηt) = 〈At − γ(ωt),V3(ωt)〉 .

Using

U(ηt) = ct1, V (ηt) = ct2, Z(ηt ) = ct3

where ct1, ct2 and ct3 are constant, from (3) and for an =
bn = 0, we have following matrices;











η1 −η0 · · · (η1 −η0)
n−1

η2 −η0 · · · (η2 −η0)
n−1

.

..
. . .

.

..

ηn−1 −η0 · · · (ηn−1 −η0)
n−1

















a1

..

.

an−1






=







d11

..

.

d(n−1)1






,











η1 −η0 · · · (η1 −η0)
n−1

η2 −η0 · · · (η2 −η0)
n−1

...
. . .

...

ηn−1 −η0 · · · (ηn−1 −η0)
n−1

















b1

...

bn−1






=







d12

...

d(n−1)2






,











(η1 −η0)
2 · · · (η1 −η0)

n

(η2 −η0)
2 · · · (η2 −η0)

n

...
. . .

...

(ηn−1 −η0)
2 · · · (ηn−1 −η0)

n

















c2

...

cn






=







d13

...

d(n−1)3






,

for 1 ≤ η ≤ n− 1. Let take

M1 =











η1 −η0 (η1 −η0)
2 · · · (η1 −η0)

n−1

η2 −η0 (η2 −η0)
2 · · · (η2 −η0)

n−1

...
...

. . .
...

ηn−1 −η0 (ηn−1 −η0)
2 · · · (ηn−1 −η0)

n−1











and

M2 =











(η1 −η0)
2 (η1 −η0)

3 · · · (η1 −η0)
n

(η2 −η0)
2 (η2 −η0)

3 · · · (η2 −η0)
n

...
...

. . .
...

(ηn−1 −η0)
2 (ηn−1 −η0)

3 · · · (ηn−1 −η0)
n











.

Then the determinants of M1 and M2 is obtained as

det(M1) = (−1)
(n−1)(n−2)

2

n−1

∏
t=1

(ηt −η0) ∏
1≤t< j≤n−1

(ηt −η j),
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and

det(M2) = (−1)
(n−1)(n−2)

2

n−1

∏
t=1

(ηt −η0)
2 ∏

1≤t< j≤n−1

(ηt −η j).

Since ηt and η j are non-zero and different from each
others, for 1 ≤ t < j ≤ n − 1, we get det(M1) 6= 0 and
det(M1) 6= 0, i.e. a1,a2, ...,an−1, b1,b2, ...,bn−1 and c2,c3,
...,cn have unique solutions. This shows that there exists a
uniquely C0-Hermite surface interpolation with an
isoasymptotic curve.

Example 1.Consider a curve parametrized by

γ(ω) = (
sinω

2
,

cosω

2
,

√
3ω

2
), 0 ≤ ω ≤ 2π . (5)

Curve (5) is shown in Figure 1. By a direct computation,
we have

V1(ω) = (
cosω

2
,− sinω

2
,

√
3

2
),

V2(ω) = (−sinω ,−cosω ,0),

V3(ω) = (

√
3cosω

2
,−

√
3sinω

2
,
−1

2
).

For A1 = (1,7,
√

3π
4

), the point A1 lies on the surface pencil
with an isoasymptotic curve given by (4). If we take

U(η) = a1η , V (η) = b1η , W (η) = c2η2

then there is only one surface with an isoasymptotic curve
passing the point A1. We take ω1 = π

2
, η1 = 2, i.e.

Ψ1(
π
2
,2) = A1(1,7,

√
3π
4

). We obtain the equations:

1

2
− 2b1 = 1,

−a1 − 2
√

3c2 = 7,
√

3a1 − c2 = 0,

which imply

a1 =−1, b1 =−1

2
, c2 =−

√
3.

Thus, we can construct the surface with an isoasymptotic

curve passing the one point A1 = (1,7,
√

3π
4

) given by

Ψ1(ω,η) =
1

2
(sin(ω)−3η2 cos(ω)+η sin(ω)−η cos(ω),

(6)

(η2 +η)sin(ω)+(η +1)cos(ω),
√

3(ω +η2 −η))

Surface (6) is shown in Figure 2 and the surface (6) with
curve (5) is shown in Figure 3.

Fig. 1: Graph of γ

Fig. 2: Graph of surface Ψ1 is constructed by γ

Fig. 3: Graph of surface Ψ1 with curve γ

Example 2.Let the surface with an isoasymptotic curve in
Example 1 pass through the additional point

A2 = ( 1
2
,0,

√
3π
4

). For the convenience of calculations,

taking ω2 = π
2
, η2 = 1, we have A2 = ( 1

2
,0,

√
3π
4

) and
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obtain the system of linear equations as follows:

b1 + 2b2 =−1

4
,

a1 + 2a2 + 2
√

3(c2 + 2c3) =−7,
√

3(a1 + 2a2) = 2(c2 + 2c3),

b1 =−b2,

−(a1 + a2) =
√

3(c2 + c3),√
3(a1 + a2) = c2 + c3.

So, we obtain

b1 =
1

4
, b2 =−1

4
, c2 =

7
√

3(3−
√

3)

12
, c3 =

7
√

3(
√

3− 3)

12
,

a1 =
14(3−

√
3)

12
, a2 =

14(
√

3− 3)

12
.

Thus the surface with an isoasymptotic curve passing the

two points A1 = (1,7,
√

3π
4

) and A2 = ( 1
2
,0,

√
3π
4

) is
uniquely given by

Ψ2(ω ,η) = (
sin(ω)

2
+

7
(

3−
√

3
)

12

(

η −η2
)

cos(ω)

− sin(ω)

4

(

η −η2
)

+
7
(

3−
√

3
)

8

(

η2 −η3
)

cos(ω)

+
cos(ω)

2
− 7

(

3−
√

3
)

12

(

η −η2
)

sin(ω) (7)

−
(

η −η2
) cos(ω)

4

− 7
(

3−
√

3
)

8

(

η2 −η3
)

sin(ω)

+

√
3s

2
+

7
(√

3− 1
)

4

(

η −η2
)

− 7
(√

3− 1
)

8

(

η2 −η3
)

).

The surface (7) is shown in Figure 4 and the surface
(7) with curve (5) is shown in Figure 5.

Fig. 4: Graph of surface Ψ2

Fig. 5: Graph of surface Ψ2 with curve γ
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surface family with common geodesic in Galilean space G3,

Open Physics, 14(1), 360-363, (2016).
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