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1 Introduction

The subject of fractional calculus received a great
attention in the last two decades. Differential equations of
fractional order arise in several research areas of science
and engineering, such as physics, chemistry,
aerodynamics, polymer rheology, economic, control
theory, signal and image processing, and biophysic
[1]-[47]. Also, more different applications in quantum
information may give new features using fractional
calculus [18]-[32]. Recently, many researchers have given
attention to the existence of solutions of the initial and
boundary value problems for fractional differential
equations. Some papers addressed the existence of
solutions to boundary value problems with two-point,
three-point, multi-point or integral boundary conditions
(See for examples [9]-[34]).

An important application of the fractional time quantum
information is non-unitarity of the quantum evolution and
more insights and observations destroy the equivalence
between Schrödinger equation and Heisenberg pictures
[12]. A review of fundamentals and physical applications
of fractional quantum mechanics has been presented [24].
Recently, Iomin [3] discussed the problem of fractional

evolution in quantum mechanics and the results can be
applied in different models [25]-[30].

Xinwei and Landong [40] reviewed the existence of
solutions for the nonlinear fractional differential equation:

cDα u(t) = f (t,u(t),c Dβ u(t)), (0 < t < 1),

with boundary values u(0) = u′(0) = 0 or u′(0) = u(1) = 0

or u(0) = u(1) = 0, where 1 < α ≤ 2,0 < β ≤ 1, and f is
continuous on [0,1]×R×R.

Su and Zhang [38] investigated the existence and
uniqueness of solutions for the following nonlinear
two-point fractional boundary value problem

cDα u(t) = f (t,u(t),c Dβ u(t)), (0 < t < 1),

with boundary values a1u(0) − a2u′(0) = A and
b1u(1) + b2u′(1) = B, where α,β ,ai,bi(i = 1,2) satisfy
certain conditions.
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Ahmad and Sivasundaram [6] explored the existence of
solutions for the nonlinear fractional integro-differential
equation

cDqu(t) = f (t,u(t),(φu)(t),(ψu)(t)),(0 < t < 1,1 <

q ≤ 2),

with boundary values u′(0) + au(η1) = 0,
bu′(1)+u(η2) = 0 and 0 < η1 ≤ η2 < 1, where cDq is the
Caputo fractional derivative , a,b ∈ (0,1),
f : [0,1] × X × X × X → X is continuous and the
mappings γ,λ : [0,1]× [0,1] → [0,∞) with the property
supt∈[0,1] |

∫ t
0 λ (t,s)ds| < ∞ and

supt∈[0,1] |
∫ t

0 γ(t,s)ds| < ∞, the maps φ and ψ are defined

by (φu)(t) =
∫ t

0 γ(t,s)u(s)ds and

(ψu)(t) =
∫ t

0 λ (t,s)u(s)ds. Here,X is a Banach space (see
[3]).

In this paper, we study the existence and uniqueness
of solutions for the nonlinear fractional
integro-differential equation with m-point multi-term
fractional integral boundary conditions.



































(cDq + kcDq−1)u(t) = f (t,u(t),(φu)(t),(ψu)(t),
cDβ1u(t), . . . ,c Dβnu(t)),

t ∈ [0,1]

u(0) = 0,
m−1

∑
i=1

aiu(ξi) = β
∫ η

0

(η − s)q−1

Γ (q)
u(s)ds,

(1)

where cDq is the standard Caputo fractional derivative of
order q, with 1 < q ≤ 2,0 < βi < 1,k > 0,0 < η < ξ1 <

ξ2 < .. . < ξm−1 < 1,β ,ai, i = 1, . . . ,m are real constants,
f : [0,1]×R

n+3 → R is continuous and for the mappings
γ,λ : [0,1] × [0,1] → [0,∞) with the property
supt∈[0,1] |

∫ t
0 λ (t,s)ds| < ∞ and

supt∈[0,1] |
∫ t

0 γ(t,s)ds| < ∞, the maps φ and ψ are defined

by (φu)(t) =
∫ t

0 γ(t,s)u(s)ds and

(ψu)(t) =
∫ t

0 λ (t,s)u(s)ds.

Present paper is arranged as follows : In section 2, we
present a basic result that lays the foundation for defining
a fixed point problem equivalent to the given problem (1).
The main results, based on Banach’s contraction mapping
principal, fixed point and Krasnoselskii’s fixed point
theorem, are presented in section 3. Illustrating examples
are discussed in section 4.

2 Basic Result

For convenience of the reader, we present some necessary
definitions on fractional calculus theory, which can be
found in [1].

Definition 2.1. The Riemann-Liouville fractional integral
of order q for a continuous function f is defined as

Iq f (t) =
1

Γ (q)

∫ t

0
(t − s)q−1 f (s)ds, q > 0,

provided the right-hand side is point-wise defined on
(0,∞), where Γ (.) is the gamma function, which is

defined by Γ (α) =
∫ ∞

0
tα−1e−tdt.

Definition 2.2. For a at least n-times continuously
differentiable function f : (0,∞) −→ R, the Caputo
derivative of order q > 0 is defined as

cDq f (t) =
1

Γ (n− q)

∫ t

0
(t − s)n−q−1 f (n)(s)ds,

n− 1 < q < n,n = [q]+ 1,

where [q] denotes the integer part of the real number q.

Lemma 2.1. Let α > 0, then the differential equation

cDα h(t) = 0

has solutions h(t) = c0 + c1t + c2t2 + . . .+ cn−1tn−1 and

Iα cDα h(t) = h(t)+ c0 + c1t + c2t2 + . . .+ cn−1tn−1
,

here ci ∈ R, i = 0,1,2, . . . ,n− 1 and n = [α]+ 1.

Lemma 2.2. Let y(t) ∈ C([0,1]) a function
u ∈ C2([0,1],R) be a solution of linear sequential
fractional differential equation

(cDq + kcDq−1)u(t) = y(t),

with boundary values u(0) = 0 and
m−1

∑
i=1

aiu(ξi) = β
∫ η

0

(η − s)q−1

Γ (q)
u(s)ds has the unique

solution given by

u(t) =
(e−kt − 1)

∆

(

β

∫ η

0

(η − s)q−1

Γ (q)

(

∫ s

0
e−k(s−x) (2)

×
(

∫ x

0

(x− τ)q−2

Γ (q− 1)
y(τ)dτ

)

dx
)

ds

−
m−1

∑
i=1

ai

∫ ξi

0
e−k(ξi−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)
y(x)dx

)

ds
)

+

∫ t

0
e−k(t−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)
y(x)dx

)

ds,

where

∆ =
m−1

∑
i=1

ai

(

e−kξi − 1
)

−β

∫ η

0

(η − s)q−1

Γ (q)
e−ksds (3)
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+
β ηq

Γ (q+ 1)
6= 0.

Proof. For q ∈ (1,2], we consider the following linear

fractional differential equation:

(cDq + kcDq−1)u(t) = y(t), (4)

where cDq denotes the Caputo fractional derivative of
order q, we can write its solution as

u(t)+ kcD−1u(t) =
1

Γ (q)

∫ t

0
(t − s)q−1y(s)ds+ c0 + c1t,

(5)

where c0 and c1 are arbitrary constants. Now (5) can be
expressed as

u(t) =−k

∫ t

0
u(s)ds+

1

Γ (q)

∫ t

0
(t−s)q−1y(s)ds+c0+c1t.

(6)

Differentiating (6), we obtain

u′(t) =−ku(t)+
1

Γ (q− 1)

∫ t

0
(t − s)q−2y(s)ds+ c1, (7)

which can alternatively be written as

(u(t)ekt)′ = ekt

(

1

Γ (q− 1)

∫ t

0
(t − s)q−2y(s)ds+ c1

)

.

(8)

Integrating from 0 to t, we have

u(t) = Ae−kt +

∫ t

0
e−k(t−s)

∫ s

0

(s− x)q−2

Γ (q− 1)
y(x)dxds+B.

(9)

Using the data u(0) = 0 in (9), we find that A =−B. Thus,
(9) takes the form

u(t) = A(e−kt − 1)+
∫ t

0
e−k(t−s)

∫ s

0

(s− x)q−2

Γ (q− 1)
y(x)dxds.

(10)

Using the condition
m−1

∑
i=1

aiu(ξi) = β

∫ η

0

(η − s)q−1

Γ (q)
u(s)ds

in (10), we obtain

A =
1

∆

(

β

∫ η

0

(η − s)q−2

Γ (q− 1)
(

∫ s

0
e−k(s−x)

(

∫ x

0

(x− τ)q−2

Γ (q− 1)
y(τ)dτ

)

dx

)

ds

)

−
m−1

∑
i=1

ai

∫ ξi

0
e−k(ξi−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)
y(x)dx

)

ds,

where ∆ is given by (3). Substituting the value of A in
(10), we get the solution (2). The converse follows by
direct computation. This completes the proof.

In the next lemma, we present some estimates that we need
in the sequel.

Lemma 2.3. For y∈C([0,1],R) with ‖y‖= supt∈[0,1] |y(t)|
we have

(i)
∣

∣

∣

∫ η

0

(η − s)q−1

Γ (q)

(

∫ s

0
e−k(s−x)

(

∫ x

0

(x− τ)q−2

Γ (q− 1)
y(w)dτ

)

dx
)

ds

∣

∣

∣

≤
η2q−2

(kΓ (q))2
(kη + e−kη − 1)‖y‖.

(ii)
∣

∣

∣

m−1

∑
i=1

ai

∫ ξi

0
e−k(ξi−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)
y(x)dx

)

ds

∣

∣

∣

≤
m−1

∑
i=1

|ai|ξ
q−1
i (1− e−kξi)

‖y‖

kΓ (q)
.

(iii)
∣

∣

∣

∫ t

0
e−k(t−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)
y(x)dx

)

ds

∣

∣

∣

≤
1

kΓ (q)
(1− e−k)‖y‖.

Proof. (i) Obviously,

∫ x

0

(x− τ)q−2

Γ (q− 1)
dτ =−

(x− τ)q−1

Γ (q)

∣

∣

∣

x

0
=

xq−1

Γ (q)

and

∫ s

0
e−k(s−x) xq−1

Γ (q)
dx

≤
sq−1

Γ (q)

∫ s

0
e−k(s−x)dx ≤

sq−1

kΓ (q)
(1− e−ks).

Hence

∣

∣

∣

∫ η

0

(η − s)q−1

Γ (q)

(

∫ s

0
e−k(s−x)

∫ τ

0

(x− τ)q−2

Γ (q− 1)
y(τ)dτ

)

dx
)

ds

∣

∣

∣

≤ ‖y‖

∫ η

0

(η − s)q−1

Γ (q)
.

( sq−1

kΓ (q)

)

(1− e−ks)ds
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≤ ‖y‖
η2q−2

(kΓ (q))2

∫ η

0
(1− e−ks)ds

= ‖y‖
η2q−2

(kΓ (q))2
(kη + e−kη − 1).

The proofs of (ii) and (iii) are similar. The proof is
complete.

3 Existence and uniqueness results

This section is devoted to the main results concerning the
existence and uniqueness of solution for the problem (1).
First of all, we fix our terminology.

Let C be the space of all continuous real-valued functions
on I = [0,1] and

X = {u : u ∈C (I,R) and cDβiu ∈C (I,R) ,
(0 < βi < 1), for i = 1, . . . ,n}

denote the space equipped with the norm

‖u‖X = ‖u‖ + ∑n
i=1 ‖

cDβiu‖ =

maxt∈I |u(t)|+∑n
i=1 maxt∈I |

cDβiu(t)|.

It is known that (X ,‖.‖) is a Banach space.

To define a fixed point problem equivalent to (1), we make
use of the lemma (2.2) to define an operator F : X → X as

Fu(t) =
(e−kt − 1)

∆

(

β
∫ η

0

(η − s)q−1

Γ (q)
(11)

(

∫ s

0
e−k(s−x)

(

∫ x

0

(x− τ)q−2

Γ (q− 1)

× f (τ,u(τ),(φu)(τ),(ψu)(τ),

cDβ1u(τ), . . . ,c Dβnu(τ))dτ
)

dx
)

ds

−
m−1

∑
i=1

ai

∫ ξi

0
e−k(ξi−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

× f (x,u(x),(φu)(x),(ψu)(x),

cDβ1u(x), . . . ,c Dβnu(x))dx
)

ds
)

+

∫ t

0
e−k(t−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

× f (x,u(x),(φu)(w),(ψu)(w),

cDβ1u(x), . . . ,c Dβnu(x))dx

)

ds.

Observe that problem (1) has solutions if
the operator defined by (11) has fixed point.

For computational convenience, we set

P = sup
t∈[0,1]

|e−kt − 1|

|∆ |
=

|e−k − 1|

|∆ |
, (12)

P̃ = sup
t∈[0,1]

|ke−kt |

|∆ |
=

ke−k

|∆ |
.

Λ1 = P∆1 +
(1− e−k)

kΓ (q)
, Λ2 = P̃∆1 +

(2− e−k)

Γ (q)
. (13)

ω = ζ (1+λ0 + γ0). (14)

γ0 = sup
t∈I

|

∫ t

0
γ(t,s)ds|, λ0 = sup

t∈I

|

∫ t

0
λ (t,s)ds|. (15)

∆1 = |β |
η2q−2

(kΓ (q))2
(kη + e−kη − 1) (16)

+
m

∑
i=1

|ai|ξ
q−1
i (1− e−kξi)

1

kΓ (q)
.

In this section, our first result is based on the Banach fixed
point theorem (see [17]).

Theorem 3.1. Assume that f : [0,1]× R
n+3 → R is a

continuous function satisfying the assumption

(H1) | f (t,x,y,w,u1,u2, . . . ,un) −
f (t,x′,y′,w′,v1,v2, . . . ,vn)|

≤ L1|x − x′| + L2|y − y′| + L3|w − w′| + d1|u1 − v1| +
d2|u2 − v2|+ . . .+ dn|un − vn|,

for all t ∈ [0,1] and
x,y,w,x′,y′,w′,u1,u2, . . . ,un,v1,v2, . . . ,vn ∈ R.

where Li,d j > 0,∀i = 1,2,3,∀ j = 1,2, . . . ,n are Lipschitz
constants.

Then problem (1) has a unique solution if
(

Λ1 +Λ2

n

∑
i=1

1

Γ (2−βi)

)

ω < 1, where Λ1,Λ2,ω are

given by (13), (14), ζ1 = sup{L1,d1,d2, . . . ,dn},ζ2 =
sup{L2,L3},ζ = sup{ζ1,ζ2}.

Proof. Let us fix

r ≥

Λ1M+Λ2M
n

∑
i=1

1

Γ (2−βi)

1−Λ1ω −Λ2ω
n

∑
i=1

1

Γ (2−βi)

,

where Λ1,Λ2,ω are given by (13), (14), respectively and
M = supt∈[0,1] | f (t,0, . . . ,0)|.
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As the first step, we show that FBr ⊂ Br

where Br = {u ∈ X : ‖u‖X ≤ r}.

For u ∈ Br, using (H1), we have

|Fu(t)| ≤ sup
t∈[0,1]

|e−kt − 1|

|∆ |

(

|β |

∫ η

0

(η − s)q−1

Γ (q)

(

∫ s

0
e−k(s−x)

∫ x

0

(x− τ)q−2

Γ (q− 1)

×(| f (τ,u(τ),(φu)(τ),(ψu)(τ),

cDβ1u(τ), . . . ,c Dβnu(τ))

− f (τ,0, . . . ,0)|+M)dτ
)

dx

)

ds

+
m−1

∑
i=1

|ai|

∫ ξi

0
e−k(ξi−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

×(| f (x,u(x),(φu)(x),(ψu)(x),

cDβ1u(x), . . . ,c Dβnu(x))

− f (x,0, . . . ,0) |+M)dxds
)

+

∫ t

0
e−k(t−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

×(| f (x,u(x),(φu)(w),(ψu)(w),

cDβ1u(x), . . . ,c Dβnu(x)

− f (x,0, . . . ,0) |+M)dx
)

ds

≤ P

(

|β |
η2q−2

(kΓ (q))2
(kη + e−kη − 1)

+
m−1

∑
i=1

|ai|ξ
q−1
i (1− e−kξi)

1

kΓ (q)

)

×(sup{L1,d1, . . . ,dn}(|u|+|cDβ1u|+ . . .+ |cDβnu|)

+sup{L2,L3}(γ0 +λ0)|u|+M)

+
(1− e−k)

kΓ (q)
(L1|u(x)|

+L2γ0|u(x)|+L3λ0|u(x)|

+d1|
cDβ1u(x)|

+ . . .+ dn|
cDβnu(x)|+M)

≤ P∆1(ζ1r+ ζ2(γ0 +λ0)r+M)

+
(1− e−k)

kΓ (q)
(ζ1r+ ζ2(γ0 +λ0)r+M)

≤ (P∆1 +
(1− e−k)

kΓ (q)
)ζ (1+ γ0 +λ0)r

+(P∆1 +
(1− e−k)

kΓ (q)
)M

≤ Λ1ωr+Λ1M.

Also, we have

|(Fu)′(t)| ≤ sup
t∈[0,1]

|− ke−kt |

|∆ |

(

|β |

∫ η

0

(η − s)q−1

Γ (q)

(

∫ s

0
e−k(s−x)

(

∫ x

0

(x− τ)q−2

Γ (q− 1)

×| f (τ,u(τ),(φu)(τ),(ψu)(τ),c Dβ1u(τ), . . . ,c Dβnu(τ))

− f (τ,0, . . . ,0) |+M)|dτ
)

dx
)

ds

+
m−1

∑
i=1

|ai|

∫ ξi

0
e−k(ξi−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

×(| f (x,u(x),(φu)(x),(ψu)(x),c Dβ1u(x), . . . ,c Dβnu(x))

− f (x,0, . . . ,0) |+M)dx

)

ds

)

+

∫ t

0

(t − s)q−2

Γ (q− 1)

×(| f (s,u(s),(φu)(s),(ψu)(s),c Dβ1u(s), . . . ,c Dβnu(s))

− f (s,0, . . . ,0) |+M) | ds+ k

∫ t

0
e−k(t−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

×(| f (x,u(x),(φu)(x),(ψu)(x),c Dβ1u(x), . . . ,c Dβnu(x))

− f (x,0, . . . ,0) |+M)|dx
)

ds

≤ P̃∆1(ζ1r+ ζ2(γ0 +λ0)r+M)

+
(2− e−k)

Γ (q)
(ζ1r+ ζ2(γ0 +λ0)r+M)

≤ Λ2ωr+Λ2M.

By the definition of the Caputo fractional derivative with
0 < βi < 1, we get

(

| cDβi(Fu)(t) |
)

=
∣

∣

∣

∫ t

0

(t − s)−βi

Γ (1−βi)
(Fu)′(s)ds

∣

∣

∣

≤
∫ t

0

(t − s)−βi

Γ (1−βi)
(Λ2ωr+Λ2M)ds

≤
1

Γ (2−βi)
(Λ2ωr+Λ2M).

Hence,
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‖F(u)‖ = ‖F(u)‖+
n

∑
i=1

‖cDβiF(u)‖

≤ Λ1ωr+Λ1M

+
n

∑
i=1

1

Γ (2−βi)
(Λ2ωr+Λ2M)

≤ r.

Thus, FBr ⊂ Br. Now, for any u,v ∈ X and for each
t ∈ [0,1], we obtain

|(Fu)(t)− (Fv)(t)|

≤ sup
t∈[0,1]

|e−kt − 1|

|∆ |

(

|β |

∫ η

0

(η − s)q−1

Γ (q)

(

∫ s

0
e−k(s−τ)

(

∫ τ

0

(τ −w)q−2

Γ (q− 1)

×| f (w,u(w),(φu)(w),(ψu)(w),

cDβ1u(w), . . . ,c Dβnu(w))

− f (w,v(w),(φv)(w),(ψv)(w),

cDβ1v(w), . . . ,c Dβnv(w))|dw
)

dτ
)

ds

+
m−1

∑
i=1

|ai|
∫ ξi

0
e−k(ξi−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

×| f (x,u(x),(φu)(x),(ψu)(x),

cDβ1u(x), . . . ,c Dβnu(x))

− f (x,v(x),(φv)(x),(ψv)(x),

cDβ1v(x), . . . ,c Dβnv(x))|dx
))

+k

∫ t

0
e−k(t−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

×| f (x,u(x),(φu)(x),(ψu)(x),

cDβ1u(x), . . . ,c Dβnu(x))

− f (x,v(x),(φv)(x),(ψv)(x),

cDβ1v(x), . . . ,c Dβnv(x))|dx

)

ds

≤ (P∆1 +
1

kΓ (q)
(1− e−k))(L1|u− v|

+L2|φu−φv|+L3|ψu−ψv|

+d1|
cDβ1u−c Dβ1v|+ . . .

+dn|
cDβnu−c Dβnv|)

≤ (P∆1 +
1

kΓ (q)
(1− e−k))

(sup{L1,d1, . . . ,dn}‖u− v‖

+sup{L2,L3}(γ0 +λ0)‖u− v‖)

≤ (P∆1 +
1

kΓ (q)
(1− e−k))

sup{ζ1,ζ2}(1+ γ0+λ0)‖u− v‖

≤ (P∆1 +
1

kΓ (q)
(1− e−k))ζ (1+ γ0 +λ0)‖u− v‖

≤ Λ1ω‖u− v‖.

Also, we have

|(Fu)′(t)− (Fv)′(t)| ≤ Λ2ω‖u− v‖.

Which implies that

|cDβi(Fu)(t)−c Dβi(Fv)(t)| ≤
∫ t

0

(t − s)−βi

Γ (1−βi)

|(Fu)′(s)− (Fv)′(s)|ds

≤
1

Γ (2−βi)
Λ2ω‖u− v‖.

From the above inequalities, we have

‖F(u)−F(v)‖ = ‖F(u)−F(v)‖

+
n

∑
i=1

‖cDβiF(u)−c DβiF(v)‖

≤ Λ1ω‖u− v‖

+
n

∑
i=1

1

Γ (2−βi)
Λ2ω‖u− v‖.

≤

(

Λ1 +Λ2

n

∑
i=1

1

Γ (2−βi)

)

ω‖u− v‖.

As :

(

Λ1 +Λ2

n

∑
i=1

1

Γ (2−βi)

)

ω < 1, F is a contraction.

Thus the conclusion of the theorem follows by the
contraction mapping principle. This completes the proof.

Now, we prove the existence of solutions of (1) by
applying Krasnoselskii’s fixed point theorem [1].

Theorem 3.2. Let M be a closed, convex, bounded and
nonempty subset of a Banach space X . Let A,B be the
operators such that : (i) Ax+By ∈ M whenever x,y ∈ M;
(ii) A is compcat and continuous; and (iii) B is a
contraction mapping. Then, there exists z ∈ M such that :
z = Az+Bz.

Theorem 3.3. Let f : [0,1]×R
n+3 → R be a continuous

function satisfying the assumptions (H1) and
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(H2)| f (t,x,y,w,u1, . . . ,un)| ≤
µ(t), ∀(t,x,y,w,u1, . . . ,un) ∈ [0,1] × R

n+3, where
µ ∈C([0,1],R+).

Then, the boundary value problem (1) has at least one
solution on [0,1].

If
(

P+ P̃
n

∑
i=1

1

Γ (2−βi)

)

∆1ω < 1.

Proof. Let ‖µ‖= supt∈[0,1] |µ(t)|, and consider

BR = {u ∈ X : ‖u‖ ≤ R}, we fix

R ≥

(

Λ1 +Λ2

n

∑
i=1

1

Γ (2−βi)

)

‖µ‖. We define the

operators F1 and F2 on BR as

(F1u)(t) =

∫ t

0
e−k(t−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)
f (x,u(x),(φu)(x),

(ψu)(x),c Dβ1u(x), . . . ,c Dβnu(x))dx
)

ds,

(F2u)(t) =
(e−kt − 1)

∆

(

β
∫ η

0

(η − s)q−1

Γ (q)
(

∫ s

0
e−k(s−x)

(

∫ x

0

(x− τ)q−2

Γ (q− 1)

× f (τ,u(τ),(φu)(τ),(ψu)(τ),

cDβ1u(τ), . . . ,c Dβnu(τ))dτ
)

dx
)

ds

−
m−1

∑
i=1

ai

∫ ξi

0
e−k(ξi−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

× f (x,u(x),(φu)(x),(ψu)(x),

cDβ1u(x), . . . ,c Dβnu(x))dx
)

ds
)

.

For u,v ∈ BR, using the notation (13), we have

|(F1u)(t)+ (F2v)(t)| ≤ (P∆1 +
1

kΓ (q)
(1− e−k))‖µ‖

≤ Λ1‖µ‖.

Also

|(F1u)′(t)+ (F2v)′(t)| ≤ (P̃∆1 +
1

Γ (q)
(2− e−k))‖µ‖

≤ Λ2‖µ‖,

which implies that

|cDβi(F1u+F2v)| ≤
∫ t

0

(t − s)−βi

Γ (1−βi)
|F ′

1u+F′
2v|ds

≤
Λ2

Γ (2−βi)
‖µ‖.

From the above inequalities, we get

‖F1u+F2v‖ = ‖F1u+F2v‖+
n

∑
i=1

‖cDβiF1u+c DβiF2v‖

≤ Λ1‖µ‖+Λ2

n

∑
i=1

1

Γ (2−βi)
‖µ‖

≤

(

Λ1 +Λ2

n

∑
i=1

1

Γ (2−βi)

)

‖µ‖ ≤ R.

Thus, F1u+ F2v ∈ BR, we prove that F2 is a contraction
mapping.

Let u,v ∈ BR, we have

|F2u(t)−F2v(t)| ≤ sup
t∈[0,1]

|e−kt − 1|

|∆ |

(

|β |

∫ η

0

(η − s)q−1

Γ (q)

(

∫ s

0
e−k(s−x)

(

∫ x

0

(x− τ)q−2

Γ (q− 1)

×| f (τ,u(τ),(φu)(τ),(ψu)(τ),

(cDβ1u)(τ), . . . ,(cDβnu)(τ)

− f (τ,v(τ),(φv)(τ),(ψv)(τ),

(cDβ1v)(τ), . . . ,(cDβnv)(τ)dτ
)

dx
)

ds

−
m−1

∑
i=1

|ai|

∫ ξi

0
e−k(ξi−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

×(| f (x,u(x),(φu)(x),(ψu)(x),c Dβ1u(x), . . . ,c Dβnu(x))

− f (x,v(x),(φv)(x),(ψv)(x),

cDβ1v(x), . . . ,c Dβnv(x))|dx
)

ds
)

≤ P∆1ζ (1+ γ0 +λ0)‖u− v‖

≤ P∆1ω‖u− v‖.

Also,

|F ′
2u(t)−F′

2v(t)| ≤ P̃∆1ζ (1+ γ0 +λ0)‖u− v‖

≤ P̃∆1ω‖u− v‖,

which implies that

|cDβiF2u(t)−c DβiF2v(t)| ≤

∫ t

0

(t − s)−βi

Γ (1−βi)
P̃∆1ω‖u− v‖ds

≤
1

Γ (2−βi)
P̃∆1ω‖u− v‖.
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From the above inequalities, we have

‖F2u−F2v‖ = ‖F2u−F2v‖

+
n

∑
i=1

‖cDβiF2u−c DβiF2v‖

≤ P∆1ω‖u− v‖

+
n

∑
i=1

1

Γ (2−βi)
P̃∆1ω‖u− v‖

≤ (P+ P̃
n

∑
i=1

1

Γ (2−βi)
)∆1ω‖u− v‖.

As :
(

P+ P̃
n

∑
i=1

1

Γ (2−βi)

)

∆1ω < 1,

F2 is contraction mapping.

We prove the continuity of F1. Let {un}
∞
n=0 ⊂ M

and u ∈ M such that un −→ u as n −→ ∞,

so continuity of f implies that

lim
n−→+∞

f (t,un(t),(φun)(t),(ψun)(t),

cDβ1un(t), . . . ,
c Dβnun(t))

= f (t,u(t),(φu)(t),(ψu)(t),

cDβ1u(t), . . . ,c Dβnu(t)).

Then,
∣

∣

∣
F1un(t)−F1u(t)

∣

∣

∣
=

∣

∣

∣

∫ t

0
e−k(t−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

×( f (t,un(t),(φun)(t),(ψun)(t),

cDβ1un(t), . . . ,
c Dβnun(t)))

− f (t,u(t),(φu)(t),(ψu)(t),

cDβ1u(t), . . . ,c Dβnu(t))dx
)

ds

∣

∣

∣

≤

∫ t

0
e−k(t−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

×| f (t,un(t),(φun)(t),(ψun)(t),

cDβ1un(t), . . . ,
c Dβnun(t))

− f (t,u(t),(φu)(t),(ψu)(t),

cDβ1u(t), . . . ,c Dβnu(t))|dx
)

ds

≤
1

kΓ (q)
(1− e−k)

×| f (t,un(t),(φun)(t),(ψun)(t),

cDβ1un(t), . . . ,
c Dβnun(t))

− f (t,u(t),(φu)(t),(ψu)(t),

cDβ1u(t), . . . ,c Dβnu(t))|.

Also, we have

|F ′
1un(t)−F ′

1u(t)|= |
∫ t

0

(t − s)q−2

Γ (q− 1)

×( f (s,un(s),(φun)(s),(ψun)(s),

cDβ1un(s), . . . ,
c Dβnun(s))

− f (s,u(s),(φu)(s),(ψu)(s),

cDβ1u(s), . . . ,c Dβnu(s))ds|

−k

∫ t

0
e−k(t−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

×( f (s,un(s),(φun)(s),(ψun)(s),

cDβ1un(s), . . . ,
c Dβnun(s))

− f (s,u(s),(φu)(s),(ψu)(s),

cDβ1u(s), . . . ,c Dβnu(s)))dx
)

ds

∣

∣

∣

≤
(2− e−k)

Γ (q)

∣

∣

∣
f (s,un(s),(φun)(s),(ψun)(s),

cDβ1un(s), . . . ,
c Dβnun(s))

− f (s,u(s),(φu)(s),(ψu)(s),

cDβ1u(s), . . . ,c Dβnu(s))
∣

∣

∣
.

By the definition of the Caputo fractional derivative
with 0 < βi < 1, we get

∣

∣

∣

cDβiF1un(t)−
c DβiF1u(t)

∣

∣

∣
≤

∫ t

0

(t − s)−βi

Γ (1−βi)

(2− e−k)

Γ (q)

×| f (s,un(s),(φun)(s),(ψun)(s),

cDβ1un(s), . . . ,
c Dβnun(s))

− f (s,u(s),(φu)(s),(ψu)(s),

cDβ1u(s), . . . ,c Dβnu(s))|ds

≤
(2− e−k)

Γ (q)Γ (2−βi)

×| f (s,un(s),(φun)(s),(ψun)(s),

cDβ1un(s), . . . ,
c Dβnun(s))

− f (s,u(s),(φu)(s),(ψu)(s),

cDβ1u(s), . . . ,c Dβnu(s))|.
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Hence,

‖F1un(t)−F1u(t)‖= ‖F1un(t)−F1u(t)‖

+
n

∑
i=1

‖cDβiF1un(t)−
c DβiF1u(t)‖

≤
1

kΓ (q)
(1− e−k) | f (s,un(s),(φun)(s),(ψun)(s),

cDβ1un(s), . . . ,
c Dβnun(s))

− f (s,u(s),(φu)(s),(ψu)(s),

cDβ1u(s), . . . ,c Dβnu(s)) |

+
n

∑
i=1

(2− e−k)

Γ (q)Γ (2−βi)

×| f (s,un(s),(φun)(s),(ψun)(s),

cDβ1un(s), . . . ,
c Dβnun(s))

− f (s,u(s),(φu)(s),(ψu)(s),c Dβ1u(s),

. . . ,
c Dβnu(s))| −→ 0,

it follows that ‖F1un(t)−F1u(t)‖ −→ 0 as n −→ ∞,

which implies the continuity of F1.

Also, F1 is uniformly bounded on BR as

‖F1u‖ ≤
(1− e−k)

kΓ (q)
‖µ‖,

‖F ′
1u‖ ≤

(2− e−k)

Γ (q)
‖µ‖,

‖cDβiF1u‖ ≤
1

Γ (2−βi)

(2− e−k)

Γ (q)
‖µ‖,

and

‖F1u‖ ≤
(1− e−k)

kΓ (q)
‖µ‖+

(2− e−k)

Γ (q)

n

∑
i=1

1

Γ (2−βi)
‖µ‖.

Now, we prove the compactness of the operator F1,

we define

C0 =
sup

(t,u,ψu,φu,cDβ1 ,...,cDβn )∈[0,1]×Br
| f (t,u,(φu)(t),(ψu)(t),

cDβ1u(t), . . . ,c Dβnu(t)|.

For 0 < t1 < t2 < 1, we have

∣

∣

∣
(F1u)(t2)− (F1u)(t1)

∣

∣

∣
=
∣

∣

∣

∫ t2

0
e−k(t2−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

× f (x,u(x),(φu)(x),(ψu)(x),

cDβ1u(x), . . . ,c Dβnu(x)dx
)

ds

−
∫ t1

0
e−k(t1−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

× f (x,u(x),(φu)(x),(ψu)(x),c Dβ1u(x),

. . . ,
c Dβnu(x)dx

)

ds

∣

∣

∣

≤
∫ t1

0
|e−k(t2−s)− e−k(t1−s)|

∫ s

0

(s− x)q−2

Γ (q− 1)

×| f (x,u(x),(φu)(x),(ψu)(x),c Dβ1u(x),

. . . ,
c Dβnu(x)|dxds

+

∫ t2

t1

e−k(t2−s)
∫ s

0

(s− x)q−2

Γ (q− 1)

×| f (x,u(x),(φu)(x),(ψu)(x),c Dβ1u(x),

. . . ,
c Dβnu(x)|dxds

≤
C0

kΓ (q)

(

|t
q
2 − t

q
1 |+ |t

q
2e−kt2 − t

q
1 e−kt1 |

)

and :

|cDβiF1u(t2)−
c DβiF1u(t1)| ≤

∫ t1

0

(t2 − s)−βi − (t1 − s)−βi

Γ (1−βi)
|(F1u)′(s)|ds

+

∫ t2

t1

(t2 − s)−βi

Γ (1−βi)
|(F1u)′(s)|ds

≤
C0

Γ (1−βi)

(2− e−k)

Γ (q)

{

∫ t1

0

|(t1 − s)βi − (t2 − s)βi |

(t1 − s)βi(t2 − s)βi
ds

+

∫ t2

t1

(t2 − s)−βids
}

Clearly, |F1u(t2) − F1u(t1)| −→ 0 and

|cDβiF1u(t2) −
c DβiF1u(t1)| −→ 0 independent of u as

t2 −→ t1. Thus, F1 is relatively compact on BR. Hence, by
the Arzela-Ascoli theorem, F1 is compact on BR. Thus all
the assumptions of theorem (3.2) are satisfied and the
conclusion of theorem (3.2) implies that the boundary
value problem (1) has at least one solution on [0,1]. This
completes the proof.

Our next existence result is based on the following fixed
point theorem [1].

Theorem 3.4. Let E be a Banach space. Assume that
F : E −→ E is completely continuous operator and the set
Ω = {u ∈ E : u = µFu, 0 < µ < 1} is bounded. Then F

has a fixed point in E.

Theorem 3.5. Assume that there exists C > 0 such that
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| f (t,u(t),(φu)(t),(ψu)(t),c Dβ1u(t), . . . ,c Dβnu(t))| ≤C,

∀t ∈ [0,1],(u,φu,ψu,c Dβ1u, . . . ,c Dβnu) ∈R
n+3

.

Then the problem (1) has at least one solution on [0,1].

Proof. We show that the operator F is completely
continuous. Let B be a bounded set in X . Then, there
exists C > 0 such that
| f (t,u(t),(φu)(t),(ψu)(t),c Dβ1u(t), . . . ,c Dβnu(t))| ≤
C,∀t ∈ [0,1],u ∈ B, we get:

|(Fu)(t)| ≤ (P∆1 +
1

kΓ (q)
(1− e−k))C

≤ Λ1C.

Also

|(Fu)′(t)| ≤ (P̃∆1 +
1

Γ (q)
(2− e−k))C

≤ Λ2C,

which implies that

∣

∣

∣

cDβi(Fu)(t)
∣

∣

∣
=
∣

∣

∣

∫ t

0

(t − s)−βi

Γ (1−βi)
(Fu)′(s)ds

∣

∣

∣

≤
1

Γ (2−βi)
Λ2C.

From the above inequalities, we get

‖Fu‖X ≤ Λ1C+
n

∑
i=1

1

Γ (2−βi)
Λ2C < ∞,

which implies that ‖Fu‖ ≤ ∞. Hence F(B) is uniformly
bounded.

It is easy to verify that the operator F is continuous since
f is continuous. Next, we show that F is equicontinuous
on bounded subsets of X .

Now, let t1, t2 ∈ [0,1], t1 < t2;u ∈ B, we have the
following facts:

|Fu(t2)−Fu(t1)| ≤
|e−kt2 − e−kt1 |

|∆ |

(

|β |

∫ η

0

(η − s)q−1

Γ (q)

(

∫ s

0
e−k(s−x)

(

∫ x

0

(x− τ)q−2

Γ (q− 1)

×| f (τ,u(τ),(φu)(τ),(ψu)(τ),

cDβ1u(τ), . . . ,c Dβnu(τ)|dτ
)

dx
)

ds

+
m−1

∑
i=1

|ai|

∫ ξi

0
e−k(ξi−s)

(

∫ s

0

(s− x)q−2

Γ (q− 1)

×| f (x,u(x),(φu)(x),(ψu)(x),

cDβ1u(x), . . . ,c Dβnu(x)|dx
)

ds

+

∫ t1

0
|e−k(t2−s)− e−k(t1−s)|

(

∫ s

0

(s− x)q−2

Γ (q− 1)

×| f (x,u(x),(φu)(x),(ψu)(x),

cDβ1u(x), . . . ,c Dβnu(x)|dx
)

ds
)

+

∫ t2

t1

e−k(t2−s)
(

∫ s

0

(s− x)q−2

Γ (q− 1)

×| f (x,u(x),(φu)(x),(ψu)(x),

cDβ1u(x), . . . ,c Dβnu(x)|dx
)

ds

≤
|e−kt2 − e−kt1 |

|∆ |
{|β |

η2q−2

(kΓ (q))2
(kη + e−kη − 1)

+
m−1

∑
i=1

|ai|ξ
q−1
i (1− e−kξi)

1

kΓ (q)
}C

+
C

kΓ (q)
(|tq

2 − t
q
1 |+ |tq

2e−kt2 − t
q
1e−kt1 |)

≤
( |e−kt2 − e−kt1 |

|∆ |
∆1 +

1

kΓ (q)
(|tq

2 − t
q
1 |+

|t
q
2 e−kt2 − t

q
1e−kt1 |)

)

C.

Also, we have

|cDβi(Fu)(t2)−
c Dβi(Fu)(t1)|=

|

∫ t2

0

(t2 − s)−βi

Γ (1−βi)
(Fu)′(s)ds

−
∫ t1

0

(t1 − s)−βi

Γ (1−βi)
(Fu)′(s)ds|

≤

∫ t1

0

|(t2 − s)−βi − (t1 − s)−βi |

Γ (1−βi)
|(Fu)′(s)|ds

+

∫ t2

t1

(t2 − s)−βi

Γ (1−βi)
|(Fu)′(s)|ds

≤
CΛ2

Γ (1−βi)

{

∫ t1

0

|(t1 − s)βi − (t2 − s)βi |

(t1 − s)βi(t2 − s)βi

+
∫ t2

t1

|(t2 − s)−βi |ds
}

.

From the above inequalities, we get
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‖Fu‖ ≤
( |e−kt2 − e−kt1 |

|∆ |
∆1 +

1

kΓ (q)
(|tq

2 − t
q
1 |+

|tq
2 e−kt2 − t

q
1 e−kt1 |)

)

C

+
n

∑
i=1

( CΛ2

Γ (1−βi)

{

∫ t1

0

|(t1 − s)βi − (t2 − s)βi |

(t1 − s)βi(t2 − s)βi

+

∫ t2

t1

|(t2 − s)−βi |ds
})

−→ 0 as t2 −→ t1.

Thus, the operator F is equicontinuous. Hence, by Arzela-
Ascoli theorem,
F : X −→ X is completely continuous.

Now, consider the set Ω = {u ∈ X : u = µFu, 0 < µ <

1}. In order to show that Ω is bounded, let u ∈ Ω , then
u = µFu,0 < µ < 1, for t ∈ [0,1], we have

|u(t)| = |µ(Fu)(t)|

≤ µ |(Fu)(t)|

≤
(

Λ1 +Λ2

n

∑
i=1

1

Γ (2−βi)

)

C < ∞.

It follows that the set Ω is bounded independently of µ .
From theorem (3.4), the operator F has at least a fixed
point, which implies that the problem (1) has at least one
solution on [0,1].

4 Examples

Example 1.Consider the four-point problem























(cD
7
4 +

1

4
cD

3
4 )u(t) = ω1, t ∈ [0,1]

u(0) = 0,

1

6
u(

1

10
)+

1

3
u(

2

10
)+

1

5
u(

3

10
) =

∫ 1
20

0

( 1
20
− s)

3
4

Γ ( 7
4
)

u(s)ds.

Where
ω1 = f (t,u(t),(φu)(t),(ψu)(t),c D

1
3 u(t),c D

2
3 u(t)),

q =
7

4
,k =

1

4
,β1 =

1

3
,β2 =

2

3
,a1 =

1

6
,a2 =

1

3
,a3 =

1

5
,

ξi =
i

10
, i = 1,2,3,β = 1,η =

1

20
,

(φu)(t) =

∫ t

0

e−2(s−t)

2
u(s)ds and

(ψu)(t) =

∫ t

0

e−3(s−t)

2
u(s)ds with γ0 =

e2 − 1

4
and

λ0 =
e3 − 1

6
, with the given value of f has at least one

solution on [0,1], we choose

f (t,u(t),(φu)(t),(ψu)(t),c D
1
3 u(t),c D

2
3 u(t))

=
|u(t)|

36(1+ |u(t)|)

+
e−

π
2 t sin(π

2
t)

64(1+ t3)

(

(φu)(t)+
|cD

1
3 u(t)|

1+ |cD
1
3 u(t)|

)

+
cost + et

81(1+ t2)

(

(ψu)(t)+
|cD

2
3 u(t)|

1+ |cD
2
3 u(t)|

)

,

we have that

| f (t,u(t),(φu)(t),(ψu)(t),c D
1
3 u(t),c D

2
3 u(t))−

f (t,v(t),(φv)(t),(ψv)(t),c D
1
3 v(t),c D

2
3 v(t))|

≤
1

36
|u(t)− v(t)|+

1

64
|φu(t)−φv(t)|

+
1

81
|ψu(t)−ψv(t)|

+
1

64
|cD

1
3 u(t)−c D

1
3 v(t)|+

1

81
|cD

2
3 u(t)−c D

2
3 v(t)|,

with the given values, it is found that

ζ1 =
1

36
,ζ2 =

1

64
,ζ =

1

36
,∆ ≈−3.4808× 10−2 6= 0,

∆1 ≈ 2.5495× 10−2
,

Λ1 ≈ 1.1247,Λ2 ≈ 1.4714,ω ≈ 0.16051,

finally we have that
(

Λ1 +Λ2

2

∑
i=1

1

Γ (2−βi)

)

ω = 0.70663 < 1. According to

all the conditions of theorem (3.1), we conclude that there
exists a unique solution for the problem (1) on [0,1].

Example 2.Consider the problem























(cD
9
5 +

1

11
cD

4
5 )u(t) = ω2, t ∈ [0,1]

u(0) = 0,

1

6
u(

1

4
)+

1

3
u(

1

3
)+

1

5
u(

1

5
) =

∫ 1
30

0

( 1
30
− s)

4
5

Γ ( 9
5
)

u(s)ds,

where
ω2 = f (t,u(t),(φu)(t),(ψu)(t),c D

1
2 u(t),c D

3
4 u(t)),q =

9

5
,k =

1

11
,a1 =

1

6
,a2 =

1

3
,a3 =

1

5
,ξ1 =

1

4
,ξ2 =

1

3
,ξ3 =

1

2
,η =

1

30
,β1 =

1

2
,β2 =

3

4
,

β = 1,(φu)(t) =
∫ t

0

e−2(s−t)

2
u(s)ds and
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(ψu)(t) =

∫ t

0

e−3(s−t)

2
u(s)ds with γ0 =

e2 − 1

4
and

λ0 =
e3 − 1

6
. Now we illustrate the obtained results by

choosing different values of

f (t,u(t),(φu)(t),(ψu)(t),c D
1
2 u(t),c D

3
4 u(t)). Let us first

consider

f (t,u(t),(φu)(t),(ψu)(t),c D
1
2 u(t),c D

3
4 u(t))

=
e−πt(1+ sin2(πt))|u(t)|

6(t + 6)3(1+ |u(t)|)

+
e−πt sin(πt)

7(1+ t2)

(

(φu)(t)+
|cD

1
2 u(t)|

1+ |cD
1
2 u(t)|

)

+
1+ sin2(πt)

8(1+ t2)

(

(ψu)(t)+
|cD

3
4 u(t)|

1+ |cD
3
4 u(t)|

)

.

Then,

| f (t,u(t),(φu)(t),(ψu)(t),c D
1
2 u(t),c D

3
4 u(t))−

f (t,v(t),(φv)(t),(ψv)(t),c D
1
2 v(t),c D

3
4 v(t))|

≤
1

6
|u(t)− v(t)|+

1

7
|φu(t)−φv(t)|

+
1

8
|ψu(t)−ψv(t)|

+
1

7
|cD

1
2 u(t)−c D

1
2 v(t)|

+
1

8
|cD

3
4 u(t)−c D

3
4 v(t)|.

Finally, we have that ζ =
1

6
,∆ ≈ −2.2581× 10−2

,∆1 ≈

6.0286 × 10−2
,P ≈ 3.8483, P̃ ≈ 3.6761,ω ≈ 0.96303

Thus,
(

P + P̃
2

∑
i=1

1

Γ (2−βi)

)

∆1ω = 0.69970 < 1. Hence

by theorem (3.3), the problem (1) has at least one solution
on [0,1].
Next, we show the applicability of theorem (3.3) with the
nonlinear function f given by

f (t,u(t),(φu)(t),(ψu)(t),c D
1
2 u(t),c D

3
4 u(t))

=
e−πt(2+ |u(t)|)

t + 2+ 2|u(t)|
e3t

+
e−t sin(πt)

1+ t2

( |(φu)(t)|

1+ |(φu)(t)|
+

|cD
1
2 u(t)|

1+ |cD
1
2 u(t)|

)

e3t

+
1+ sin2 t

1+ t2

( |(ψu)(t)|

1+ |(ψu)(t)|
+

|cD
3
4 u(t)|

1+ |cD
3
4 u(t)|

)

e3t
.

It is easy to see that

| f (t,u(t),(φu)(t),(ψu)(t),c D
1
2 u(t),c D

3
4 u(t))| ≤ 7e3t =

µ(t). Then, by the condition (H2) with µ(t) = 7e3t . In
consequence, the conclusion of theorem (3.3) implies that
the problem (1) has at least one solution on [0,1].

Example 3.Consider the following fractional four-point
boundary problem























(cD
9
5 +

1

11
cD

4
5 )u(t) = ω3, t ∈ [0,1]

u(0) = 0,

1

6
u(

1

4
)+

1

3
u(

1

3
)+

1

5
u(

1

5
) =

∫ 1
30

0

( 1
30
− s)

4
5

Γ ( 9
5
)

u(s)ds,

where
ω3 = f (t,u(t),(φu)(t),(ψu)(t),c D

1
2 u(t),c D

3
4 u(t)),q =

9

5
,k =

1

11
,a1 =

1

6
,a2 =

1

3
,a3 =

1

5
,ξ1 =

1

4
,ξ2 =

1

3
,ξ3 =

1

2
,η =

1

30
,β1 =

1

2
,β2 =

3

4
,β = 1,

which follows that

f (t,u(t),(φu)(t),(ψu)(t),c D
1
2 u(t),c D

3
4 u(t))

=
e−cos2 u(t)

3+ cosu(t)

+
e−πt sin(πt)

2+ cos(πt)

( |(φu)(t)|

1+ |(φu)(t)|

+
|cD

1
2 u(t)|

1+ |cD
1
2 u(t)|

)

+
1

2+ sin(πt)

( |(ψu)(t)|

1+ |(ψu)(t)|
+

|cD
3
4 u(t)|

1+ |cD
3
4 u(t)|

)

,

we have that

| f (t,u(t),(φu)(t),(ψu)(t),c D
1
2 u(t),c D

3
4 u(t))| ≤

9

2
.

Therefore, by theorem (3.5), the problem (1) has at least
one solution on [0,1].

5 Conclusion

We have presented some new treatments non-local
multi-point boundary value problems of Caputo type
sequential fractional integro-differential equations. the
fixed point theory has been used to examine the existence
and uniqueness results. We presented some applications
to illustrate the power of the obtained results on quantum
information theory is discussed. Also, to catch more
interesting applications of the present research work, new
examinations and applications can be investigated using
master equation of more complicated quantum systems.
These new discussions will be presented in a future
research conducted by the author of the present paper.
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