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Abstract: In this paper, the intention of determining the non-parametric test is to assess the methodology of studying the failure

behavior of the observed life data. This methodology represents a new test statistic for testing the exponentiality versus the class of

life distribution used better than aged in increasing concave ordering (UBAC(2)) based on the kernel method. Using simulation, the

percentiles for complete and right censored data and the power of our test statistic are tabulated. The pitman’s asymptotic efficiency

is calculated to assess the performance of our proposed test with respect to other tests. Finally, medical applications for real data are

presented for complete and censored data using our proposed test.
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1 Introduction and Motivation

In the reliability analysis, the failure behavior of the life
data set includes determining if these data have a constant
or decreasing (increasing) failure rate. The exponential
distribution has two features: constant failure rate and
memory-less property. The two features make the
exponential distribution the main member in the classes
of life distribution. Now, the data set is collected and two
claims are considered; the first is H0: the data are
exponential property, and the second is H1: the data
belong to the class of life distribution property and not
exponential. Statistical test statistics are necessary to
show which of the two claims is right. The classification
of the life distributions has contributed to set up a new
statistical test with high efficiency. The main aim of
constructing new tests is to gain higher efficiencies. The
problem of testing exponentiality against various classes
of life distributions, such as (IFR, IFRA, DMRL, NBU,
NBUE, UBA, UBAE, UBAC and UBACT), has got more
attention in the literature [1–7].

Using the kernel method in reliability appeared in the
early work of Watson and Leadbetter [8]. It is used in
some general goodness of fit problems for testing

exponentiality versus the unknown age classes of life
distributions successfully, see, among others, [9–11].
Testing the exponentiality against the classes of life
distributions DVRL (IVRL), UBAC and UBACT based
on the kernel method is introduced in [12–14].

Accordingly, the present paper aims to formulate and
address a new test statistic technique for testing
exponentiality against UBAC(2) class based on the kernel
method.

Suppose a unit with lifetime X having a continuous
life distribution F(x), survival function F̄(x) = 1−F(x)
and finite mean µ =

∫ ∞
0 F̄(x)dx.

Definition (1.1): The idea of the kernel function is
introduced in [15] such that:

k(x) =
1

a
k(

x

a
), a > 0. (1)

Where the kernel function is a probability density
function, so

∫

k(x)dx = 1
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Definition (1.2) [16]: The distribution function F is
said to be UBAC(2) if:

∫ ∞

t
F̄(u)du−

∫ ∞

x+t
F̄(u)du ≥ (1− e−x)F̄(t). (2)

which can be written as :

ν(t)−ν(x+ t)≥ (1− e−x)F̄(t). (3)

The motivation of the proposed UBAC(2) class of life
distributions includes the well-known classes of life
distribution as increasing failure rate (IFR), decreasing
mean residual life (DMRL) and used better than aged
(UBA). Previous researches proved that the UBA class
includes the DMRL class [17] and the used better than
aged in expectation (UBAE) class is contained in the
harmonic used better than aged in expectation class
(HUBAE) [18]. From [19], we have:

IFR ⇒UBA ⇒UBAC(2)

Thus, we have:

IFR ⊂ DMRL ⊂ UBA ⊂ UBAC(2)
∪

UBAE ⊂ HUBAE

For definitions and properties of these classes, you
can check [20–22].

The present paper is organized, as follows: In section
2, a new test statistic based on the kernel method for
testing H0 : F is exponential against H1 : F is UBAC(2)
class of life distribution and not exponential is studied.
Pitman’s asymptotic efficiency (PAE) of the test for
several common distributions are discussed and the power
of the test is estimated in section 3. In section 4, testing
for censored data is proposed. Finally, medical
applications for real data are proposed for complete and
censored data using our proposed test in section 5.

2 Testing hypotheses

In this section, a new test statistic based on kernel method
for testing:

H0 : Fisexponential

against

H1 : FisUBAC(2)andisn′texponential

is studied for a random sample X1,X2, ......,Xn from a
population with distribution function F is proposed.

We proposed the following measure of departure from H0

δUK
=

∫ ∞

0

∫ ∞

0
f (x)[ν(t)−ν(x+ t)− (1− e−x)F̄(t)]×

dF(x)dF(t). (4)

Remarks :-

(i) It is easy to see that if F is exponential, then δUK
=

0,

(ii) Under H1 , we have δUK
> 0 . Then, to estimate

δUK
by δ̂UK

, let

Fn(x) = 1
n ∑n

j=1(x j > x) denotes the empirical

distribution of F(x),

νn(x) =
1
n

n

∑
j=1

(x j − x)I(x j > x) denotes the empirical

distribution of ν(x),

dFn(x) = 1
n

denotes the empirical distribution of
dF(x), and pdf f (x) is estimated by

f̂n(x) =
1

nan
∑n

i=1 k( x−xi
an

), where k(.) is a known pdf. Then,

δ̂UK
=

∫ ∞

0

∫ ∞

0
f̂n(x)[νn(t)−νn(x+ t)− (1− e−x)F̄n(t)]×

dFn(x)dFn(t)

=
1

n4a

n

∑
i=1

n

∑
j=1

n

∑
m=1

n

∑
p=1

k(
Xi −Xp

an

)[(Xm −X j)I(Xm > X j)−

(Xm −Xi−X j)I(Xm > Xi +X j)−
1

2
(1− e−Xi)].

(5)

where,

I(y > t) =
{

1 i f y>t
0, O.W

let us rewrite (5), as follows:

δ̂UK
=

1

n4a

n

∑
i=1

n

∑
j=1

n

∑
m=1

n

∑
p=1

φ(Xi,X j,Xm,Xp),

where,

φ(Xi,X j,Xm,Xp) = k(
Xi −Xp

an

)[(Xm −X j)I(Xm > X j)−

(Xm −Xi −X j)I(Xm > Xi +X j)−
1

2
(1− e−Xi)].(6)

To make the test scale invariant, we take,

∆̂UK
=

δ̂UK

x̄
(7)

Then, ∆̂UK
in (7) is equivalent to the U-statistics and

The following theorem summarizes the large sample

properties of ∆̂UK
.
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To use the U-statistic procedure, we set

φ(X1,X2,X3,X4) = k(
X1 −X4

an

)[(X3 −X2)I(X3 > X2)−

(X3 −X1 −X2)I(X3 > X1 +X2)−
1

2
(1− e−X1)]. (8)

Here, X1, X2, X3 and X4 are four independent lifetimes, and
each with distribution function F. We define the symmetric
kernel as :

φ(X1,X2,X3,X4) =
1

4!
∑
ℜ

φ(X1,X2,X3,X4) (9)

Where the sum is over all permutations of X1, X2, X3

and X4 .Then, δ̂UK
is equivalent to the U-statistic

Un =
1

(n
4!)

∑
i< j<m<p

φ(X1,X2,X3,X4) (10)

Theorem 1 If n4an → ∞ as n → ∞,
√

n(δ̂Uk
− δUk

)/σ is
convergence asymptotically normal with mean 0 and
variance σ2 = var[φ(Xi,X j,Xm,Xp)], where
φ(Xi,X j,Xm,Xp) is given in (6).

Under H0

σ2 = var[2 f (x)[

∫ ∞

0

∫ ν

0
(ν − u) f (u) f (v)dudv−

∫ ∞

X

∫ ν−X

0
(ν −X − u) f (u) f (v)dudv−

1

2

∫ ∞

0

∫ ∞

0
(1− e−X) f (u) f (v)dudv]+

∫ ∞

X

∫ ∞

0
(ν −X) f 2(u) f (v)dudv−

∫ ∞

X

∫ ν−X

0
(ν −X − u) f 2(u) f (v)dudv−

1

2

∫ ∞

0

∫ ∞

0
(1− e−u) f 2(u) f (v)dudv+

∫ X

0

∫ ∞

0
(X −ν) f 2(u) f (v)dudv−

∫ x

0

∫ x−ν

0
(X − u−ν) f 2(u) f (v)dudv−

1

2

∫ ∞

0

∫ ∞

0
(1− e−u) f 2(u) f (v)dudv]. (11)

Proof:
To compute σ2, we must compute :

φ1(X1) = E[φ(X1,X2,X3,X4|X1)]

= f (x1)[

∫ ∞

0

∫ ν

0
(ν − u) f (u) f (v)dudv−

∫ ∞

X1

∫ ν−X1

0
(ν −X1 − u) f (u) f (v)dudv−

1

2

∫ ∞

0

∫ ∞

0
(1− e−X1) f (u) f (v)dudv]. (12)

φ2(X2) = E[φ(X1,X2,X3,X4|X2)]

=

∫ ∞

X2

∫ ∞

0
(ν −X2) f 2(u) f (v)dudv−

∫ ∞

X2

∫ ν−X2

0
(ν −X2 − u) f 2(u) f (v)dudv−

1

2

∫ ∞

0

∫ ∞

0
(1− e−u) f 2(u) f (v)dudv. (13)

φ3(X3) = E[φ(X1,X2,X3,X4|X3)]

=
∫ X3

0

∫ ∞

0
(X3 −ν) f 2(u) f (v)dudv−

∫ X3

0

∫ X3−ν

0
(X3 − u−ν) f 2(u) f (v)dudv−

1

2

∫ ∞

0

∫ ∞

0
(1− e−u) f 2(u) f (v)dudv. (14)

φ4(X4) = E[φ(X1,X2,X3,X4|X4)]

= f (x4)[
∫ ∞

0

∫ ν

0
(ν − u) f (u) f (v)dudv−

∫ ∞

X4

∫ ν−X4

0
(ν −X4 − u) f (u) f (v)dudv−

1

2

∫ ∞

0

∫ ∞

0
(1− e−X4) f (u) f (v)dudv]. (15)

Due to the fact that the variables X1, X2, X3 and X4 are
independent and identical, they can be written in short X
instead of X1, X2, X3 and X4.
set :

ζ (X) = φ1(X)+φ2(X)+φ3(X)+φ4(X)

= 2 f (x)[

∫ ∞

0

∫ ν

0
(ν − u) f (u) f (v)dudv−

∫ ∞

X

∫ ν−X

0
(ν −X − u) f (u) f (v)dudv−

1

2

∫ ∞

0

∫ ∞

0
(1− e−X) f (u) f (v)dudv]+

∫ ∞

X

∫ ∞

0
(ν −X) f 2(u) f (v)dudv−

∫ ∞

X

∫ ν−X

0
(ν −X − u) f 2(u) f (v)dudv−

1

2

∫ ∞

0

∫ ∞

0
(1− e−u) f 2(u) f (v)dudv+

∫ X

0

∫ ∞

0
(X −ν) f 2(u) f (v)dudv−

∫ x

0

∫ x−ν

0
(X − u−ν) f 2(u) f (v)dudv−

1

2

∫ ∞

0

∫ ∞

0
(1− e−u) f 2(u) f (v)dudv. (16)

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


288 S. E. Abu-Youssef, A. A. El-Toony: A new non-parametric statistical test for...

By direct calculation,, under H0: f (u) = e−u, f (v) =
e−v, f (x) = e−x, then

E[ζ (X)] = E[φ1(X)+φ2(X)+φ3(X)+φ4(X)] = 0. (17)

σ2 = var[ζ (X)] =
1

1080
. (18)

To use the above test, calculate
√

n∆̂UK
/σ and reject

H0 if this exceeds the normal variate value Z1−α . To
illustrate the test, we calculate the empirical critical

values of ∆̂UK
in (7) for sample sizes 5(5)100 by using

monte carlo method. Table 1 presents the percentile points
for 1%, 5%, 10%, 90%, 95%, 99%. The calculations are
based on 10000 simulated samples of sizes n = 5(5)100.
These values will be the criteria for dividing the samples
space into acceptance or rejection region for H0.
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Fig. 1: The relation between sample size and critical values

Table 1 and Fig. 1 indicate that the values of the
percentiles change slowly as n increases.

3 Pitman’s asymptotic efficiency

In this section, we calculate PAE for UBAC(2) class of life
distributions and compare our proposed test with tests of
other well-known classes of life distribution based on PAE.

Here, we choose K∗ for DMRL [23], δ̂2 for

UBAE [21], ∆̂UK for UBACT [14] and Λn for overall
decreasing life in Laplace transform (ODL) [24].

PAE of δ̂UK
is given by :

PAE(δUK
(θ)) =

1

σ

∣

∣

∣

∣

d

dθ
δUK

(θ)

∣

∣

∣

∣

θ→θ0

=
1

σ

∣

∣

∣

∣

∫ ∞

0

∫ ∞

0
f̀θ (x)[ν̀θ (t)− ν̀θ (x+ t)− (1− e−x) `̄Fθ (t)]dF̀θ (x)dF̀θ (t)

∣

∣

∣

∣

θ→θ0

.

(19)

Two of the most commonly used alternatives (see [26])
are:

(i) LFR : F̄θ = e−x− θx2

2 , x > 0,θ > 0

(ii) Makeham : F̄θ = e−x−θ(x+e−x−1), x ≥ 0,θ > 0

For LFR family :
Under H0, θ = 0, then :

ν̀θ (t) =−e−t − te−t − t2

2
e−t . (20)

ν̀θ (x+ t) =−e−(x+t)− (x+ t)e−(x+t)− (x+ t)2

2
e−(x+t).

(21)

`̄Fθ (t) =− t2

2
e−t . (22)

f̀θ (x) = e−x. (23)

Then, by direct calculation from equation (20), (21),
(22), (23) in (19),

PAE(δUK
(θ ))∼= 1.29 (24)

For Makeham family :
Under H0, θ = 0, then :

ν̀θ (t) =−te−t − 1

2
e−2t . (25)

ν̀θ (x+ t) =−(x+ t)e−(x+t)− 1

2
e−2(x+t). (26)

`̄Fθ (t) = (1− t− e−t)e−t . (27)

f̀θ (x) = e−x. (28)

Then, by direct calculation from equation (25), (26),
(27), (28) in (19),

PAE(δUK
(θ ))∼= 0.456 (29)

The null hypothesis is at θ = 0 for LFR and makeham
distributions, respectively. Direct calculations of PAE for

δ̂2, K∗,∆̂Uk, Λn and δ̂UK
are summarized in Table 2.

These calculations indicate that our proposed test is

more efficient compared with K∗, δ̂2, ∆̂Uk and Λn for both
LFR and makeham families.

Finally, the power of the test statistic δ̂UK
is considered

for 95% percentiles in Table 3 for three of the most widely
used alternatives (see [25]) as follows:

(i) LFR : F̄θ = e−x− θx2

2 , x > 0,θ > 0

(ii) Makeham : F̄θ = e−x−θ(x+e−x−1), x ≥ 0,θ > 0

(iii) Weibull : F̄θ = e−xθ
, x ≥ 0,θ > 0

These distributions are reduced to the exponential
distribution for appropriate values of θ .

Table 3 shows that power estimates increased when θ
increased for LFR, makeham and weibull families.
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Table 1: Critical values of ∆̂UK

n 1% 5% 10% 90% 95% 99%

5 -0.03596 -0.0266384 -0.0216713 0.0131659 0.0181329 0.0274545

10 -0.0144965 -0.00790512 -0.00439291 0.0202407 0.0237529 0.0303443

15 -0.0212876 -0.0159057 -0.013038 0.00707527 0.00994298 0.0153249

20 -0.0208338 -0.016173 -0.0136895 0.00372913 0.00621264 0.0108735

25 -0.00585595 -0.00168717 0.000534147 0.0161138 0.0183351 0.0225039

30 -0.0100158 -0.0062102 -0.00418242 0.0100398 0.0120676 0.0158731

35 -0.0163574 -0.0128341 -0.0109568 0.00221043 0.00408779 0.00761105

40 -0.0103138 -0.00701814 -0.00526203 0.00705477 0.00881088 0.0121066

45 -0.0128623 -0.00975503 -0.00809935 0.00351304 0.00516872 0.00827594

50 -0.0090716 -0.00612383 -0.00455312 0.00646336 0.00803407 0.0109818

55 -0.00596529 -0.0031547 -0.00165709 0.00884672 0.0103443 0.0131549

60 -0.00259273 0.0000982023 0.00153206 0.0115887 0.0130225 0.0157135

65 -0.013207 -0.0106217 -0.00924405 0.00041805 0.00179565 0.00438102

70 -0.0160994 -0.0136081 -0.0122806 -0.00296996 -0.00164247 0.000848853

75 -0.00563782 -0.00323097 -0.00194849 0.00704643 0.00832891 0.0107358

80 -0.00337443 -0.00104401 0.000197747 0.00890704 0.0101488 0.0124792

90 -0.00569157 -0.00349443 -0.0023237 0.00588751 0.00705825 0.00925539

95 0.000270603 0.00240914 0.00354865 0.0115409 0.0126804 0.0148189

100 -0.000852038 0.00123235 0.00234301 0.0101328 0.0112435 0.0133279

Table 2: PAE of δ̂UK

Distribution K∗ δ̂2 ∆̂Uk Λn δ̂UK

F1

LFR 0.81 0.63 0.776 0.982 1.29

F2

Makeham 0.29 0.385 0.245 0.218 0.456

Table 3: Power estimate of δ̂UK

Sample Size

Distribution θ n=10 n=20 n=30

F1 2 1 1 1

LFR 3 1 1 1

4 1 1 1

F2 2 0.99987 1 1

Makham 3 1 1 1

4 1 1 1

F3 2 1 1 1

Weibull 3 1 1 1

4 1 1 1

4 Testing for Censored Data

Censored data are usually the only information available
in a life testing model or in a clinical study where patients
may be lost (censored) before the completion of the study.
This experimental situation can be modeled, as follows:
Suppose n items are put on test, and X1, X2, ..., Xn are
independent and identically distributed (i.i.d) random
variables according to a continuous life distribution F

which denotes their true lifetime. Let Y1,Y2, ...,Yn be

(i.i.d) according to a continuous life distribution G and
assume that X ′s and Y ′s are independent. In the randomly
right-censored model, we observe the pairs (Zi,δi),
i = 1, ...,n, where Zi = min(Xi,Yi) and

δi =
{

1, i f Zi=Xi (i−th observation is uncensored)
0, i f Zi=Yi (i−th observation is censored)

Let Z(0) < Z(1) < ... < Z(n) denoting the ordered of Z’s

and δi be the δ corresponding to Z(i), respectively. Using
the Kaplan and Meier estimator [26] in the case of
censored data (Zi,δi), i = 1,2, ...,n, then the proposed test
statistic given by (5) can be written using right-censored
data as

ˆδ c
UK

=
n

∑
k=1

n

∑
k=1

f̂θ (x)[ν̂θ (t)− ν̂θ (x+ t)− (1− e
−Z( j)) ˆ̄Fθ (t)]

×[
i−2

∏
p=1

C
δ (i)
m −

i−1

∏
p=1

C
δ (i)
m ][

j−2

∏
q=1

C
δ ( j)
q −

j−1

∏
q=1

C
δ ( j)
q ]

(30)

where

ck =
n− k

n− k+ 1

To make the test invariant, let

ˆ∆ c
UK

=
ˆδ c
UK

Z̄
, Z̄ =

1

n

n

∑
i=1

Zi. (31)

Table 4 shows the critical values percentiles of ˆ∆ c
UK

for

sample size n=2(2)20(10)100.
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Fig. 2: The relation between sample size and critical values

Table 4: Critical values of ˆ∆ c
UK

n 90% 95% 99%

2 0.0279112 0.0357647 0.0505036

4 0.0199001 0.0254534 0.0358754

6 0.0163964 0.0209306 0.0294401

8 0.0143558 0.0182826 0.025652

10 0.0130204 0.0165326 0.023124

12 0.0121091 0.0153153 0.0213324

14 0.0115064 0.0144748 0.0200455

16 0.0111866 0.0139632 0.0191742

18 0.0112193 0.0138371 0.0187501

20 0.0118994 0.0143829 0.0190438

30 0.00711111 0.00913889 0.0129444

40 0.0061584 0.00791451 0.0112102

50 0.0127279 0.0142986 0.0172464

60 0.00615441 0.00758826 0.0102792

70 0.0051514 0.00647889 0.00897021

80 0.0046384 0.00588016 0.00821057

90 0.00429032 0.00546106 0.00765819

100 0.00402505 0.0051357 0.00722009

According to Table 4 and Fig. 2, the critical values
decrease when the sample size increases. These values
will be the criteria for dividing the samples space into
acceptance or rejection region for H0.

5 Applying the test

5.1 Applications for Complete Data

Application 1
The following data represent 39 patients with liver cancer
which were taken from El Minia Cancer Center, Ministry
of Health Egypt [27]. The ordered life times (in days) are:

107 , 18 , 74 , 20 , 23 , 20 , 23 , 24 , 52 , 105 , 60 , 31 , 75 ,
107 , 71 , 107 , 14 , 49 , 10 , 15 , 30 , 26 , 14 , 87 , 51 , 17 ,
116 , 67 , 20 , 14 , 40 , 14 , 30 , 96 , 20 , 20 , 61 , 150 , 14.

Using equation (7), the value of test statistic based on

the above data is ∆̂UK
= −113.039. The critical value at

α = 0.05 is 0.0189533, then we accept H0 at α = 0.05.
Therefore, the data doesn’t have UBAC(2) Property.

Application 2
In an experiment at Florida state university to study the
effect of methyl mercury poisoning on the length of life
of fish goldfish where subjected to various dosages of
methyl mercury [28]. At one dosage level, the ordered
times to death in a week are:

6,6.143,7.286,8.714,9.429,9.857,10.143,11.571,
11.714,11.714

The value of test statistic based on the above data is
∆̂UK

= 0.787771. The critical value at α = 0.05 is
0.0237529. Then, H0 at the significance level α = 0.05 is
rejected. Thus, the data have UBAC(2) Property.

5.2 Applications for Censored Data

Application 1

Consider the following data in [29] that represent 51
patients with liver cancer taken from the El Minia Cancer
Center, Ministry of Health in Egypt. (39) represent whole
lifetimes (non-censored data), while the others represent
censored data. The ordered lifetimes (in days) are:

(i) Non-censored data
10,14,14,14,14,14,15,17,18,20,20,20,20,20,23,23,
24,26,30,30,31,40,49,51,52,60,61,67,71,74,75,87,
96,105,107,107,107,116,150.

(ii) Censored data
30,30,30,30,30,60,150,150,150,150,150,185.

It was detected that the test statistic for the set of data
ˆ∆ c
UK

= 0.00700921. The critical value is 0.00998176, so
we accept H0 which states that the set of data doesn’t
have UBAC(2) Property under significant level α = 0.5.

6 Conclusion

We derived a new test statistic for testing the
exponentiality against the UBAC(2) class of life
distributions based on the technique of the kernel method.
The critical values of this test statistic are calculated and
tabulated in Tables 1 and 2 respectively for uncensored
and censored data. The PAE of the test statistics is
computed and compared with test statistics of other
well-known classes of life distribution. Moreover, the
power estimates of our test statistic are simulated for most
widely used families in reliability. It is shown that our
proposed test statistics is more efficient and involves good
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power. Finally, some sets of data are used to elucidate the
applications of the UBAC(2) property to real data.
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