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Abstract: Reliability of a system under an accelerated life of step-stress with a progressive first failure sample of Burr distribution is

investigated. The Burr distribution has an importance in applied engineering. Under normal circumstances, it is difficult to measure the

lifetimes of the product to study the validity function. Failure rarely occurs, so we resort to the process of accelerating failure using

accelerated life tests. Great results were scheduled in paper obtained using point-estimation methods such as the maximum likelihood

estimator function (MLEs). Also, the mean square error (MSEs) is calculated from the estimated values. Confidence intervals were

obtained with different confidence levels to study different cases of confidence intervals. The present paper asserts that the greater the

size of the sample, the better and more specific the results are to the real values.
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1 Introduction

The step-stress model is produced when there is a
combination of reliability testing and over-stress testing.
The progressive stress test aims to measure the life of the
product and then perform the acceleration to reach the
over stress at incremental levels to find channel failure
modes. The testing advantage of many supplier-buyer
relationships is how easy it is to expand the contractual
specifications required to perform a progressive stress
test.

When adjusting the amount according to sources of
pressure (for example temperature, voltage and vibration)
it will increase. Therefore, the effect of each stress source
on different failure modes is accelerated at different rates,
and it is important to determine a good proportional
increase for each pressure source.

In models of statistical reliability literature, when the
experiment tests control higher stress levels, they can
make accelerating life in two ways: accelerated life test
(ALT) and partially accelerated life test (PALT) studies
that will be used for components or units in the life tests.

Study surviving data with reliability theory which
called a lifetime of data. CDF and PDF of Burr type III
distribution are denoted by F(x) and f (x) respectively

when;

F(x) = (1+ x−c)−k
, (1)

f (x) = ckx−(c+1)(1+x−c)−(k+1)
, x > 0,c> 0,k > 0. (2)

(see ref. [1] for more details).

For one of the most important family of distribution in
statistics is the Burr family distribution which has
important role in the field of life testing as it is fitted to
business failure data. It also has twelve types of
cumulative distribution functions that provide many
curves of density shapes. Several standard theoretical
distributions are special cases or limiting cases of Burr
family of distributions, including the Weibull, exponential
logistic, generalized logistic Gompertz, normal, extreme
value, and uniform distributions. For the present study,
the simple closed form of these distributions has been
applied to simulation studies. Some forms of the Burr
distributions are related by a simple transformation: for
example, the Burr type III distribution can be obtained
from Burr type II distribution by replacing X with ln(X).
Similarly, if we replace X with

(

1
X

)

in Burr type III
distribution, we can derive Burr type XII distribution. The
Burr type I family is known as the uniform distribution.
Some types of the Burr distributions have a variety of
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shapes for density. For example, III and XII have the
simple function so these two distributions are the function
which best matches statistical modeling. The Burr type III
distribution is more fixable than Burr type XII
distribution, see [1].

Let us present studies that examine methods of
obtaining the estimators of parameters for Burr-III
distribution and factors of the acceleration life with
SSALT with censoring data. For more studying on models
of reliability function, which is the stress-strength model,
we can study article [2]. The period of time in which a
product has been successfully operating over a shorter
period of time can be estimated using accelerated life
tests and censoring data since it is used when all values of
measurement are unknown. In addition, the survival times
are not always observed. Some authors have addressed
this point, such as Nelson who presented statistical
models and methods for analyzing accelerated life-test
data from step-stress tests. These models are constant
stress, the gradual stress and the stress step. For example,
the continuous stress was represented by [3–5]. In [6] the
optimal plans for the accelerated life-tests for continuous
pressure of the Lindley distribution were obtained. [7]
studied estimation in the life-step-accelerated stress test
of a precipitated distribution with a progressive control of
the first failure. [8] estimated the parameters of the
Weibull distribution under progressive stress acceleration
as well as generalized force parameters of Weibull under
progressive stress acceleration. [9, 10]. Authors, like [11]
and [12], obtained optimal design of simple step-stress
accelerated life tests for one-shot devices under
exponential distribution.

Let’s have independent groups (R1,R2, · · · ,Rn), each
group has h items put in a life test. For the first group, the
first observed failure is selected randomly and eliminated
from the test. The same action is done for the second
group. Also, the group of second failure is observed and
removed randomly from the test as soon as the second
failure occurred Y2;m,n,h, and finally when the mth failure
is Ym;m,n,h observed. The remaining groups Rm when
(m ≤ n) are removed from the test. Thus,
Y R

1;m,n,h < · · · < Y R
m;m,n,h is called progressively first-failure

censored order statistics with the progressive censored

scheme; R = (R1,R2, · · · ,Rn), and n = m +
m

∑
i=1

Ri. The

failure times of the n × h items were drawn from a
continuous sample with cumulative function F(y) and
density function f (y) in Equation (1) and Equation (2),
respectively.

Representation the joint probability density function
for Y R

1;m,n,h,Y
R
2;m,n,h, · · · ,Y R

m;m,n,h by

f1,2,··· ,n(Y
R
1;m,n,h,Y

R
2;m,n,h, · · · ,Y R

m;m,n,h) = A(n,m− 1)km

m

∏
i=1

f (yR
1;m,n,h)[F(yR

1;m,n,h)]
k(Ri+1)−1

, (3)

0 < x1, · · · < ∞,

When

A(n,m− 1) = n(n−R1 − 1) · · ·(n−R1−R2 −·· ·
−Rm−1 − (m− 1)). (4)

(see ref. [13] for more details).

2 Assumptions and Notations

For model of step-stress accelerated partially life
(SSPALT), we use the steps as follows:

1.If we had n groups that had independent and identical
data, as well as h element that had been removed from
the life test at the survive time of each unit that has
Burr III (c,k) distribution.

2.Stop for the test at the mth the failure, where m is
prenoted (m ≤ n).

3.First, each n×h unit was operated without any changes
in normal condition. If it did not fail or it was taken out
of the test by breakdown time, we would have to put it
under accelerated conditions.

4.The failure ith and groups of surviving Ri,
i = 1,2, ...,m− 1 were random number. We randomly
selected groups of failure Y R

1;m,n,h and removed from

the test. Finally, at failure mth the remaining surviving
groups were removed from the test and then the test
was stopped.

5.Let the number of failures at normal condition is n1

and the number of failures after time τ within stress
condition be n2. Then the censoring data based on
progressive first-failure Y R

1;m,n,h < · · · < Y R
m,nm,n,h when

n = m+
m

∑
i=1

Ri.

6.The resulted model of random variable (i.e tampered
random variable (TRV) model) indicated the tampered
random variable model at the time of survival of a unit
under (SSPALT) can be expressed as:

y =

{

T if T ≤ τ

τ + T−τ
β if T > τ

, where the time of life

under normal condition is T , the time of stress is τ
and β is the acceleration factor (β > 1) (see ref. [14]).

7. f (y) of y based on non-normal conditions is given by;

f (y)



















0, y < 0,

f1(y) = cky−c−1(1+ y−c)−k−1, 0 < y < τ,

f2(y) = β ck(β (y− τ)+ τ)−c−1

[1+(β (y− τ)+ τ)−c]−k−1, τ < y < ∞.

3 Estimation Techniques

For estimation of parameters of Burr III distribution, we
followed the point and interval estimations with data based
on first failure censoring data with SSPALT.
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3.1 Estimation by Point

Put yi = Y R
1;m,n,h the observed values of the lifetime y

obtained from a progressive first-failure censoring scheme
under SSPALT with censored scheme R = (R1,R2, ...,Rn),
then the maximum likelihood function of observations is:

L(x,k) =Ahm
n1

∏
i=1

f1(yi)[1−F1(yi)]
h(Ri+1)−1

m

∏
i=n1+1

f2(yi)[1−F2(yi)]
h(Ri+1)−1

. (5)

By taking log function for likelihood function, it may have
the form:

logL(c,k) = logA+m logh+m logc+m logk+(m− n)

logβ − (c+ 1)
n1

∑
i=1

logyi − (k+ 1)

n1

∑
i=1

log(1+ y−c
i )+

n1

∑
i=1

[h(Ri + 1)− 1]

log[1− (1+ y−c
i )−k − (c+ 1)

m

∑
i=n1+1

log[β (yi − τ)+ τ]− (k− 1)

m

∑
i=n1+1

log(1+[β (yi− τ)+ τ]−c

+
m

∑
i=n1+1

[h(Ri + 1)− 1] log(1− 1

+[β (yi − τ)+ τ]−c)−k
. (6)

We can write the first derivatives w. r. t. c and k, as follows:

∂ log(c,k)

∂c
=

m

c
−

n1

∑
n=1

logyi − (k+ 1)
n1

∑
n=1

y−c
i lnyi

+
n1

∑
n=1

[h(Ri + 1)− 1]
k(1+ y−c

i )−k−1y−c
i lnyi

1− (1+ y−c
i )−k

−
m

∑
i=n1+1

log[β (yi − τ)+ τ]

− (k+1)
m

∑
i=n1+1

[β (yi − τ)+ τ]−c ln[β (yi − τ)τ]

1+[β (yi − τ)+ τ]−c

−
m

∑
i=n1+1

k[h(Ri +1)−1]

(1+[β (yi − τ)+ τ]−c)−k−1[β (yi − τ)+ τ]−c ln[β (yi − τ)+ τ]

1− (1+[β (yi − τ)+ τ]−c)−k
.

(7)

∂ log(c,k)

∂k
=

m

k
−

n1

∑
i=1

log(1+ y−c
i )

n1

∑
i=1

[h(Ri + 1)− 1]

(1+ y−c
i )−k ln(1+ y−c

i )

1− (1+ y−c
i )−k

m

∑
i=n1+1

log(1+[β (yi− τ)+ τ]−c)

−
m

∑
i=n1+1

[h(Ri + 1)− 1]

1+[β (yi− τ + τ]−c)−k ln(1+[β (yi− τ)+ τ]−c)

1− (1+[β (yi− τ)+ τ]−c)−k
.

Put
∂ log(c,k)

∂c
= 0 and

∂ log(c,k)
∂k

= 0.

We turn to solve the nonlinear system equations for the
unknown c,k numerically to find the estimated values of
(candk) as it is very difficult be solved algebraically.

3.2 Interval Estimation

According to bootstrap method, estimate the interval of
the unknown parameters θ = (c,k,β ) the asymptotic
(1−α)100% confidence interval for θ by using method
takes the form;

(

ĉ−Z α
2

√
MSEc, ĉ+Z α

2

√

MSEc

)

,

(

k̂−Z α
2

√
MSEk, k̂+Z α

2

√

MSEk

)

,

(

β̂ −Z α
2

√
MSEβ , β̂ +Z α

2

√

MSEβ

)

. (8)

M̂SE = 1
N

N

∑
i=1

(θ̂1 − θ̂) the bootstrap estimates for MSE.

4 Monte-Carlo Simulation

A numerical study is performed using MATHCAD2001
Package to evaluate the behavior of the point and interval
estimators of the parameters for two different sampling
schemes (scheme I, scheme II). The simulations are based
on N = 1000 replications and initial values τ = 0.000005,
c = 0.9, k = 0.9 and β = 1.1. The simulation study is
performed using Mathcad program, as follows:

1.Generate 1000 uniform (0,1) random sample from
Burr III under (SSALT) with progressive first failure
samples according to Equation (1).

2.Obtain the MLEs and bootstrap Bayes confidence
intervals using Equation (5).

3.Repeat the previous steps 1000 times.
4.Obtain the MLEs and MSEs for the distribution

parameters in the two cases (scheme I and scheme II)
as well as the confidence interval lengths for the
parameters.

Tables 1 and 2 show the results of scheme I and Tables 3
and 4 for scheme II.
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Table 1: Point Estimators and MSE for Scheme I.

h n m ĉ
Mse

k̂
Mse

β̂
Mse

of ĉ of k̂ of β̂

1 50 20 1.550 0.451 1.736 0.700
4.938×

1.200
10−4

1 50 30 1.144 0.103 1.860 0.922
7.856×

1.210
10−7

1 50 40 0.918 0.012 1.424 0.279
6.531×

1.210
10−7

1 60 20 1.634 0.584 1.209 0.097
2.140×

1.205
10−3

1 70 30 1.695 0.655 1.677 0.607
1.999×

1.206
10−3

1 70 40 0.832 0.040 1.625 0.525
1.373×

1.210
10−5

1 80 30 1.554 0.446 0.396 0.254
1.939×

1.210
10−4

Table 2: The Lenfgth of 95% CI for Scheme I.

h n m
Confidence Confidence Confidence

Interval of ĉ Interval of k̂ Interval of β̂
1 50 20 3.324 2.793 4.310

1 50 30 0.917 3.798 4.312

1 50 40 0.426 2.084 4.312

1 60 20 2.968 1.220 4.303

1 70 30 3.259 3.042 4.305

1 70 40 1.186 2.808 4.312

1 80 30 2.547 1.975 4.311

Table 3: Point Estimators and MSE for Scheme II.

h n m ĉ
Mse

k̂
Mse

β̂
Mse

of ĉ of k̂ of β̂

2 60 30 1.170 0.128 1.822 0.850
3.540×

1.210
10−6

2 60 40 0.764 0.022 1.803 0.819
1.380×

1.210
10−6

2 70 10 1.672 0.017 1.773 0.764
3.500×

1.135
10−2

2 70 20 1.219 0.155 1.871 0.943
2.520×

1.104
10−3

2 80 10 1.819 0.052 1.650 0.570
7.000×

1.061
10−2

2 80 30 1.317 0.224 1.522 0.676
1.080×

1.108
10−3

2 80 50 1.028 0.030 0.263 0.137
1.250×

1.210
10−6

Table 4: The Lenfgth of 95% CI for Scheme II.

h n m
Confidence Confidence Confidence

Interval of ĉ Interval of k̂ Interval of β̂
2 60 30 1.433 3.6140 4.312

2 60 40 1.519 3.6108 4.312

2 70 10 1.359 3.3570 4.215

2 70 20 1.240 3.2050 4.203

2 80 10 1.609 2.9690 4.035

2 80 30 1.066 3.1870 4.011

2 80 50 0.980 1.2650 4.012

Fig. 1: Presented of MSEs Estimated Values ĉ, k̂, β̂ with value

h = 2.

Fig. 2: Presented of MSEs Estimated Values ĉ, k̂, β̂ with value

h = 1.

Fig. 3: Confidence Length for Estimated Values ĉ, k̂, β̂ with value

h = 1.
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Fig. 4: Confidence Lengths for Estimated Values ĉ, k̂, β̂ with

value h = 2.

The notation used throughout the paper is stated below:

F(·) CDF T

The lifetime of the

unit under normal

condition

f (·) PDF τ
The lifetime of the

unit

x
Continuous Random

β
The Acceleration

variable function

y
Random variable after

TRV
Tampered random

acceleration variable

c,k Scale Parameters L(·, ·) Likelihood function

for estimation

Y R
i;m,n,h Failures numbers MSE

Mean square

error

R1,R2, · · · ,Rn
Random number of the Z α

1

Z is the standard

surviving groups

normal distribution

α is the confidence

interval

SSPALT
Step-stress partially

ALT
Accelerated life

accelerated life test tests

5 Conclusion

In this paper, the (SSALT) with the progressive first
failure sample was considered for Burr type III
distribution with parametersc,k and accelerated factor β .
We obtained the maximum likelihood method to estimate
the parameters of our distribution. The values of MLE’s
were unclear in explicit form so we used the numerical
study to get it. The performance of the estimators has
been studied in the term of MSE by the simulation study
based on different values of sample size. We studied two
schemes (I and II) which were different values (I and II).
The results demonstrated that the MSEs decreased by
increasing the sample size. Also, the confidence interval
lengths decreased by increasing the sample size. MSEs of

β̂ are less than both MSEs of ĉ and of k̂. MSEs of β̂ are

less than both ĉ and k̂. For increasing size of data, there is
some little decreasing in the Mse’s and the length of
estimated confidence interval decreases when n increases.
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