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Abstract: This article discusses k-stage step-stress partially accelerated life test under Type-I progressive interval censoring with equal

inspection intervals of length. The maximum likelihood and parametric bootstrap methods are used to obtain the estimators of the model

parameters. Approximate confidence intervals for the unknown parameters are constructed based on the asymptotic variances when the

lifetime of a testing unit are assumed to be generalized Pareto distribution. The methods for obtaining the optimal are investigated using

the variance-optimality and determinant-optimality criteria. Monte Carlo simulation studies are addressed to illustrate the proposed

criteria.
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List of symbols:
n Total number of units placed on test
ni No. of failed units at stress xi , i = 1,2, ...,k
mi No. of non-removed surviving units at the

beginning of the ith stage
k Total number of stages
x0 The stress at use-condition
xi Stress level, i = 1,2, ...,k, x1 < x2 < · · ·< xk

Ri No. of units withdrawn at each stress level,
i = 1,2, ...,k

τ Time of stress change at stress xi,
i = 1,2, ...,k− 1

δ ≡ δi Acceleration factors (δi > 1, i = 1,2, ...,k)
πi Proportion of withdrawn at the ith stage
τ∗D Optimal τ according to the determinant-(D)

optimality criterion
τ∗V Optimal τ according to the variance-(V)

optimality criterion
cdf Cumulative distribution function
pdf Probability density function

1 Introduction

Because of continual improvement in manufacturing
design, one often deals with high quality units that are
highly reliable with a substantially long life span. It is
more difficult to obtain information about the lifetime of
units with high reliability at the time of testing under
normal conditions. This makes the lifetime testing under
normal conditions very costly and take a long time. Thus,
accelerated life test (ALT) and partially accelerated life
test (PALT) are the most common approaches that are
used to obtain failures in a short period of time (test units
are run at higher-than-usual stress conditions in order to
obtain failures quickly). Units are tested at high stress
levels to induce early failures and then the failure
information is related to that at an operational stress level
through a given stress-dependent model. When such
model is unknown, the accelerated life test cannot be
conducted and the PALT becomes suitable instead. In
ALTs, the units are run only at accelerated conditions
(stress). However, in PALTs, they are run at both use and
accelerated conditions. Thus, the PALT combines both
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ordinary and accelerated life tests. The objective of
PALTs is to collect more failure data in a limited time
without using high stresses to all test units. As indicated
by Nelson [1], the stress loading in an PALT can be
applied various ways. They include constant-stress,
step-stress, and progressive-stress.

In constant-stress, PALTs run each item at either use
condition or accelerated condition only; that is, each unit
is run at a constant-stress level until the test is terminated.
However, in the step-stress PALTs, a test unit is subject to
successively higher levels of stress. A test unit starts at a
specified low stress for a specified length of time. If it
does not fail, stress on it is raised and held a specified
time. Thus, stress increases step by step until the test unit
fails. Generally, all test units go through the same
specified pattern of stress levels and test times. The
simplest step-stress PALT uses only two stress levels and
we call it simple step-stress PALT. The statistical
inferences in this step-stress PALT have been investigated
by several authors, such as Tang et al. [2], Xiong [3],
Gouno et al. [4], Abdel-Hamid and Al-Hussaini [5],
Ismail and Aly [6] and recently pushkarna and Saran [7] ,
EL-Sagheer and Hasaballah [8], EL-sagheer and Mansour
[9], EL-sagheer et al. [10], as well as EL-Sagheer and
Ahsanullah [11].

These experiments aim to collect more failure data in
a limited time without using a high stress to all test units.
As Bhattacharyya and Soejoeti [8] indicated, step-stress
PALTs are practical for many problems of life testing
where the test process requires a long time if the test is
simply carried out under the use condition. In practice,
step-stress PALTs are easier to implement and have many
advantages, including time saving, economical and
adaptable. To save more time and cost, ALTs or PALTs
are used under censored sampling. The most common
censoring schemes are type I censoring and type II
censoring. They do not allow units to be removed from
the test at any point other than the final termination point.
However, this allowance may be needed when a
compromise between reduced time of experiment and the
observation of some extreme lifetimes is sought. These
reasons lead us into the area of progressive censoring,
which permits an efficient exploitation of the available
resources by continual removal of a prespecified number
of unfailed test units at the end of testing time at each
stage.

The present paper aims to combine PALTs with
progressive censoring and then to concentrate on the
optimal choice of change points of the stress levels. Also,
it explores the choice of length of the inspection interval
based on results of samples from Weibull distribution. We
investigate the selection of according to two competing
criteria of optimality: variance (Var) optimality and
determinant (D) optimality.

The layout of the paper is, as follows: Section 2
presents the details of the proposed model. Maximum
likelihood estimators (MLEs) of the model parameters
and the associated Fisher information matrix are derived

in Section 3. In Section 4, we introduce two parametric
bootstrap procedures to construct the confidence intervals
for the unknown parameters. The problem of choosing the
optimal length of the inspection interval will also be
addressed using the variance-optimality and D-optimality
criteria in Section 5. Some simulation results are
presented in Section 6. Section 7 is devoted to the
discussion and concluding remarks.

2 Model Description and Assumptions

Let us consider the following k-stage step-stress PALT
with type-I progressive interval censoring. Suppose that n

identical and independent units are simultaneously placed
on a life test at stress setting x1, and run until time τ , at
which point the number of failed units n1 is counted and
R1 surviving units are arbitrarily withdrawn from the test;
starting from time τ , the test is continued on n− n1 −R1

units until time 2τ and the stress changes to a higher level
of stress x2 (x1 < x2), at which point the number of
failures n2 is counted and R2 units are withdrawn from the
test and so on. At time kτ , the number of failed units nk is
counted and the surviving Rk = n − ∑k

i=1 ni − ∑k−1
j=1 Ri

units are withdrawn, thereby terminating the test. Figure 1
depicts this scheme. Our objective here is to choose the
optimal length of τ according to a certain optimality
criterion.

Fig. 1: k-stage step-stress PALT under type-I progressive interval

censoring.

A random variable Y is said to have generalized
Pareto distribution (GPD) if its probability density
function is given by

f(ξ ,µ,σ) (y) =
1

σ

(
1+ ξ

y− µ

σ

)−(1/γ+1)

, (1)

where µ ,ξ ∈ R and σ ∈ (0,+∞). For convenience, we
reparametrized this distribution by defining
ξ/σ ≡ λ ,1/ξ ≡ α and µ ≡ 0. Therefore, probability
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density function (pdf) is given by

f (y) = αλ (1+λ y)−(α+1); y > 0, α,λ > 0. (2)

The cumulative distribution function (cdf) is defined by

F(x) = 1− (1+λ y)−α, y > 0, α,λ > 0. (3)

The corresponding reliability and failure rate functions of
this distribution at mission time t are given, respectively
by

S(t) = (1+λ t)−α, t > 0, (4)

and
h(t) = αλ (1+λ t)−1, t > 0. (5)

Here, α and λ are the shape and scale parameters,
respectively. It is also well known that this distribution
has decreasing failure rate property. This distribution is
also known as Pareto distribution of the second type or
Lomax distribution. Now, let us consider the k-stage
step-stress PALT under type-I progressive interval
censoring with equal inspection intervals of length τ .
Therefore, under the assumptions of the cumulative
exposure model, the cumulative distribution function is
given by

F(y)=





1− (1+λ y)−αif 0 < y ≤ τ,

1− (1+λ [τ + δ1 (y− τ)])−α if τ < y ≤ 2τ,

·
·
·
1− (1+λ

[
(k− 1)τ + δ(k−1) (y− (k− 1)τ)

]
)−α

if (k− 1)τ < y ≤ ∞.
(6)

Hence, the pdf a test unit is given by

f (y) =





αλ (1+λ y)−(α+1) if 0 < y ≤ τ,

αλ 2δ1(1+λ [τ + δ1 (y− τ)])−(α+1)

if τ < y ≤ 2τ,
·
·
·
αλ 2δ(k−1)(1+λ

[
(k− 1)τ + δ(k−1) (y− (k− 1)τ)

]
)−(α+1)

if (k− 1)τ < y ≤ ∞.

(7)

3 Maximum Likelihood Estimation

The maximum likelihood is one of the most important
and widely used methods in statistics. The idea behind
maximum likelihood parameter estimation is to determine
the parameters that maximize the probability (likelihood)
of the sample data. Furthermore, maximum likelihood
estimators are versatile and applied to most models and

different types of data. In addition, they provide efficient
methods for quantifying uncertainty through confidence
bounds. Because these estimators do not always exist in
closed form, numerical techniques are used to compute
them. In this Section, the point and interval estimations of
the model parameters and acceleration factor are
introduced using the maximum likelihood method based
on progressively type-I interval censored data. Also,
Fisher information matrix of the model parameters and
acceleration factor are presented.

Let n1,n2, ...,nk be a progressively type-I
interval-censored sample with censoring scheme
R = (R1,R2, ...,Rk) from a k-stage step-stress PALT. That
is, the number of failed units ni are observed while testing
in the interval ((i − 1)τ, iτ] at stress xi, i = 1,2, ...,k.
Hence, we have the fact that
ni|ni−1, ...,n1 ∼binomial(mi,Fi (τ)), where

mi = n−∑i−1
j=1 ni −∑i−1

j=1 Ri and

Fi (τ) =
F (iτ)−F ((i− 1)τ)

1−F ((i− 1)τ)
. (8)

The likelihood function without normalized constant is
then given by

L =
k

∏
i=1

[F (iτ)−F ((i− 1)τ)]ni [1−F (iτ)]Ri . (9)

The natural logarithm of the likelihood function ℓ = lnL

can be written as

ℓ=
k

∑
i=1

{
ni ln

[
φ−α

i−1 −φ−α
i

]
− (mi − ni) lnφ−α

i

}
, (10)

where

φi−1 = 1+λ [(i− 1)τ + δi−1 (y− (i− 1)τ)]

φi = 1+λ [iτ + δi (y− iτ)] .
(11)

Calculating the first partial derivatives of Equation (10)
with respect to α , λ , and δi and equating each to zero, we
get the likelihood equations as

∂ℓ

∂α
=

k

∑
i=1

{
αni

φ−α
i−1 −φ−α

i

(
φ
−(α+1)
i −φ

−(α+1)
i−1

)
+α (mi − ni)φ−1

i

}

= 0,
(12)

∂ℓ

∂λ
=

k

∑
i=1

{ αni

φ−α
i−1 −φ−α

i

(
φ
−(α+1)
i ηi −φ

−(α+1)
i−1 ηi−1

)

+α (mi − ni)φ−1
i ηi

}
= 0,

(13)
where

ηi−1 = [(i− 1)τ + δi−1 (y− (i− 1)τ)] , ηi = [iτ + δi (y− iτ)] ,
(14)
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and

∂ℓ

∂δi

=
k

∑
i=1

{ αλ ni

φ−α
i−1 −φ−α

i

[
(y− iτ)φ

−(α+1)
i − (y− (i− 1)τ)φ

−(α+1)
i−1

]

+αλ (mi − ni)(y− iτ)φ−1
i

}
= 0.

Now, we have a system of three non-linear likelihood
equations (12), (13) and (15) in three unknowns α, λ and
δi. It cannot be solved analytically. The Newton-Raphson
iteration method is used to obtain the estimates. The
algorithm is described, as follows:

(1):Use the method of moments or any other methods to
estimate the parameters α, λ and δi, i = 1,2, ...,k.as
starting point of iteration, denote the estimates as
(α0,λ0,δ0) and set l = 0.

(2):Calculate

(
∂ℓ

∂α
,

∂ℓ

∂λ
,

∂ℓ

∂δi

)

(αl ,γl ,δl)

and the observed

Fisher Information matrix I−1 (α,λ ,δi) , given in the
next paragraph.

(3):Update (α,λ ,δi) as

(αl+1,λl+1,δl+1) = (αl ,λl ,δl)+

(
∂ℓ

∂α
,

∂ℓ

∂λ
,

∂ℓ

∂δi

)

(αl ,γl ,δl)

× I−1 (α,λ ,δi) , i = 1,2, ...,k.
(15)

(4):Set l = l + 1 and then go back to Step 1.
(5):Continue the iterative steps until

|(αl+1,λl+1,δl+1)− (αl ,λl ,δl)| is smaller than a
threshold value. The final estimates of (α,λ ,δi) are

the MLE of the parameters, denoted as (α̂ , λ̂ , δ̂i).

As indicated by Vander and Meeker [9], the most
common method to set confidence bounds for the
parameters is to use the asymptotic normal distribution of
the MLEs. The asymptotic variances and covariances of

the MLEs, α̂, λ̂ and δ̂i are given by the entries of the
inverse of the Fisher information matrix
Ii j = E

[
−∂ 2ℓ/∂ζi∂ζ j

]
where i, j = 1,2,3 and

Φ = (ζ1,ζ2,ζ3) = (α,λ ,δi). Unfortunately, the exact
closed forms for the above expectations are difficult to
obtain. Therefore, the observed Fisher information matrix
Îi j = E

[
−∂ 2ℓ/∂ζ∂ζ j

]
Φ=Φ̂

, which is obtained by
dropping the expectation operator E, will be used to
construct confidence intervals for the parameters, see
Cohen [10]. The observed Fisher information matrix has
second partial derivatives of log-likelihood function as the
entries, which can be easily obtained. Hence, the

observed information matrix is given by

Î (α,λ ,δi) =




− ∂ 2ℓ

∂α2
− ∂ 2ℓ

∂α∂λ
− ∂ 2ℓ

∂α∂δi

− ∂ 2ℓ

∂λ ∂α
− ∂ 2ℓ

∂λ 2
− ∂ 2ℓ

∂λ ∂δi

− ∂ 2ℓ

∂δi∂α
− ∂ 2ℓ

∂δi∂λ
− ∂ 2ℓ

∂δ 2
i



,

i = 1,2, ...,k, .
(16)

Therefore, the asymptotic variance-covariance matrix for
the MLEs is obtained by inverting the observed
information matrix Î (α,λ ,δi). Or equivalent

Î−1 (α,λ ,δi) =




v̂ar(α) cov(α,λ ) cov(α,δi)

cov(λ ,α) v̂ar(λ ) cov(λ ,δi)

cov(δi,α) cov(δi,λ ) v̂ar(δi)




↓(α̂ ,λ̂ ,δ̂i)

,

i = 1,2, ...,k, .
(17)

It is well known that under some regularity conditions,

see Lawless [11], (α̂, λ̂ , δ̂i) is approximately distributed as
multivariate normal with mean (α,λ ,δi) and covariance
matrix I−1 (α,λ ,δi). Thus, the (1− γ)100% approximate
confidence intervals (ACIs) for α , λ and δi can be given
by

(
α̂ ±Zγ/2

√
v̂ar(α)

)
,

(
λ̂ ±Zγ/2

√
v̂ar(λ )

)
,

(
δ̂i ±Zγ/2

√
v̂ar(δi)

)
, i = 1,2, ...,k,

(18)

where Zγ/2 is the percentile of the standard normal

distribution with right-tail probability γ/2. The problem
with applying normal approximation of the MLE is that
when the sample size is small, the normal approximation
may be poor. However, a different transformation of the
MLE can be used to correct the inadequate performance
of the normal approximation. Meeker and Escobar [12]
suggested the use of the normal approximation for the
log-transformed MLE. Thus, A two-sided (1 − γ)100%
normal approximation CIs for Ω = α, λ or δi are given
by


Ω̂ .exp



−

Z γ
2

√
̂var(Ω̂ )

Ω̂



 , Ω̂ .exp





Z γ
2

√
̂var(Ω̂ )

Ω̂






 ,

(19)

where Ω̂ = α̂ , λ̂ or δ̂i and i = 1,2, ...,k.

4 Bootstrap Techniques

The bootstrap is a resampling method for statistical
inference. It is commonly used to estimate confidence
intervals, but it can be also used to estimate bias and
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variance of an estimator or calibrate hypothesis tests.
Also, it is evident that the confidence intervals based on
the asymptotic results do not perform very well for small
sample size. Hence, we propose using confidence
intervals based on the parameteric bootstrap methods. We
present two parametric bootstrap methods, (i) percentile
bootstrap method (we call it PBM) based on the idea of
Efron [13]. (ii) bootstrap-t method (we call it BTM) based
on the idea of Hall [14]. For more survey of the
parametric bootstrap methods, see Kreiss and Paparoditis
[15]. The following steps are followed to obtain bootstrap
samples for both methods:

(1):Based on the original progressively type-I
interval-censored sample, n1,n2, ...,nk with censoring
scheme R = (R1,R2, ...,Rk) from a k-stage step-stress

PALT, compute α̂, λ̂ and δ̂i for i = 1,2, ...,k.

(2):Use α̂, λ̂ and δ̂i for i = 1,2, ...,k to generate a
bootstrap sample n∗1,n

∗
2, ...,n

∗
k with the same values of

R from generalized Pareto distribution with the
distribution function is given in (6).

(3):As in Step 1 based on n∗1,n
∗
2, ...,n

∗
k , compute the

bootstrap sample estimates of α̂, λ̂ and δ̂i say α̂∗, λ̂ ∗

and δ̂ ∗
i for i = 1,2, ...,k.

(4):Repeat the above Steps 2 and 3 N times and arrange

all α̂∗, λ̂ ∗ and δ̂ ∗
i in ascending to obtain the bootstrap

sample (Ψ̂
∗[1]

l , Ψ̂
∗[2]

l , ...,Ψ̂
∗[N]

l ), l = 1,2,3, whereΨ̂∗
1 =

α̂∗,Ψ̂∗
2 = λ̂ ∗ and Ψ̂ ∗

3 = δ̂ ∗
i , i = 1,2, ...,k.

4.1 Percentile bootstrap procedure

Let Φ(z) = P(Ψ̂ ∗
l ≤ z) be the cumulative distribution

function of Ψ̂∗
l . Define Ψ̂∗

lBoot = Φ−1(z) for given z. The
approximate bootstrap 100(1− γ) confidence interval of

Ψ̂∗
l is given by

[
Ψ̂∗

lPBM

( γ

2

)
,Ψ̂∗

lPBM

(
1− γ

2

)]
. (20)

4.2 Bootstrap-t procedure

We find the order statistics ϖ
∗[1]
l < ϖ

∗[2]
l < ... < ϖ

∗[N]
l

where

ϖ
∗[ j]
l =

√
N
(

Ψ̂
∗[ j]

l −Ψ̂l

)

√
Var(Ψ̂

∗[ j]
l )

, j = 1,2, ...,N, l = 1,2,3,

(21)

where Ψ̂1 = α̂,Ψ̂2 = λ̂ , Ψ̂3 = δ̂i, i = 1,2, ...,k and

Var(Ψ̂
∗[ j]

l ) is obtained using the Fisher information
matrix. Let W (z) = P(ϖ∗

l < z), l = 1,2,3 be the
cumulative distribution function of ϖ∗

k . For a given z,
define

Ψ̂lBTM = Ψ̂l +N−1/2

√
Var(Ψ̂l)W

−1(z). (22)

Thus, the approximate bootstrap 100(1 − γ) confidence

interval of Ψ̂l is given by

[
Ψ̂∗

lBTM

( γ

2

)
,Ψ̂∗

lBTM

(
1− γ

2

)]
. (23)

5 Optimality Criteria

One of the aims of the present paper is to explore the
choice of τ , length of the inspection interval, in k-stage
step-stress PALT with type-I progressive interval
censoring. In this section, we propose two selection
criteria which enable one to choose the optimal value of
τ .

5.1 Variance optimality

The mean lifetime is an important characteristic in
reliability analysis. In a step-stress setting, the
experimenter is often interested in estimating the mean

life at design (use) stress with maximum precision. Let β̂0

be the MLE of mean lifetime at the design (use) stress β0.
The criterion function defined by the asymptotic variance

(AVar) of the MLE of ln β̂0 is

∆ (τ) = AVar ln β̂0

= n(1,1,x0) I−1 (α,λ ,δ ) (1,1,x0)
′
, (24)

where x0 is the stress at use condition. The variance
optimal τ is then obtained by minimizing ∆ (τ).

5.2 Determinant optimality

The second optimal criterion is based on the determinant
of the Fisher’s information matrix. It has been extensively
used in the context of planning life tests. If one is more
interested in estimation with high precision, a more
reasonable criterion should be determinant optimality,
which considers the overall parameter space. It can be
constructed in terms of the generalized asymptotic
variance (GAV) of the MLEs of the model parameters. It
is known that the GAV is proportional to reciprocal of the
determinant of Fisher information matrix, so maximizing
this determinant is equivalent to minimizing GAV, for
more details see Bai et al. [16]. The criterion function is
then defined by

GAV
(

α̂, λ̂ , δ̂i

)
=

1∣∣∣I
(

α̂, λ̂ , δ̂i

)∣∣∣
, i = 1,2, ...,k. (25)

Thus, the optimal length of inspection interval is chosen,
so GAV is minimized. It is noted that both variance
optimality and determinant optimality criteria are based
on the Fisher’s information matrix. These criteria have
been extensively used in the design selection process for
designed experiments
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6 Monte Carlo Simulation Study

To investigate the optimal choice of τ , length of the
inspection interval, in k-stage step-stress PALTs under
type-I progressive interval censoring, simulation studies
are performed using different values of sample size n

equals 40, 60, 80, 100, 200, 300, 400, 500. It is assumed
that the proportions removed at different stages are all
equal. That is, π1 = π2 = · · · = πk = π . We assume that
the lengths of inspection intervals are all equal for
simplicity of discussion and the equi length assumption is
also convenient for practitioners. Let τ∗V and τ∗D be
optimal lengths of inspection intervals according to
variance-optimality and determinant-optimality,
respectively. Tables 1 and 2 present optimum τ∗V and τ∗D
for k = 2,3,4,5 and π equals 0.05 and 0.10. The
proposed optimality criteria can lead to better designs for
conducting life tests. It provides the most efficient use of
experimenter’s resources. The findings are summarized,
as follows:

(i)Both τ∗V and τ∗D decrease as k increases when π and n

are fixed. That is, the larger number of stress levels,
the more likely a short length of inspection interval.

(ii)The determinant-optimal length of inspection interval
τ∗D is always smaller than the variance-optimal length
of inspection interval τ∗V .

(iii)For fixed k and n, both τ∗V and τ∗D decrease as π
increases. That is, the larger the proportion to be
removed at each stage, the shorter the optimal length
of the inspection interval.

(iv)Both τ∗V and τ∗D increase as n increases when π and k

are fixed. That is, the larger number of test units n, the
larger the optimal length of the inspection interval.

(v)It is shown that the second proposed criterion
(determinant-optimality) can reduce the required
number of failures and so reduce the total testing time
without losing much precision.

(vi)When π increases, the experiment is terminated more
quickly. However, it is important to note that with a
much larger π , the experiments will be less informative
and lead to larger standard errors in estimates.

Table 1. Optimal lengths τ∗V and τ∗D under k-stage
step-stress PALTs and progressive type-I interval
censoring with proportion of removals π = 0.05
when δ = 2; 2.5; 3; 3.5 and λ = 1.5, α = 0.2.

k = 2 k = 3 k = 4 k = 5
n τ∗V τ∗D τ∗V τ∗D τ∗V τ∗D τ∗V τ∗D

40 35 32 33 29 28 25 26 21
60 47 45 44 41 42 38 39 34
80 62 58 59 54 55 50 51 47

100 76 70 68 65 62 59 55 50
200 164 149 132 127 112 108 93 82
300 235 225 166 143 123 115 109 93
400 344 324 257 236 188 164 125 111
500 437 419 360 297 243 198 165 137

Table 2. Optimal lengths τ∗V and τ∗D underk-stage
step-stress PALTs and progressivetype-I interval
censoring with proportion of removals π = 0.10
when δ = 2; 2.5; 3; 3.5 and λ = 1.5, α = 0.5.

k = 2 k = 3 k = 4 k = 5
n τ∗V τ∗D τ∗V τ∗D τ∗V τ∗D τ∗V τ∗D

40 31 27 28 24 23 20 16 13
60 42 39 35 33 29 26 23 19
80 59 54 56 49 51 44 47 41

100 70 66 63 61 58 56 52 49
200 158 145 128 121 108 102 89 78
300 185 177 136 127 112 109 96 88
400 251 234 188 161 165 147 118 106
500 331 309 229 186 176 155 127 115

7 Conclusion

In this paper, we have discussed a combination of
progressive censoring, step-stress PALT and interval data
to develop a step-stress PALT under progressive type-I
interval censoring data. The generalized Pareto lifetime
distribution at each level of stress was considered. In
reliability analysis of progressively interval censored life
test data, for given stress levels and number of test units,
determining the appropriate length of the inspection
interval is an important issue for experimenters. Two
optimality criteria (determinant-optimality and
variance-optimality) for choosing the optimal length of
the inspection interval were used for comparison purpose.
In the case of certain life tests, some test units need to be
removed at points other than the final termination point of
the experiment and it is unpractical to screen the test units
constantly. Here, the progressive interval censoring
scheme permits units were removed early and inspected
from time to time. Based on the fourth finding, the
optimal length of the inspection interval is shorter in the
case of the determinant-optimality criterion. Therefore,
the determinant-optimality criterion is recommended for
obtaining the optimal life test plan. These results provide
valuable insight for practitioners to set up optimal life test
plans under progressive type-I interval censoring.
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