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Abstract: The two-dimensional Helmholtz equation separates in elliptic coordinates based on two distinct foci, a limit case of which

includes polar coordinate systems when the two foci coalesce. This equation is invariant under the Euclidean group of translations and

orthogonal transformations; we replace the latter by the discrete dihedral group of N discrete rotations and reflections. The separation

of variables in polar and elliptic coordinates is then used to define discrete Bessel and Mathieu functions, as approximants to the

well-known continuous Bessel and Mathieu functions, as N-point Fourier transforms approximate the Fourier transform over the circle,

with integrals replaced by finite sums. We find that these ‘discrete’ functions approximate the numerical values of their continuous

counterparts very closely and preserve some key special function relations.
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1 Introduction

The role of the Euclidean group of translations,
reflections and rotations in the determination of the
coordinate systems that separate the solutions of the
two-dimensional Helmholtz equation is well known from
the work by Willard Miller Jr. [1]. This symmetry
accounts for their separability in four coordinate systems:
Cartesian, polar, parabolic and elliptic. Only the elliptic
system is generic; when the two foci coalesce, this system
becomes the polar one with angular and radial
coordinates; when one focus departs to infinity the system
becomes parabolic; and when both foci do, it becomes
Cartesian.

The polar decomposition was used by Biagetti et al.
[2] to first introduce a discrete version of Bessel functions
based on an expansion of plane waves into a finite number
of polar components —that was not quite complete. This
was properly completed in Ref. [3], defining discrete

Bessel functions BN
n(ρ), which approximate the usual

continuous Bessel functions Jn(ρ) by replacing Fourier
series over a circle S 1 by the finite Fourier transform on
N equidistant points on that circle,

θm = 2πm/N, m ∈ {0,1, . . . ,N−1}=: S
1
(N), (1)

where m is counted modulo N. It was found that these
discrete functions approximated very closely (of the order

10−16) the corresponding continuous ones over a region,
roughly 0 ≤ n+ρ < N.

Several authors have introduced functions that
approximate the well-known continuous Bessel functions
Jn(ρ) for the purpose of reducing computation time, or to
provide new classes of solutions to difference equations
that will share some of their salient properties [4,5,6].
Our approach follows the well known approximation
afforded by the N-point finite Fourier transform to the
integral Fourier transform over the circle. This is done for
polar and elliptic coordinates, and introduces both
‘discrete’ Bessel and Mathieu functions. These functions,
we should emphasize, differ from those proposed in the
works cited above, which are also distinct in definition
and purpose among themselves. By construction, it will
follow that under N → ∞, these discrete functions become
the continuous ones, although this limit requires further
mathematical precision, as it may involve Gibbs-type
oscillation phenomena that we cannot address here.

In Sect. 2, we present this discretization method and a
resumé of the results in Ref. [3] for Bessel functions, to
note that the discrete functions thus defined approximate
the continuous ones remarkably well. In Sect. 3, we apply
the strategy of replacing harmonic analysis on S 1 by S 1

(N)

to define discrete approximants to the Mathieu functions
of first and second kind in the elliptic coordinate system.
All relations are backed by numerical verification. In the
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concluding Sect. 4, we provide some further connections
and preliminary conclusions.

2 Continuous and discrete Bessel functions

The Helmholtz equation for wavefields f (x,y) of (fixed)
real wavenumber κ ∈ R is

(∂ 2
x + ∂ 2

y +κ2) f (x,y) = 0, (2)

with ∂z ≡ ∂/∂z and (x,y) ∈ R2. In this section we follow
the well known case of polar coordinates,

x = r cosθ , y = r sin θ , (3)

r ∈ [0,∞), θ ∈ (−π ,π ] = S
1.

A key assumption is a Hilbert space structure for the
solutions f (x,y) by which one can write them as the
two-dimensional Fourier transform,

f (x,y) =
1

2π

∫ ∫

R2
dκx dκy expi(xκx+yκy) f̃ (κx,κy). (4)

The Helmholtz equation (2) is then correspondingly
transformed to a conjugate space (κx,κy) ∈ R2 where it

reads (κ2 − κ2
x − κ2

y ) f̃ (κx,κy) = 0, which we can also
refer to polar coordinates κx = κ cosφ , κy = κ sinφ , with
the surface element dκx dκy = κ dκ dφ . The solutions to
the Fourier-transformed Helmholtz equation are thus
reduced by a Dirac δ -distributions in the radius [1], as

f̃ (κx,κy) =
√

2πκ−1δ (κ − κ̃) f◦(φ), with f◦(φ) a

function on the φ -circle S 1 of radius κ̃ , that we write
again κ , understanding that it is the fixed wavenumber.
The Helmholtz solutions (4) thus acquire the
single-integral form

f (x,y) =
1√
2π

∫

S 1
dφ expiκ(xcosφ + ysinφ) f◦(φ),

(5)
with the Hilbert space structure based on the inner product

of functions f
(1)
◦ (φ) and f

(2)
◦ (φ) on the circle,

( f (1)◦ , f (2)◦ )◦ :=

∫

S 1
dφ f (1)◦ (φ)∗ f (2)◦ (φ). (6)

It is here that we reduce the continuous circle Fourier
transform to the N-point discrete Fourier transform, from
S 1 to S 1

(N), replacing integrals by summations and the

continuous variable φ ∈ S 1 with φm ∈ S 1
(N), as

∫

S 1
dφ F◦(φ)↔ ∑

m∈S 1
(N)

F(φm),
2π ↔ N,

φm = 2πm/N,
(7)

for m ∈ {0,1, . . . ,N−1} counted modulo N; the set of N

discrete angles φm are thus equidistant by 2π/N. The
functions f (φm) ≡ fm can be interpreted as sample points

of a continuous function, or as the index for the list of
components of an N-cyclic vector. In either case, the inner

product of two discrete functions f
(1)
n and f

(2)
n is naturally

( f (1), f (2))(N) :=
N−1

∑
n=0

f (1)∗n f (2)n , (8)

and it is clear that the N → ∞ limit will lead back from
the discrete to the continuum, with the approximations and
limits familiar from Fourier theory.

The Helmholtz equation (2) in polar coordinates,
multiplied by r2,

(r2∂ 2
r + r∂r + ∂ 2

φ +κ2) f (r,φ) = 0, (9)

shows that solutions can be factored into a function of the
radius times a function of the angle as
f (r,φ) = R(r)Φ(φ), while (5) implies that solutions
Φ(φ) for the angular factor will determine a
corresponding radial factor R(r). An orthonormal and
complete set of eigenfunctions of ∂ 2

φ over the circle

φ ∈ S 1 is the set of phases Φn(φ) := (2π)−1/2 exp(inφ),
with integer n ∈ {0,±1, . . .}, and inner products
(Φn,Φn′)◦ = δn,n′ . When the domain of these functions is

restricted from φ ∈ S 1 to φm ∈ S 1
(N) as in (1), we retain

the subset of N functions on the N points in S 1
(N), given

by

Φ (N)
n (φm) :=

1√
N

exp(inφm) =
1√
N

exp

(
2π imn

N

)
(10)

= Φ (N)

n±N(φm),

labeled by the cyclic subset n ∈ {0,1, . . . ,N−1}, that are
also orthonormal under the common inner product (8) for
discrete functions on S 1

(N), and complete:

(Φ (N)
n ,Φ (N)

n′ )(N) = δn,n′ ,
N−1

∑
n=0

Φ (N)
n (φm)

∗ Φ (N)
n (φm′) = δm,m′ .

(11)
Returning to (5) with (x,y) in the polar coordinates (r,θ )
of (4), and taking for f◦(φm) the basis functions (11) on
the discrete points of S 1

(N), we write the N solutions to
the discretized Helmholtz equation, labeled by cyclical n∈
{0,1, . . . ,N−1}, as

fn(r,θk)

= 1√
N ∑

m∈S 1
(N)

exp[iκr(cosθk cosφm + sinθk sinφm)]Φ
(N)
n (φm)

= 1
N ∑

m∈S 1
(N)

exp[iκr cos(θk −φm)]exp(inφm)

= ein(θk+π/2)

N ∑
m∈S 1

(N)

exp(iκr sinϕm)exp(−inϕm),

(12)
having replaced ϕm := θk−φm+ 1

2
π in the summation over

the N discrete points on the circle.
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Fig. 1: The ‘discrete’ Bessel functions B
(N)
n (ρ) on continuous intervals 0 ≤ ρ ≤ (2N−1) (gray lines), vs. the ‘continuous’ Bessel

functions Jn(ρ) (thin black lines), for orders n ∈ {0, 10, 30, 50} and point numbers N ∈ {21, 61, 101}. Heavy black lines replace both

where the ‘discrete’ and the ‘continuous’ Bessel functions differ by less than 10−16.

Following Miller [1], the phase in front of (12),

ein(θk+π/2) = ine2π ink/N = in
√

NΦ (N)
n (θk), is extracted to

write the functions as

fn(r,θk) = in
√

N B(N)
n (κr)Φ (N)

n (θk), (13)

where the radial factor B
(N)
n (ρ), ρ := κr, are the discrete

Bessel functions. From (12) these functions are seen to be
real and their parities, using coefficients {cn,sn} := {1,0}
for n even or {0,1} for n odd, can be written as

B
(N)
n (ρ) (14)

=
1

N
∑

m∈S 1
N

exp(iρ sinϕm)[cn cos(nϕm)− isn sin(nϕm)]

=
1

N
∑

m∈S 1
N

exp(iρ sinϕm)

{
cosnϕm, n even,

−i sinnϕm, n odd.

The distinction between even and odd cases of n, as done
in [3], is subtle but important to obtain the correct result for
all n’s (cf. [2, Eq. (9)]). It results in the parity and cyclicity
properties

B(N)
n (ρ) = B

(N)

n±N(ρ) = (−1)nB
(N)
−n(ρ) = (−1)nB(N)

n (−ρ),

B(N)
n (0) = δn,0, (15)

which also hold for the continuous Bessel functions Jn(ρ)
of integer order [7].

A plane wave of wavenumber κ along the y-axis in a
Helmholtz medium that allows only N equidistant
directions of propagation on the circle can be obtained
from (15) using the completeness relation (11) to expand
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the middle term and write

exp(iρ sinϕm) = B
(N)

0 (ρ)+2
N−1

∑
n=1

B
(N)

2n (ρ)cos(2nϕm)

+2i
N−1

∑
n=0

B
(N)

2n+1(ρ)sin((2n+1)ϕm),

(16)
showing how the discrete Bessel functions can take the
place of the continuous ones, cf. [8, Eq. KU120(13)].

In Ref. [3], we proved analytically and verified
numerically that the following expressions for the discrete
Bessel functions are exact analogues of those valid for
continuous Bessel functions. Corresponding to [8, WA44]
for odd N =: 2 j + 1, in Ref. [3], we proved the linear
relations involving the even and odd-n discrete Bessel
functions,

B0(ρ)+
j

∑
n=1

B2n(ρ)cos(2nϕm) = cos(ρ sinϕm),

j

∑
n=0

B2n+1(ρ)sin((2n+1)ϕm) =
1
2

sin(ρ sinϕm).

(17)
The quadratic formulas [9, §7.6.2, Eq. (6)] associated to
the name of Graf, were shown in Ref. [10] to derive from
the rotation of spherical harmonics through Wigner-D
functions, under contraction from the rotation to the
Euclidean group. These relations, of group-theoretical
origin, retain their validity under the discretization of the
rotation subgroup, and lead to

2 j

∑
n=−2 j

Bn(ρ)Bn′−n(ρ
′) = Bn′(ρ +ρ ′), (18)

keeping in mind the parity property (15) for the negative n-
indices in the sum for odd N, addressing the vector rather
than spin representations of the rotation group.

In Fig. 1 we essentially repeat the figure in Ref. [3]
where we compared the discrete and continuous Bessel

functions, B
(N)
n (ρ) and Jn(ρ), to support the claim that the

approximation is indeed remarkable within an interval
that is roughly 0 ≤ n+ρ < N. A similar set of figures is
presented below for Mathiew functions.

Now, having N basis functions B
(N)
n (ρ), numbered by

cyclic n modulo N, it is natural to inquire whether the
argument ρ can or should be also discretized to the N

integer values ρk = k ∈ {0,1, . . . ,N−1}. This was done in
Ref. [2] while in [3] the plot in Fig. 1 marked these points

and used them to define a kernel B
(N)
n (ρk) for a ‘discrete

Bessel transform’ between two N-vectors of components

fn and f̃k. The fact is that while the angle ϕ is discretized
naturally to N points on the circle, the radial coordinate ρ
is not subject to a similarly compelling set of points, but
is valid and non-cyclic over the complex ρ-plane. The
same discretization process for the angular —but not the
radial— coordinate will be applied to the Mathieu case
below.

Fig. 2: Set of equally-spaced discrete points on ellipses (20)

of the ‘angular’ coordinates {ψm} ∈ S 1
(N) for N = 21, and

hyperbolas of the ‘radial’ coordinate for ρ ∈ {0.5, 1, 1.5}.

3 Discrete Mathieu functions

Elliptic coordinates on the plane generalize the previous
polar coordinates (4). They are defined in terms of
Cartesian coordinates through

x = coshρ cosψ , y = sinhρ sin ψ , (19)

ρ ∈ [0,∞), ψ ∈ (−π ,π ] = S
1.

where (ρ ,ψ) are analogues of the previous polar
coordinates (r,φ) for which we retain the names as
‘radial’ and ‘angular’ variables. For fixed ρ or for fixed
ψ , the locus of points (x,y) ∈ R2 that satisfy

x2/cosh2ρ+y2/sinh2ρ = 1, x2/cos2ψ−y2/sin2ψ = 1,
(20)

draw families of confocal ellipses or hyperbolas
respectively. At ρ = 0, ψ ∈ S 1 draws twice the line
between the two foci (x,y) = (±1,0) for ψ = (0,π). The
major and minor semi-axes of the ellipses are coshρ and
sinhρ respectively, so their eccentricities are 1/coshρ ,
that tend to circles when ρ → ∞. On the other hand, for
fixed ψ ∈ S 1 in each of the four quadrants, since ρ ≥ 0,
only one of the four arms of the hyperbola is traversed.
Thus, we expect four parity cases out of the two
reflections across the x and y axes. Compare this with the
case of polar coordinates where r ≥ 0 but all reflection
axes are equivalent, so (−1)n in (15) provides the two
Bessel parity cases.
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Fig. 3: Discrete vs. continuous ‘angular’ Mathieu functions for

N = 41, q = 2. The values of the discrete functions ce
(N)
n (ψm,q)

and se
(N)
n (ψm,q) at ψm, 0 ≤ m ≤ N−1, are indicated by circles.

The continuous Mathieu functions cen(ψ,q) and sen(ψ,q) are

marked by black lines in their full range 0 ≤ ψ < 2π . Their

difference is less than 10−16 for all points ψm.

The Helmholtz differential equation (2), written in the
elliptic coordinates (20), is clearly separable,

[(∂ 2
ρ +κ2 cosh2ρ)+ (∂ 2

ψ −κ2 cos2ψ)] f (ρ ,ψ) = 0, (21)

so that solutions can be written in the product form
f (ρ ,ψ) ∼ P(ρ)Ψ (ψ). Dividing by f , one obtains two
coupled equations in ρ and ψ , the latter is an eigenvalue
equation in the angular coordinate,

(∂ 2
ψ − 2qcos2ψ)Ψ(ψ ,q) = νΨ (ψ ,q), q := 1

4
κ2,
(22)

known as the Mathieu differential equation. The angular
coordinate ψ is periodic and a well-known solution
method consists in expanding solutions of (22) in the
Fourier basis ∼ exp(inψ) over all integer n. This defines
the Mathieu functions of the first kind cen(ψ ,q) and
sen(ψ ,q) with integer n [11], characterized by a parity
index p ∈ {0,1} for even and odd cases [8, §8.61], and
distinct for even and odd indices. In a two-line expression
all cases can be written as

[
ce2n+p(ψ ,q)

se2n+p(ψ ,q)

]
=

∞

∑
s=0

[
A

2n+p
2s+p cos((2s+p)ψ)

B
2n+p
2s+p sin((2s+p)ψ)

]
. (23)

The parities are even cen(−ψ ,q) = cen(ψ ,q), odd
sen(−ψ ,q) = −sen(ψ ,q), and se0(ψ ,q) ≡ 0. The
coefficients An

s , Bn
s are found introducing this expansion

into (22) to find recursion relations [8, §8.62] that lead to

efficient numerical computation. For use below, we write
them using Fourier series as

[
An

s

Bn
s

]
=

1

π

∫

S 1
dψ

[
cos(sψ)cen(ψ ,q)

sin(sψ)sen(ψ ,q)

]
, (24)

for n 6= 0, while An
0 = (2π)−1

∫
S

1 dψ cen(ψ ,q), and
Bn

0 ≡ 0. The Mathieu functions (23) are orthogonal under
the inner product (6) over the circle, (cem,cen)◦ = πδm,n,
(sem,sen)◦ = πδm,n for n 6= 0 —zero otherwise, and
(cem,sen)◦ = 0.

We now restrict the range of the angular coordinate ψ
from S 1 to S 1

(N), shown for the elliptic coordinates in
Fig. 2, in correspondence with the previous discrete phase
functions in the Bessel case (11), and thus defining the
‘angular’ discrete Mathieu functions of the first type over
ψm ∈ S 1

(N) as

[
ce

(N)

2n+p(ψm,q)

se
(N)

2n+p(ψm,q)

]
:=

N−1

∑
s=0

[
a

2n+p
2s+p cos((2s+p)ψm)

b
2n+p
2s+p sin((2s+p)ψm)

]
, (25)

with coefficients an
s , bn

s . The finite N-point Fourier
transform approximates them through the replacement (7)
to the functions and coefficients An

s , Bn
s of the continuous

case in (24), as

[
an

s

bn
s

]
:=

1

N

N−1

∑
m=0

[
cos(sψm)ce

(N)
n (ψm,q)

sin(sψm)se
(N)
n (ψm,q)

]
≃ 1

2

[
An

s

Bn
s

]
,

(26)
for s 6= 0, while an

0 = An
0, bn

0 = 0, and also b0
s = 0.

The last relation in (26) is an approximate equality,
the validity of which is contingent upon the numerical
computation and comparison between the lower- and
upper-case coefficients within a range of their indices in,
say, 0 ≤ n,s ≤ N−1, which is reflected in turn by the
discrete and continuous Mathieu functions themselves. In
Fig. 3 we compare a sample of continuous angular
Mathieu functions of the first kind with their discrete
approximations from Eq. (25). In favor of the thus defined
discrete Mathieu functions, we note that they satisfy
orthogonality relations under the discrete inner product
(8), namely

(ce(N)
n ,ce

(N)

n′ )(N) =
1
2
Nδn,n′ , (se

(N)
n ,se

(N)

n′ 6=0
)(N) =

1
2
Nδn,n′ ,

(ce(N)
n ,se

(N)

n′ )(N) = 0. (27)

By construction, the parities of the discrete Mathieu

functions are also even ce
(N)
n (−ψm,q) = ce

(N)
n (ψm,q), or

odd se
(N)
n (−ψm,q) =−se

(N)
n (ψm,q).

At this point it is illuminating to inquire into the
manner in which the discrete functions approximate the

continuous ones. Consider for example how ce
(N)

0 (ψm,q),
whose definition (25) allows us to compute it for
continuous ψm ∈ S 1, matches ce0(ψ ,q) in the whole ψ
range. In Fig. 4, we do so for small N, noting that where
the continued ψm lines of the former take their values,
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Fig. 4: Comparison between the ‘discrete’ Mathieu functions ce
(N)

0 (ψm,q) whose arguments are continued to ψm ∈ S 1 (gray line) vs.

the ‘continuous’ Mathieu function cen(ψ,q) (black line), for point numbers N ∈ {5,11,21} and q = 2. The discrete points ψm ∈ S 1
(N)

lie at a subset of the intersections marked with circles.

they intersect the properly continuous line of the latter.
Although the two lines intersect also at other points, the
two lines remain notably distinct. The figure shows that
approximation is not valid over presumably small ranges
around these intersections, but only at the prescribed
ψm = 2πm/N points. We intend to elaborate on such and
similar limits elsewhere.

Proceeding now as we did in (12), but using the

discrete Mathieu functions of the first kind ce
(N)
n (ψm,q)

and se
(N)
n (ψm,q) in place of the plain phase functions

Φ (N)
n (φm), we again have Helmholtz solutions fn(ρ ,ψk)

on the plane characterized by parities and sub-indices n,
whose radial factor will be the discrete ‘radial’ Mathieu
functions of the second kind, to be indicated
correspondingly as Ce

(N)
n (ρ ,q) and Se

(N)
n (ρ ,q),

[
f c
2n+p(ρ ,ψk)

f s
2n+p+1

(ρ ,ψk)

]

= 1
N

N−1

∑
m=1

[
ce

(N)
n (ψm,q)

se
(N)
n (ψm,q)

]
exp[iκ(xcosψm + ysinψm)

=:

[
cn(q)Ce

(N)
n (ρ ,q)ce

(N)
n (ψk,q)

sn(q)Se
(N)
n (ρ ,q)se

(N)
n (ψk,q)

]
,

(28)
where cn(q) and sn(q) are constants. Using the elliptic
coordinates with a discretized angular part,
x(ρ ,ψk) = coshρ cosψk and y(ρ ,ψk) = sinhρ sinψk in
(20), the phase exponent is then iκ = 2i

√
q times

xcosψm + ysinψm

= coshρ cosψk cosψm + sinhρ sin ψk sinψm.

As was done before in (12) and (13), we extract the new
discrete ‘radial’ functions using the orthogonality (27) of
the previous discrete ‘angular’ Mathieu functions, as

[
Ce

(N)
2n+p(ρ ,q)

Se
(N)
2n+p+1(ρ ,q)

]

=

[
1/N c2n+p(q)ce

(N)
2n+p(ψk,q)

1/N s2n+p+1(q)se
(N)
2n+p+1(ψk ,q)

]
N−1

∑
m=0

[
ce

(N)
2n+p(ψm,q)

se
(N)
2n+p+1(ψm,q)

]

× exp[2i
√

q(coshρ cosψk cosψm + sinhρ sinψk sinψm)].
(29)

The coefficients in front of the summation will be now
determined through considering specific values for the
‘angular’ coordinate ψ ↔ ψm, comparing them with
expressions of the continuous Mathieu functions of the
second kind obtained from integrals that are tabulated in
Ref. [8, §6.92]. There, the exponential factors appear with
only a single summand in the exponent, either sine or
cosine. This occurs in (29) only for ψm = 0 or 1

2
π ,

although the latter is not in the set S 1
(N) if ψ0 = 0, since N

was assumed to be odd.

Let us first consider the case of even parity p = 0 and
the angle ψ = 1

2
π in (29), where the previous remark

applies. Based on the close approximation between the
discrete and continuous Mathieu functions, we may
simply replace the latter for the former, so that the two
lines in that expression read

[
Ce

(N)
2n (ρ ,q)

Se
(N)
2n+1(ρ ,q)

]
=

[
Kc

2n
Ks

2n+1

]
N−1

∑
m=0

[
ce

(N)
2n (ψm,q)

se
(N)
2n+1(ψm,q)

]

×exp(2i
√

q sinhρ sinψm).
(30)

When this summation formula is compared with the
integral expressions tabulated in [8, §6.92], namely

[
Ce2n(ρ ,q)

Se2n+1(ρ ,q)

]
=

[
ce2n(0,q)/2π A2n

0

−ise′2n+1(0,q)/2π B2n+1
1

√
q

]

×
∫

S 1
dψ

[
ce2n(ψ,q)

se2n+1(ψ,q)

]
exp(2i

√
q sinhρ sinψ),

(31)
we conclude that the constants in the summation (30), after
identifying 2π ↔ N, A2n

0 = a2n
0 and B2n+1

1 ≃ 2b2n+1
1 , are

Kc
2n =

ce2n(0,q)

a2n
0 N

, Ks
2n+1 =

−i se′2n+1(0,q)

2b2n+1
1 N

√
q

. (32)

where se′n(0,q) := dsen(ψ ,q)/dψ |ψ=0. In Fig. 5 we
compare a sample of the discrete and continuous ‘radial’
Mathieu functions, noting that the two lines are quite
coincident in the range ρ ∈ [0,π), but the commercial
Mathematica algorithm oscillate wildly beyond π . Again,
we can only justify this statement numerically.
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Fig. 5: Discrete vs. continuous ‘radial’ Mathieu functions in the interval 0 ≤ ρ < 3.3, for N ∈ {5,11,21} and here for q = 2. The

‘discrete’ functions Ce
(N)
n (ρ,q) and Se

(N)
n (ρ,q) with the (continuous) argument ρ (gray line), are compared with the ‘continuous’

functions Cen(ρ,q) and Sen(ρ,q) (thin black line). As before, where both coincide within 10−16 they are replaced by a thick black

line. The radial Mathieu functions, when computed with the commercial Mathematica algorithm, oscillate wildly after an upper value

that decreases with increasing values of q.

Next we consider the case of odd parity p = 1 at the
value ψ = ψ0 = 0. The upper line in (30) reads

Ce
(N)

2n+1(ρ ,q) (33)

= Kc
2n+1

N−1

∑
m=0

ce
(N)

2n+1(ψm,q)exp(2i
√

qcoshρ cosψm),

that we compare with the integral for the continuous
Mathieu functions of the second kind in [8, §6.92],
namely

Ce2n+1(ρ ,q)

=
ice′2n+1(

1
2
π ,q)

2πA2n+1
1

√
q

(34)

×
∫

S 1
dψ ce2n+1(ψ ,q)exp(2i

√
qcoshρ cosψ),

where ce′2n+1(ψ ,q) is the derivative of the Mathieu
function. Again exploiting the correspondences (7),
2π ↔ N and A2n+1

1 ≃ 2a2n+1
1 , we conclude the constant in

(37) to be

Kc
2n+1 =

ice′2n+1(
1
2
π ,q)

2a2n+1
1 N

√
q

. (35)

The remaining case to be considered is that of odd parity

and even index, namely for Se
(N)

2n+2(ρ ,q). This presents a
problem because the summation (29) is identically zero for
both ψk = 0 and 1

2
π due to the parities of the terms in the

sum. It is different from zero for 0 < ψk <
1
2
π however,

so if we choose ψk = 1
4
π , where both summands in the

exponent appear as 1/
√

2, we can write

Se
(N)

2n+2(ρ ,q) = Ks
2n+2

N−1

∑
m=0

se
(N)

2n+2(ψm,q) (36)

× exp[i
√

2q(coshρ cosψm + sinhρ sinψm)].

For the corresponding continuous case, we could not find
a corresponding integral in [8, §6.92], so we cannot give a
closed expression for the coefficient Ks

2n+2 in (37). The
lack of a similar plane-wave integral expression for the
continuous Mathieu functions Se2n+2(ρ ,q) has been
noted also in Ref. [12] without explanation. However, we
have checked numerically that the simile of the discrete to
continuous functions approximation provided by

Se
(N)

2n+2(ρ ,q)≃−i se2n+2(iρ ,q) = Se2n+2(ρ ,q), (37)

which is an equality for continuous functions, cf. [8, Eqs.
8.611.4, 8.631.4]. For 0 < ρ < 2 the difference in (37)
less than 10−14. We should note that generally the
discrete ‘radial’ and ‘angular’ Mathieu functions for pure
imaginary arguments are not related to similar equalities
of their continuous integral expressions, because the
summation definitions in (25) involve hyperbolic
functions. In particular, say,

Se
(N)

2n+p+1(ρ ,q) 6= −ise
(N)

2n+p+1(iρ ,q) (38)

=
N−1

∑
m=0

b
2n+p+1
2m+p+1 sinh[(2m+p+1)ρ ].
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4 Concluding remarks

The expansion of Helmholtz plane waves in series of
radial Bessel and angular trigonometric functions has its
discrete analogue in Eq. (16), which tells us that the
wavefield due to a finite number N of plane waves at
equidistant direction angles can be expanded in discrete
Bessel radial functions and corresponding trigonometric
angular functions. A similar statement will hold when the
wavefield is expanded in discrete Mathieu functions with
the phases determined by the points on an ellipse as
depicted in Fig. 2. Conceivably such fields can be
produced in resonant two-dimensional micro-cavities fed
by a number of activation channels.

We recognize that the full treatment and exploration
of properties for the discrete Bessel and Mathieu function
presented here is not exhaustive, but that it should be
sufficient to indicate that the approximation method
consisting in the replacement of a continuous closed
subgroup of the symmetry group of a partial differential
equation by a finite discrete group is definitely of interest.
In the present case of two dimensions, the orthogonal
group was reduced to the dihedral group. In three
dimensions, the symmetry Euclidean symmetry group
could reduce its three-dimensional rotation subgroup by
any of its polyhedral subgroups, whose functions may
serve to describe wavefields with a corresponding subset
of wave propagation directions. Here we have presented a
set of exact relations, others whose approximation
closeness was estimated through numerical computation,
and others that have been only suggested by that
approach, and for which we expect to present further
results from ongoing work.
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