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Abstract: In this paper, a one-dimensional third-order p-Laplacian boundary value problem at resonance on the half-line is studied.

We apply the extension of Mawhin’s coincidence degree theory due to Ge and Ren to obtain the existence of solutions. The results do

not only generalize but also improve some known results on third-order p-Laplacian boundary value problems at resonance.
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1 Introduction

In this paper, we study the third-order nonlinear boundary
value problem with a p-Laplacian of the form:
(

d(t)ϕp(u
′′(t)))′ = h(t,u(t),u′(t),u′′(t)

)

a.e t ∈ (0,∞),
(1)

satisfying

u′(0)=
n

∑
i=1

βi

∫ ηi

0
u(t)dt,u(0)= 0, lim

t→∞
(d(t)ϕp(u

′′(t)))= 0.

(2)
Where the right hand side of (1) satisfies the
Carathéodory condition with respect to
L1[0,∞),0 ≤ βi < ∞,βi ∈ ℜ, i = 1,2...,n,∑n

i=1 βiη
2
i = 2.

d ∈ [C[0,∞)∩C2(0,∞)],d(t)> 0∀t ≥ 0.
ϕp(s) =| s |p−2 s, p > 1 and 0 ≤ ηi < ∞, i = 1,2...n
Boundary value problems on the half-line have various
applications in plasma physics and the theory of drain
flows. Integral boundary conditions, on the other hand
exist in applications such as, population dynamics, blood
flow models, heat conduction, underground water flow,
etc. The boundary value problem

(q(t)u′′(t))′ = g(t,u(t),u′(t),u′′(t)), t ∈ (0,∞)

u′(0) =
m

∑
i=1

αi

∫ ξi

0
u(t)dt,u(0) = 0, lim

t→∞
q(t)u′′(t) = 0

was studied by Iyase [6] when p =2 using the Mawhin’s
coincidence degree arguments. However, when p 6= 2 ,

ϕp(u) is no longer linear with respect to u. In this case,
Mawhin’s continuation theorem cannot be applied
directly as the case in [6]. From the existing results in the
literature for the resonance cases, some results on second
order boundary value problems with a p-Laplacian have
been established. On the other hand, third-order boundary
value problems with a p-Laplacian satisfying integral
boundary conditions on the half-line have not received
much attention. However, there have been some studies
on higher order boundary value problems with a
p-laplacian, on bounded domains. For some results on
boundary value problems with a p-Laplacian, see,
[2,4,8,10,12,13,14,15] and the references therein.

The boundary value problem (1)-(2) is called a
problem at resonance if
Tu = (d(t)ϕp(u

′′(t)))′ = 0 has nontrivial solutions under
the boundary conditions (2), i.e when dimkerT > 1.
When kerT = 0, the differential operator is invertible. In
this case, the problem is said to be at non-resonance. The
rest of this paper is organized as follows: In Section 2,
we recall some background definitions and technical
results. Section 3 is devoted to proving the main existence
results. In Section 4 an example is presented to illustrate
our result.
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2 Some definitions and Technical results

In this section, we introduce some definitions and lemmas
that will be used in the subsequent sections which include
Ge-Ren’s continuation theorem.

Lemma 2.1 [5] Let ϕp(s) =| s |p−2 s. Then ϕp has the

following properties

(i)ϕp is continuous, monotonically increasing and

invertible with ϕ−1
p = ϕq,q > 1 a real constant such

that
1

p
+

1

q
= 1.

(ii)| ϕp(u) |= ϕp(| u |),uϕp(u)≥ 0, for u ∈ ℜ.
(iii)ϕp(u+ v)≤ (ϕp(u)+ϕp(v)), 1 ≤ p < 2

(iv)ϕp(u+ v)≤ 2p−2(ϕp(u)+ϕp(v)), p ≥ 2.

Definition 2.2 The map h : [0,∞) × ℜn → ℜ is L1-

Carathéodory if the following conditions hold

(i)for each u ∈ ℜn, the mapping t → f (t,u) is Lebesgue

measurable.

(ii)for a.e t ∈ [0,∞), the mapping u→ f (t,u) is continuous

on Rn.
(iii)for each r > 0, there exists an αr ∈ L1[0,∞) such that

for a.e t ∈ [0,∞) and every u such that | u |≤ r, we have

| f (t,u) |≤ αr(t).

Definition 2.3 Let X and Z be Banach Spaces. A

continuous operator

T : X ∩ dom T → Z is called quasi-linear if and only if

Im T is a closed subset of Z and kerT is linearly

homeomorphic to ℜn.

Definition 2.4 Let X be a Banach space with X1 ⊂ X a

subspace. A mapping Q : X → X1 is called a

semi-projector if Q satisfies

(i)Q2u = Qu,u ∈ X.

(ii)Q(λ u) = λ Qu,u ∈ X ,λ ∈ R.

Definition 2.5 Nλ : Ω → Z,λ ∈ [0,1] is said to be

T-compact in Ω if there exists a subspace Z1 ⊂ Z with

dimZ1 = dimkerT and an operator

S : Ω × [0,1]→ X continuous and compact such that for

λ ∈ [0,1]

(I −Q)Nλ (Ω)⊂ ImT ⊂ (I −Q)Z (3)

QNλ u = 0,λ ∈ (0,1) iff QNu = 0,u ∈ Ω (4)

S(.,0) is the zero operator (5)

S(.,λ ) |Aλ
= (I −P) |Aλ

whereAλ = {u ∈ Ω : Tu = Nλ u}
(6)

T [P+ S(.,λ )] = (I −Q)Nλ (7)

Where P : X → X is a projector and Q is a Semi-projector

such that

Im P = kerT and Im Q = Z1

Theorem 1. [4] Let X and Z be two Banach spaces with

norms ‖ . ‖X and ‖ . ‖Z respectively and Ω ⊂ X be an open

and bounded set.

Suppose T : X ∩ dom T → Z is a quasi-linear operator

and Nλ : Ω → Z,λ ∈ [0,1] is T-Compact. In addition if

(1)Tu 6= Nλ u, for λ ∈ (0,1),u ∈ dom T ∩∂Ω .
(2)deg {JQN,Ω ∩kerT,0} 6= 0.

Where J : Im Q → kerT is a homeomorphism with

J(θ ) = θ , where θ is the origin and N1 = N. Then the

abstract equation Tu = Nu has at least one solution in Ω .

Let AC[0,∞) be the space of absolutely continuous
functions on [0,∞). We shall use the following spaces
X = {u : [0,∞) → ℜ | u,dϕp(u

′′) ∈ AC[0,∞), limt→∞ e−t |

u(i)(t) |

exists ,0≤ i≤ 2,(dϕp(u
′′))′ ∈L1[0,∞) and ϕp

(

1

d

)

∈ L1[0,∞)}

(8)

With the norm

‖ u ‖= max

[

sup
t∈[0,∞)

e−t | u(t) |, sup
t∈[0,∞)

e−t | u′(t) |,

sup
t∈[0,∞)

e−t | u′′(t) |

] (9)

Then Xis a Banach Space. We let Z = L1[0,∞) endowed

with the norm

‖ y ‖1=

∫ ∞

0
| y(t) | dt,y ∈ Z.

To prove the compactness of the operator T we use the

following compactness criterion.

Theorem 2. [1] Let X be the space of all bounded

continuous vector valued functions on [0,∞) and V ⊂ X.

Then V is relatively compact in X if the following

conditions hold:

(i)V is bounded in X;

(ii)the functions from V are equicontinuous on any

compact interval of [0,∞);
(iii)the functions from V are equiconvergent at infinity.

We introduce the mapping T : domT ⊂ X → Z defined by

Tu = (d(t)ϕp(u
′′(t)))′, t ∈ [0,∞) (10)

where

dom T =

{

u ∈ X : u′(0) =
n

∑
i=1

βi

∫ ηi

0
u(t)dt, u(0) = 0,

lim
t→∞

d(t)ϕp(u
′′(t)) = 0

}
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We define the operator Nλ : X → Z by

Nλ u(t) = λ h(t,u(t),u′(t),u′′(t)).
Then (1.1) - ( 1.2) takes the form Tu = Nλ u when λ = 1

Lemma 2.6 If ∑n
i=1 βiη

2
i = 2 then

(i)kerT = {u ∈ domT : u(t) = ct,c ∈ R, t ∈ [0,∞)} .
(ii)Im T = {y ∈ Z : ∑n

i=1 βi

∫ ηi

0

∫ t
0

∫ s
0 ϕq

(

1

d(r)

)

ϕq (
∫ ∞

r y(τ)dτ)drdsdt = 0}.

(iii)T : domT → Z is a quasi-linear operator.

proof: It is easily verified that (i) holds.

To prove (ii), Let y ∈ Z and consider the equation

(d(t)ϕp(u
′′(t)))′ = y(t) (11)

Then using (1.2) we obtain

d(t)ϕp(u
′′(t)) =−

∫ ∞

t
y(τ)dτ.

Thus

u′′(t) =−ϕq

(

1

d(t)

)

ϕq

(

∫ ∞

t
y(τ)dτ

)

or

u(t) =−
∫ t

0

∫ s

0
ϕq

(

1

d(r)

)

ϕq

(

∫ ∞

r
y(τ)τ

)

drds+ tu′(0)

(12)
In view of (2) and ∑n

i=1 βiη
2
i = 2 we obtain

n

∑
i=1

βi

∫ ηi

0

∫ t

0

∫ s

0
ϕq

(

1

d(r)

)

ϕq

(

∫ ∞

r
y(τ)dτ

)

drdsdt = 0

(13)
if (11) holds, then

u(t) = ct −
∫ t

0

∫ s
0 ϕq

(

1

d(r)

)

ϕq(
∫ ∞

r y(τ)dτ)drds is a

solution of (11), where c ∈ ℜ.

Thus

Im T =

{

y ∈ Z :

n

∑
i=1

βi

∫ ηi

0

∫ t

0

∫ s

0
ϕq

(

1

d(r)

)

ϕq(

∫ ∞

r
y(τ)dτ)drdsdt.

= 0

}

Hence, we have dimkerT = 1 < ∞, Im T ⊂ Z is

closed. Therefore, T is a quasi-linear operator.

Lemma 2.7 If h is a L1-Carathéodory function then Nλ :
V → Z is T-compact in V for V ⊂ X an open and bounded

subset with the origin θ ∈V

Proof Define the continuous operator Q : Z → Z by

Qy(t) = ρ(t)
n

∑
i=1

βi

∫ ηi

0

∫ t

0

∫ s

0
ϕq

(

1

d(r)

)

ϕq

(

∫ ∞

r
y(τ)dτ

)

drdsdt

(14)

where

ρ(t) =
e−t

∑n
i=1 βi

∫ ηi
0

∫ t
0

∫ s
0 ϕq

(

e−r

d(r)

)

drdsdt

(15)

It is easily deduced that Q2y = Qy and Q(λ y) = λ Qy for

y ∈ Z,λ ∈ ℜ. Thus, Q is a semi-projector with

dimkerT = dim ImQ = 1.

From the definition of Q we can derive (3), (4) and (5). To

establish conditions (6) and (7), define

S(u,λ )(t) =

−

∫ t

0

∫ s

0
[ϕq(

1

d(r)
)ϕq(

∫ ∞

r
λ (h(τ,u(τ),u′(τ),u′′(τ)

− (Qh)(τ))dτ)]drds.
(16)

Let P : X → kerT be defined by

Pu(t) = u′(0) t, t ∈ [0,∞). (17)

For any u ∈ Aλ =
{

u ∈V : Tu = Nλ u
}

λ h(t,u(t),u′(t),u′′(t)) = (d(t)ϕp(u
′′(t)))′ ∈ Im T ⊂ kerQ.

Thus,

S(u,λ )(t) =

−

∫ t

0

∫ s

0

[

ϕq

(

1

d(r)

)

ϕq

(

∫ ∞

r
λ (h(τ,u(τ),u′(τ),u′′(τ)

)

− (Qh)(τ))dτ)

]

drds

=
∫ t

0

∫ s

0

[

ϕq

(

d(r)

d(r)

)

u′′(r)drds

]

=

∫ t

0

∫ s

0
u′′(τ)dτds = u(t)− tu′(0) = (I −P)u(t).

(18)
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Also,

T [Pu+ S(u,λ )](t)

=
{

d(t)ϕp[u
′(0)t −

∫ t

0

∫ r

0
ϕq

(

1

d(s)

)

ϕq

(

∫ ∞

s

(

λ h(τ,u(τ),u′(τ),u′′(τ))−λ (Qh)(τ)
)

dτ)

)

dsdr]′′
}′

=

[

−d(t)ϕpϕq

(

1

d(t)

)

ϕq

(

∫ ∞

t
(λ h(τ,u(τ),u′(τ),u′′(τ))

−λ (Qh)(τ))dτ

)]′

= λ h(t,u(t),u′(t),u′′(t))−λ Qh(t,u(t),u′(t),u′′(t))

= [(I−Q)Nλ (u)] (t).
(19)

This verifies (6) and (7). Next, we show that S is relatively

compact for any λ ∈ [0,1]. Let V ⊂ X be bounded, that

is there exists an r > 0 such that r = sup{‖ u ‖: u ∈V} .
Since h : [0,∞)×ℜ3 → ℜ is L1 Carathèodory, there exits

αr ∈ L1[0,∞) such that for all u ∈V and a.e t ∈ [0,∞).

| h(t,u(t),u′(t),u′′(t)) |≤ αr(t) (20)

For u ∈V

e−t | S(u,λ ) | ≤ sup
t∈[0,∞)

e−tt ‖ ϕq

(

1

d

)

‖1 ϕq[‖ αr ‖1

+ ‖ Qh ‖1]

(21)

e−t | S′(u,λ ) | ≤ sup
t∈[0,∞)

e−t ‖ ϕq

(

1

d

)

‖1 ϕq[‖ αr ‖1

+ ‖ Qh ‖1]

=‖ ϕq

(

1

d

)

‖1 ϕq [‖ αr ‖1 + ‖ Qh ‖1] (22)

e−t | S′′(u,λ ) | ≤ sup
t∈[0,∞)

e−t ‖ ϕq

(

1

d

)

‖∞ ϕq[‖ αr ‖1

+ ‖ Qh ‖1]

=‖ ϕq

(

1

d

)

‖∞ ϕq [‖ αr ‖1 + ‖ Qh ‖1 .]

(23)

Therefore, from (2.19), (2.20) and (2.21) we obtain

‖ S(u,λ ) ‖< max
{

sup
t∈[0,∞)

e−tt ‖ ϕq

(

1

d

)

‖1,

‖ ϕq

(

1

d

)

‖∞

}

ϕq [‖ αr ‖1 + ‖ Qh ‖1]

= max















sup
t∈[0,∞)

e−tt,1,

‖ ϕq

(

1

d

)

‖∞

‖ ϕq

(

1

d

)

‖1















‖ ϕq

(

1

d

)

‖1 [ϕq ‖ αr ‖1 + ‖ Qh ‖1]

= A1 ‖ ϕq

(

1

d

)

‖1 [ϕq ‖ αr ‖1 + ‖ Qh ‖1]

= L1

(24)

S(.,λ ) is therefore uniformly bounded in X.

Now for any t1, t2 ∈ [0,B].B∈ (0,∞) with t1 < t2, u ∈V, we

have

|e−t2S(u,λ )(t2)−e−t1S(u,λ )(t1)|

=

∣

∣

∣

∣

∫ t2

t1

[

e−τ S(u,λ )(τ)
]′

dτ

∣

∣

∣

∣

≤ 2(t2 − t1) ‖ S(u,λ ) ‖

≤ 2(t2 − t1)L1 → 0 as t1 → t2,

|e−t2S′(u,λ )(t2)− e−t1S′(u,λ )(t1)|

=

∣

∣

∣

∣

∫ t2

t1

[

e−τS(u,λ )(τ)
]′

dτ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t2

t1

[

−e−τ S′(u,λ )(τ)+ e−τS′′(u,λ )(τ)
]

dτ

∣

∣

∣

∣

≤ 2(t2 − t1) ‖ S(u,λ ) ‖

≤ 2(t2 − t1)L1 → 0 as t1 → t2,
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|e−t2ϕp(S
′′(u,λ )(t2)− e−t1ϕp(S

′′(u,λ ))(t1)|

=

∣

∣

∣

∣

−e−t2

d(t2)

∫ ∞

t2

λ [h(τ,u(τ),u′(τ),u′′(τ))

− (Qh)(τ)]dτ

+
e−t1

d(t1)

∫ ∞

t1

λ

[

h(τ,u(τ),u′(τ),u′′(τ))

− (Qh)(τ)

]

dτ

∣

∣

∣

∣

≤

∣

∣

∣

∣

e−t2

d(t2)
−

e−t1

d(t1)

∣

∣

∣

∣

∫ ∞

t2

|λ [h(τ,u(τ),u′(τ),u′′(τ))

− (Qh)(τ)]|dτ

+
e−t1

d(t1)

∫ t2

t1

| λ [h(τ,u(τ),u′(τ),u′′(τ)

− (Qh)(τ)] | dτ

≤‖
1

d
‖2

∞| d(t1)e
−t2 − d(t2)e

−t1 |
∫ ∞

t2

|

[

αr(s)

+ | Qh | (s)] | ds+ ‖
1

d
‖∞

∫ t2

t1

|

[

αr(s)+Qh(s)

]

| ds

≤‖
1

d
‖2

∞| d(t1)e
−t2 − d(t2)e

−t1 | [‖ αr ‖1 + ‖ Qh ‖1]

+ ‖
1

d
‖∞

∫ t2

t1

[αr(s)+ | Qh | (s)]ds → 0 as t1 → t2.

This implies that

| e−t2 S′′(u,λ )(t2)− e−t1S′′(u,λ )(t1) |→ 0 as t1 → t2

Therefore, S(u,λ )(V) is equicontinuous on every compact
subset of [0,∞).
Next, we establish that S(.,λ )(V ) is equiconvergent at
infinity.
For u ∈V, we have

e−t |S(u,λ )(t)|

= e−t |
∫ t

0

∫ s

0

[

ϕq

(

1

d(r)

)

ϕq

(

∫ ∞

r
λ [h(τ,u(τ),u′,u′′(τ))

− (Qh)(τ)]dτ

)]

drds |

≤ e−tt ‖ ϕq

(

1

d

)

‖1 ϕq [αr ‖1 + ‖ Qh ‖1]→ 0 as t → ∞,

e−t |S′(u,λ )(t)|

= e−t |
∫ t

0
ϕq

(

1

d(s)

)

ϕq[
∫ ∞

s
λ (h(τ,u(τ),u′(τ),u′′(τ))

− (Qh)(τ))dτ]ds |

≤ e−t ‖ ϕq

(

1

d

)

‖∞ ϕq [‖ αr ‖1 + ‖ Qh ‖1]

→ 0 as t → ∞,

e−t |S′′(u,λ )(t)|

= e−t | ϕq

(

1

d(t)

)

ϕq[
∫ ∞

t
λ (h(τ,u(τ),u′(τ),u′′(τ))

− (Qh)(τ))dτ]|

≤ e−t ‖ ϕq

(

1

d

)

‖∞ ϕq [‖ αr ‖1 + ‖ Qh ‖1]

→ 0 as t → ∞.

This shows that S(u,λ )(V) is equiconvergent at infinity.

Since all the conditions of theorem 2.2 are satisfied, the

set S(u,λ )(V ) is relatively compact. The continuity of the

mapping S(u,λ ) follows from the Lebesgue dominated

convergence theorem.

3 Main Result

Theorem 3. Let h be a L1 - Carathéodory function.

Assume that the following conditions hold.

(A0)∑n
i=1 βiη

2
i = 2, ∑n

i=1 βi

∫ ηi

0

∫ t
0

∫ s
0 ϕq

(

e−r

d(r)

)

drdsdt 6=

0.
(A1)There exists M1 > 0 such that for u ∈ domT/KerT

satisfying | u′(t) |> M1 for t ∈ [0,∞) we have

QNλ u 6= 0.
(A2)There exist positive functions

a1,a2,a3,r ∈ L1[0,∞)such that.

|h(t,u1,u2,u3)| ≤ e−t(p−1)

[

a1(t) | u1 |
p−1

+ a2(t) | u2 |
p−1 +a3(t) | u3 |

p−1

]

+ r(t)

(25)

(A3)There exists M2 > 0 such that for every c ∈ R with |
c |> M2 we have either

c
n

∑
i=1

βi

∫ ηi

0

∫ t

0

∫ s

0
ϕq

(

1

d(r)

)

ϕq

(

∫ ∞

r
λ h(τ,cτ,c,0)dτ

)

drdsdt > 0

(26)

or

c
n

∑
i=1

βi

∫ ηi

0

∫ t

0

∫ s

0
ϕq

(

1

d(r)

)

ϕq

(

∫ ∞

r
λ h(τ,cτ,c,0)dτ

)

drdsdt < 0.

(27)

Then the BVP (1)- (2) has at least one solution

provided

22(q−2) ‖ ϕq

(

1

d

)

‖1 A1

3

∑
i=1

‖ ai ‖
q−1
1 < 1 for 1 < p < 2

(28)
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or

‖ ϕq

(

1

d

)

‖1 A1

3

∑
1=i

‖ ai ‖
q−1
1 < 1 for p ≥ 2. (29)

To prove theorem 3.1, we first derive some Lemmas.

Lemma 3.1Let

W1 = {u ∈ domT/KerT : Tu = Nλ u for some λ ∈ (0,1].}

Then W1 is a bounded set.

proof:Let u∈W1. Assume that Tu=Nλ u. Then QNλ u= 0.
Therefore, from (A1) there exists t0 ∈ [0,∞) such that

| u′(t0) |≤ M1. (30)

Then

| u′(0) |=| u′(t0)−

∫ t0

0
u′′(s)ds |≤ M1+ ‖ u′′ ‖1 (31)

For u ∈W1, (I−P)u ∈ domT
⋂

KerP. Thus, from (18) and

(24)

we have,

‖ (I−P)u ‖=‖ S(u,λ ) ‖< L1

where L1 is defined in (24).

From the definition of P we have

Pu(t) = u′(0)t,(Pu)′(t) = u′(0), t ∈ [0,∞)

Hence, from (31) we obtain

‖ Pu ‖= max

{

sup
t∈[0,∞)

e−tt | u′(0) |, | u′(0) |

}

= max

{

sup
t∈[0,∞)

e−tt,1

}

| u′(0) |< A1 | u′(0) |

< A1

[

M1+ ‖ u′′ ‖1

]

= A1 ‖ u′′ ‖1 +A1M1 (32)

‖ u ‖=‖ Pu+(I−P)u ‖

≤‖ Pu ‖+ ‖ (I−P)u ‖

≤‖ u′′ ‖1 A1 +L1 +M1A1

=‖ u′′ ‖ A1 +L2. (33)

where L2 = L1 +M1A1.
If p < 2 then from (12), (25) and Lemma 2.1 we get

‖ u′′ ‖1 =

∫ ∞

0

∣

∣

∣

∣

ϕq

(

1

d(t)

)

ϕq

(

∫ ∞

t
λ h(τ,u(τ),u′(τ),u′′(τ))dτ

)∣

∣

∣

∣

dt

≤

∥

∥

∥

∥

ϕq

(

1

d

)∥

∥

∥

∥

1

ϕq[‖ a1 ‖1‖ u ‖p−1

+ ‖ a2 ‖1‖ u ‖p−1 + ‖ a3 ‖1‖ u ‖p−1 + ‖ r ‖1]

≤

∥

∥

∥

∥

ϕq(
1

d
)

∥

∥

∥

∥

1

2q−2ϕq[‖ a1 ‖1‖ u ‖p−1

+ ‖ a2 ‖1‖ u ‖p−1]+ϕq

[

‖ a3 ‖1‖ u ‖p−1 + ‖ r ‖1

]

≤

∥

∥

∥

∥

ϕq

(

1

d

)∥

∥

∥

∥

1

22(q−2)

[

3

∑
i=1

‖ ai ‖
q−1
1 ‖ u ‖

+ ‖ r ‖
q−1
1

]

.

Using (28) and (33) we derive
[

1− 22(q−2) ‖ ϕq(
1

d
) ‖1 ∑3

i=1 ‖ ai ‖
q−1
1 A1

]

‖ u′′ ‖1

≤‖ ϕq(
1

d
) ‖1 22(q−2)

[

3

∑
i=1

‖ ai ‖
q−1
1 L2+ ‖ r ‖q−2

1

]

From (28) we conclude that there exists L3 > 0 such that

‖ u′′ ‖1< L3 (34)

Therefore, from (33) we obtain

‖ u ‖< L4,L4 > 0. (35)

Similarly, if p ≥ 2

‖ u′′ ‖1 ≤‖ ϕq

(

1

d

)

‖1

[

3

∑
i=1

‖ ai ‖
q−1‖ u ‖+ ‖ r ‖

q−1
1

]

≤

∥

∥

∥

∥

ϕq

(

1

d

)∥

∥

∥

∥

1

{

3

∑
i=1

‖ ai ‖
q−1
1

[

A1 ‖ u′′ ‖1 +L2

]

+ ‖ r ‖q−1
1 ]

}

or
(

1− ‖ ϕq

(

1

d

)

‖1

3

∑
i=1

‖ a1 ‖
q−1
i A1

)

‖ u′′ ‖1

≤‖ ϕq

(

1

d

)

‖1

[

3

∑
i=1

‖ ai ‖
q−1 L2+ ‖ r ‖q−1

1 .

]

From (29) we conclude that there exists L5 > 0 such that

‖ u′′ ‖1< L5. (36)

Using (33) we again obtain L6 > 0 such that ‖ u ‖< L6

Therefore, W1 is bounded.
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Lemma 3.2 Let W2 = {u ∈ kerT : Nλ u ∈ Im T} . Then W2

is bounded.

Proof: We have for c ∈ R and t ∈ [0,∞),u(t) = ct and

Nλ u ∈ Im T implies Nλ u ∈ kerQ.

Hence,

n

∑
i=1

βi

∫ ηi

0

∫ t

0

∫ s

0
ϕq

(

1

d(r)

)

ϕqbigg(

∫ ∞

r
h(τ,cτ,c,0)dτ

)

drdsdt = 0.

By (A3) we obtain

| c |< M2

Therefore, for u ∈W2

‖ u ‖= max

{

sup
t∈[0∞)

e−tt,1

}

| c |< A1M2

We therefore conclude that W2 is bounded.

Define J : ImQ → kerT by

J(cρ(t)) = ct or J−1(ct) = cρ(t)

If (26) holds, let

W3 = {u ∈ KerT : λ u+(1−λ )JQNλu = 0,λ ∈ [0,1]}

Then

−λ J−1u = (1−λ )QNλ u

or

−λ cρ(t) = (1−λ )ρ(t)
n

∑
i=1

βi

∫ ηi

0

∫ t

0

∫ s

0
ϕq

(

1

d(r)

)

×ϕq

(

∫ ∞

r
h(τ,cτ,c,0)dτ

)

drdsdt

if λ = 1 then c = 0 and if | c |> M2 then from (26) we have

0 >−λ c2 = (1−λ )c
n

∑
0

βi

∫ ηi

0

∫ t

0

∫ s

0
ϕq

(

1

d(r)

)

×ϕq

(

∫ ∞

r
h(τ,cτ,c,0)dτ

)

drdsdt > 0

which is a contradiction. Therefore, W3 is bounded. If

(27) holds we set

W3 = {u ∈ kerT : −λ u+(1−λ )JQNλu = 0,λ ∈ [0,1]}

Using the same arguments as above we obtain that W3 is

bounded.

Let W be open and bounded such that W1 ∪W2 ∪W3 ⊂W.

Then from the above Lemmas, we can deduce that

Tu 6= Nλ u,(u,λ ) ∈ [domT ∩∂W]× (0,1)

Let H(u,λ ) = λ u+(1−λ )JQNλu.

It is easily checked that H(u,λ ) 6= 0 for U ∈ ∂W∩kerT.
Hence,

deg(JQN |KerT ,W ∩KerT,0) = deg(H(.,0),W ∩KerT,0)

= deg(H(.,1),W ∩KerT,0)

= deg(±I,W ∩KerT,0) 6= 0.

From theorem 2.1 we can conclude that Tu = Nu has a

solution in

domT ∩W. Therefore, (1)- (2) has at least one solution.

4 Example

Consider the boundary value problem

[

d(t)ϕp(u
′′(t))

]′
=

e−3t

[

1+
| u(t) |3

4(1+ t)2
+

| u′(t) |3

8(1+ t)3
+ cos2t

| u′′(t) |3

16(1+ t)4

]

(37)

u′(0) =
2

∑
1

βi

∫ ηi

0
u(t)dt,u(0) = 0, lim

t→∞
(d(t)ϕp(u

′′(t)) = 0

(38)
Here,

d(t) = e3t , p = 4,q =
4

3
,β1 = 4,β2 = 9,η1 =

1

2
,η2 =

1

3

h(t,u,u′,u′′) =

e−3t

[

1+
| u(t) |3

4(1+ t)2
+

| u′(t) |3

8(1+ t)3
+ cos2t

| u′′ |3

16(1+ 4)4

]

∑2
i=1 βiη

2
i = 2. It is easily checked that h : [0,∞)×ℜ3 → ℜ

is an L1- Carathéodory function

2

∑
i=1

βi

∫ ηi

0

∫ t

0

∫ s

0
ϕq

(

e−r

e3r

)

drdsdt

=
2

∑
i=1

βi

∫ ηi

0

∫ t

0

∫ s

0
e−4rdrdsdt 6= 0

Assumption(A0) is satisfied.

Clearly, (h(t,x,y,z)> 0 for all (t,x,y,z) ∈ [0,∞)×ℜ3.

Thus, QNλ u 6= 0 on [0,∞) for all u ∈ domT/kerT .

Assumption (A1) is verified .

| h(t,u,u′,u′′ | ≤ e−3t

(

1+
| u |3

4(1+ t)3
+

| u′ |2

8(1+ t)3

+
| u′′ |3

16(1+ t)4

)

Here

a1(t) =
1

4(1+ t)2
,a2(t) =

1

8(1+ t)3
,a3(t) =

1

16(1+ t)4
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This verifies assumption (A2). To verify (A3) we have

4c

∫ 1/2

0

∫ t

0

∫ s

0
ϕq

(

1

e3r

)

×ϕq

(

∫ ∞

r
e−3τ

[

1+
| cτ |3

4(1+ τ)2
+

| c |3

8(1+ τ)3

]

dτ

)

drdsdt

+9c

∫ 1/3

0

∫ t

0

∫ s

0
ϕq

(

1

e3r

)

×ϕq

(

∫ ∞

r
e−3τ

[

1+
| cτ |3

4(1+ τ)2
+

| c |3

8(1+ τ)3

]

dτ

)

drdsdt

≤ 4c

∫ 1/2

0

∫ t

0

∫ s

0
ϕq







1

3
e−3r

e3r






drdsdt

+9c

∫ 1/3

0

∫ t

0

∫ s

0
ϕq

(

1/3e−3r

e3r
drdsdt

)

= .

c

[

4

31/3

∫ 1/2

0

∫ t
0

∫ s
0 e−2rdrdsdt +

9

31/3

∫ 1/3

0

∫ t
0

∫ s
0 e−2rdrdsdt

]

.

Assumption (26) or (27) are satisfied respectively if c > 1
or c <−1, i.e. if | c |> 1.

Finally, we have ∑3
i=1 ‖ ai ‖1=

1

4
+

1

16
+

1

48
=

1

3
,

∥

∥

∥

∥

ϕq

(

1

d

)∥

∥

∥

∥

1

= 1,

∥

∥

∥

∥

ϕq

(

1

d

)∥

∥

∥

∥

∞

= 1

Therefore, for p ≥ 2, we have from (29)

‖ ϕq

(

1

d

)

‖1 ∑3
i=1 ‖ ai ‖1 A1 =

1

3
< 1 where A1 = 1

Thus from theorem 3.1 we conclude that the BVP (37)-

(38) has at least one solution.
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