
Appl. Math. Inf. Sci. 15, No. 3, 365-372 (2021) 365

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/150314

Effect of the Negative Velocity Feedback Control

for Reducing the Primary Resonance Vibration of a

Magnetic Levitation System using the Harmonic Balance

Method

F. O. Darwesh1,∗, Y. A. Amer2and K. R. Raslan3

1Basic Science Department, Higher Technology Instutite, Tenth of Ramadan City, Egypt
2Mathematics Department, Faculty of Science, Zagazig University, Egypt
3Mathematics Department, Faculty of Science, AlAzhar University, Egypt

Received: 4 Nov. 2020, Revised: 2 Feb. 2020, Accepted: 21 Mar. 2021

Published online: 1 May 2021

Abstract: In order to reduce the primary resonance vibration of a magnetic levitation system, this paper investigated the effect of

applying negative linear velocity feedback control. External and parametric forces that were linear, quadratic and cubic were exposed

to the system under analysis. The control of linear velocity feedback shows that it is better to reduce the resulting vibration than the cubic

one. To obtain the response system and analyze the stability of it, the harmonic balance method (HBM) was applied. It is confirmed

that it is stable overall. Comparison of the approximate and numerical solutions and the effect of the response system parameters were

analyzed using MATLAB 14.0. The response system shows that only the coefficient of the linear force is affected, while the coefficients

of the quadratic and cubic forces have no effect on the response system.

Keywords: Harmonic Balance Method, Magnetic Levitation System, Negative Velocity Feedback Controller, Primary Resonance
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1 Introduction

High-amplitude resonant vibrations which appear in
various dynamical systems are always undesirable. Active
feedback control is an effective control for reducing
vibrations magnitude. The active control action on elastic
wave metamaterials is presented by Wang et al. [1]. Under
the influence of the active feedback control operation,
stop band properties, negative effective mass, and device
stability are evaluated numerically. They stated that the
stop band width can be reduced and the stable properties
can be satisfied by both positive acceleration and negative
velocity feedback control behavior. For the negative
effective mass, it is investigated that the increase in the
negative acceleration control behavior contributes to an
increase in the frequency area, while the positive case has
a reverse effect on the frequency region. Wang et al. [2]
presented a nonlinear convergence algorithm for active
dynamic undamped vibration absorber (ADUVA) which

is composed of equivalent dynamic modeling equations
and frequency estimator. They proposed an active
absorber which made up of the displacement and velocity
components. The nonlinear ADUVA can simultaneously
meet the requirements of fast convergence rate and small
steady state frequency error, which leads to better
vibration control performances than the linear one. The
multi- modal negative acceleration feedback (MMNAF)
control was proposed by Yang et al. [3] for an active mass
damper (AMD) system. Theoretically, it was found that
the stability condition for the negative acceleration
feedback (NAF) control is static using a
single-degree-of-freedom (SDOF) system. Unlike the
positive position feedback (PPF) control the NAF does
not cause instability in the low frequency region. On the
basis of the theoretical results of the SDOF system, it has
been proven, both theoretically and experimentally, that
the MMNAF control can suppress the vibrations of the
multi-degree-of-freedom (MDOF) systems. Velocity or
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acceleration feedback techniques and disturbance
prediction are investigated in the work reviewed by
Baader and Fontana [4] for the application of vertical
floor vibration mitigation. The simulation results
demonstrated that for the mitigation of floor vibrations,
the tuned mass damper (TMD) and both of these
strategies work well. It is clarified that for both examined
systems, the velocity feedback shows a good damping
quality. Moreover different resonance frequencies can be
reduced using this technique. El-Ganaini [5] applied PPF
controller on the magnetic levitation system which
described in [5] to reduce the vibration amplitude of
periodic primary excitation. The effect of PPF controller
showed that it is the best compared to the passive
controller proposed by Jo and Yabuno [6] where the
controller effectiveness was 2 in the model constructed by
Jo and Yabuno [6], while it is 226 in the study of
El-Ganaini [5]. Multiple scale perturbation technique is
applied in [6] and [5] for obtaining the response system.
Sayed et al. [7] investigated the Van der Pol equation
subjected to external and parametric excitation forces at
the simultaneous resonance case.The controller success in
reducing the vibrations was about Ω1 = ω ,Ω2 = 2ω
which was the worst one.
The effect of a negative acceleration feedback active
controller demonstrated that it is the best for reducing the
vibration dramatically. Talib et al. [8] extended and
revised the MMNAF modal proposed by Yang et al. [3]
by exchange the AC servo motor with the linear servo
motor which is more effective because it is fast and less
noisy. The multi-input multi-output (MIMO) modal
designed by Talib et al. [8] was more effective in
suppressing the vibrations of the test structure with using
the linear servo motors. Furthermore, the model was
validated both theoretically and numerically. Negative
velocity feedback controller was applied by Amer and
Agwa [9] on two degrees of freedom nonlinear system.
They illustrated that the negative linear velocity feedback
controller is more effective than the cubic for suppressing
the amplitude of the vibration at the sub-harmonic
resonance case ω ∼= 2ω2 which was the worst resonance
case. The Harmonic Balance Method (HBM) is widely
used and can handle many kinds of nonlinearities. The
approximate period and the approximate solution of
nonlinear jerk equations is evaluated by Saifur Rahman
and Hasan [10] by employing a modified HBM. In the
comparison of outcomes, it is noticeable that the second
approximations are more accurate than the other methods.
The results are also consistent with the exact solution.
The dynamic behavior of the Zener model subject to base
excitation has been identified in L. de Haro Silva [11]
with the inclusion of a nonlinear stiffness factor to
improve high frequency system transmissibility. Two
degrees of freedom and two equations of motion were
initially described in the method. Then, these equations
were combined in such a way that a third order ordinary
differential equation described the system. This
representation allowed them to write the motion

equations, including a nonlinear element of stiffness, so
that the results of their paper and the system’s frequency
response could then be obtained using the harmonic
balance method. In combination with the harmonic
balance method, L. Guillot et al. [12] produced an
expansion to the progression of periodic orbits of delay
differential equations of the asymptotic numerical
method. The equations may be mandatory or independent
and may be of a neutral form. The established method
needs that the equation system be written in a detailed
quadratic expression. The technique is applied to several
systems, from Van der Pol and Duffing oscillators to
clarinet and saxophone toy versions. A comparison with
standard time-integration solvers achieved the harmonic
balance method. The control effectiveness of a nonlinear
positive position feedback (NPPF) controller for vibration
attenuation of a Duffing oscillator is examined by G.
Zhao et al. [13]. The proposed NPPF controller is based
on the classical linear positive position feedback (LPPF)
controller, but according to the theory of similarity, a
cubic term is included. The analytical solutions is
approximated using the harmonic balance method. In
order to illustrate the proposed control technique, both
numerical simulations and experimental validations will
be carried out. Harmonic balance method is used by F.
Qian et al. [14] to obtain the approximate analytical
solutions of the piezoelectric energy harvester (PEH) with
the coupled higher-order nonlinear terms. An approach to
solving the Jacobian matrix entries is proposed to
determine the stability of the approximate solutions. This
method provides a guideline for the study of solution
stability of congeneric nonlinear systems with
higher-order terms coupled together. Y. M. Chen et al.
[15] presented a review on the multi-frequency pattern
(MFP) vibration of nonlinear network systems based on
the incremental harmonic balance (IHB) method. The
IHB method is proposed with a time delay to solve a
single-degree-of freedom system instead of directly
solving the highly-dimensional systems discussed. The
proposed method can provide both stable and unstable
limit phases and can therefore be managed by multiple
solutions successfully. For solving nonlinear forced
vibration problems, M. W. Ullah et al. [16] introduced a
modified harmonic balance method. A series of nonlinear
algebraic equations arise from the unknown coefficients
of harmonic terms and the frequency of the forcing
principle. A numerical approach is typically used to solve
them. A set of algebraic linear equations, along with a
nonlinear one, is solved. The solution obtained by the
suggested method was compared to those obtained by
finite variation difference and numerical methods. Also,
there are many numerical methods for solving differential
equations which reported and examined in [17]-[28]. In
the present paper, we study the equation governing the
magnetic levitation system Eq. (2) which reported in [5]
under the effect of negative velocity feedback controller.
HBM is applied instead of multiple scale perturbation
technique (MSPT) because the use of MSPT resulted in
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the absence of quadratic and cubic force coefficients in
studying response system. Whereas, the application of
HBM resulted in preserving the existence of all
parameters, so it is possible to study their effect
altogether. Response system is obtained and the stability
conditions is applied the same way as reported in [14].
The present paper is organized as follows: In section 2,
we obtain an approximate solution and the stability
condition of the response system using Harmonic Balance
Method. In section 3, we discuss the obtained
approximate solution and compare it with the numerical
solution obtained by applying Runge-Kutta fourth-order
method. Also, we illustrate the effect of system
parameters on the response system. Finally, we
summarize our results in section 4. The equation of

Fig. 1: Magnetic Levitation system

magnetic Levitation system can be written as:

ÿ+ 2µ ẏ =
3

∑
n=1

lnyn
−

3

∑
n=1

kn(y− f cosΩ t)n
. (1)

where, k1 − l1 = 1,k2 − l2 = 0 and k3 − l3 = α. So the
equation of motion as reported in [5] written as,

ÿ+ 2µ ẏ+ y+αy3 = k1 f cosΩ t − k2 f 2 cos2 Ω t

+ k3 f 3 cos3 Ω t +(2k2 − 3k3 f ) f ycos2 Ω t

+ 3k3 f y2 cosΩ t.

(2)

We used the negative linear velocity feedback controller to
control the vibrating system. Hence, Eq. (2) becomes:

ÿ+ 2µ ẏ+ y+αy3 = k1 f cosΩ t − k2 f 2 cos2 Ω t

+ k3 f 3 cos3 Ω t +(2k2 − 3k3 f ) f ycos2 Ω t

+ 3k3 f y2 cosΩ t −Gẏ.

(3)

where G is the gain.

2 Harmonic Balance Method

The standard harmonic balance will be presented and
the fundamental harmonic only is used. The fundamental
frequency of oscillation is Ω . The solution is expressed as
follows:

y = y1(t)cosΩ t + y2(t)sinΩ t. (4)

Substituting from Eq. (4) into Eq. (3), we get the
following:

ÿ1 cosΩ t + ÿ2 sinΩ t − 2Ω 2ẏ1 sinΩ t + 2Ω 2ẏ2 cosΩ t

−Ω 2y1 cosΩ t −Ω 2y2 sinΩ t +(2µ +G)

(ẏ1 cosΩ t + ẏ2 sin Ω t −Ωy1 sinΩ t +Ωy2 cosΩ t)

+ y1 cosΩ t + y2 sinΩ t − k1 f cosΩ t

+αy2
1 cos2 Ω t(y1 cosΩ t + 3y2 sinΩ t)

+αy2
2 sin2 Ω t(3y1 cosΩ t + y2 sinΩ t)

+ k2 f ( f − 2y1)cos2 Ω t − k2 f y2 sin2Ω t

− k3 f 2( f − 3y1)cos3 Ω t

+ 3k3 f cos2 Ω t( f y2 sinΩ t − y2
1 cosΩ t)

− k3 f y2 sin2Ω t(3y1 cosΩ t +
3

2
y2 sinΩ t) = 0.

(5)

Converting any power trigonometric function to its
equivalent expression of the linear trigonometric
functions with multiple angle and balance irrelevant Eq.
(5) the following equation is obtained:

ÿ1 +(G+ 2µ)ẏ1+ 2Ω ẏ2 +
1

4
(4+ 9k3 f 2

− 4Ω 2)y1

+(G+ 2µ)Ωy2+
3

4
αy1(y

2
1 + y2

2)

−

3

4
k3 f (3y2

1 + y2
2)− k1 f −

3

4
k3 f 3 = 0

(6)

ÿ2 +(G+ 2µ)ẏ2− 2Ω ẏ1 +
1

4
(4+ 9k3 f 2

− 4Ω 2)y2

− (G+ 2µ)Ωy1+
3

4
αy2(y

2
1 + y2

2)

−

3

2
k3 f y1y2 = 0

(7)
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The system of the response curve is obtained by neglecting
first and second derivatives in Eqs. (6) and (7):

1

4
(4+ 9k3 f 2

− 4Ω 2)y1 +(G+ 2µ)Ωy2+
3

4
αy1(y

2
1 + y2

2)

−

3

4
k3 f (3y2

1 + y2
2)− k1 f −

3

4
k3 f 3 = 0

(8)

1

4
(4+ 9k3 f 2

− 4Ω 2)y2 − (G+ 2µ)Ωy1+
3

4
αy2(y

2
1 + y2

2)

−

3

2
k3 f y1y2 = 0

(9)

Neglecting the terms of second derivatives in Eqs. (6) and
(7) then solving the two equations for the first derivative;
we get:

ẏ1 =
1

(2µ +G)2 +(2Ω)2
((2µ +G)M1 − 2ΩM2) . (10)

ẏ2 =
1

(2µ +G)2 +(2Ω)2
((2µ +G)M2 + 2ΩM1) . (11)

where,
M1 = −

1
4
(4 + 9k3 f 2

− 4Ω 2)y1 − (G + 2µ)Ωy2 −

3
4
αy1(y

2
1 + y2

2)+
3
4
k3 f (3y2

1 + y2
2)+ k1 f + 3

4
k3 f 3

,

and
M2 = −

1
4
(4 + 9k3 f 2

− 4Ω 2)y2 + (G + 2µ)Ωy1 −

3
4
αy2(y

2
1 + y2

2)+
3
2
k3 f y1y2.

The Jacobian of the stability is defined as:

J =

∣

∣

∣

∣

∣

∂ ẏ1
∂y1

∂ ẏ2
∂y1

∂ ẏ1

∂y2

∂ ẏ2

∂y2

∣

∣

∣

∣

∣

(12)

Relation between the first harmonic amplitude a which is

defined by a =
√

y2
1 + y2

2 and the detuning parameter σ

which is defined by Ω = 1+σ can be drawn with studying
the response stability using Eqs. (8-12).

3 Results and Discussion

To determine the numerical solution of the Eq.(2), the
Runge-Kutta fourth-order method was applied. The
selected values for the given system parameters are given
by: µ = 0.02,Ω = 1,α = 0.894,k1 = 0.5,k3 = 0.447, f =
0.05,G = 2. The effect of the linear velocity feedback
control for reduction the vibration of the system at the
primary resonance case Ω = 1 is illustrated by Figure 2.
It shows the time history of the system without control
which has an amplitude about 0.35. After applying NVF
controller on the system, the amplitude suppressed to
about 0.012. Thus, the controller effectiveness Ea = 29.
Figure 3 illustrated that the effect of the linear velocity
feedback control for reduction the vibration of the system

Fig. 2: Effect of NVF Controller on the time history at the

primary resonance case.

Fig. 3: Comparison between linear and cubic velocity feedback

control.

is better than the effect of cubic velocity feedback control
by showing the comparison between them. Figure 4
illustrated the consistency between the approximate
solution and the numerical result of equation of the
system for active absorber at the primary resonance case.
Figure 5 shows consistency between the approximate
solution obtained by HBM and the numerical solution
determined by applying Runge-Kutta fourth-order
method. In the case of applying HBM, the effect of
system parameters on the response curve is studied and
illustrated by Figures (6 and 9). The behavior of the
response curve is stable overall when applying HBM
which illustrated that it is a very suitable method. It is
found that the response curve has a skewness to the left.
Figure 6 indicates that with the decrease of the damping
parameter µ , the frequency response curves bent away
from the linear curves, resulting in multi-valued regions
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Fig. 4: Comparison between the numerical solution and the

approximate solution at the primary resonance case with

applying NVF control.

Fig. 5: Response Curve of the controller; Comparison between

the numerical solution and the approximate solution.

and jump phenomenon. Figures 7 and 8 show that the
steady state amplitude is a monotonic increasing with the
increase of the first power coefficient k1 and the excitation
force. Also, the kurtosis of the curve increases. Figure 9
reveals that the frequency response curves bent away
from the linear curves, resulting in multi-valued regions
and jump phenomenon with the decrease of the gain
parameter G. Nonlinear coefficient α and coefficients
quadratic and cubic force k2 and k3 have no effect on the
response curve. The relation between the system
amplitude and the excitation force without and with the
control is demonstrated in Figure 10. In the absence of
control the system amplitude increases nonlinearly for a
slight increase in the excitation force. After applying
NVF controller, the system amplitude leads to a
saturation case that the relation became horizontal, so the

Fig. 6: Response Curve of the controller; Comparison between

the numerical solution and the approximate solution.

Fig. 7: Frequency response curves at different values of the

coefficient of the first power k1.

system amplitude slightly changes for the large increase
in the excitation force.

4 Conclusion

The effect of applying a negative linear velocity feedback
control on the magnetic levitation system which produces
a primary resonance vibration was addressed. The system
is subjected to external and parametric linear as well as
quadratic and cubic forces. Response system was
investigated using HBM and illustrated that it is very
suitable that the approximate and the numerical solutions
are consistent with each other. Relation between the
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Fig. 8: Frequency response curves at different values of the force

f .

Fig. 9: Frequency response curves at different values of the gain

G.

amplitude and the detuning parameter can be explained

and figured by defining the first amplitude a =
√

y2
1 + y2

2

and the detuning parameter as Ω = 1+σ in the obtained
response system by applying HBM. The results of this
paper can be summarized as follows:
1) The worst resonance case is the primary resonance
case.
2) Using negative linear velocity feedback control reduces
about 98% of the system vibration amplitude.
3) The effectiveness of the controller is about Ea = 29 for
the main system.
4) The frequency response curve is effected by varying
only the coefficient of the linear force k1, while
coefficients k2 and k3 of the quadratic and the cubic forces

Fig. 10: Force response curves of the main system and the

controller.

have no effect.
5) The frequency response curve is stable over the studied
domain and has a skewness to the left.
6) The Harmonic Balance Method is very suitable for
studying the response system.
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