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Abstract: In this work, we use a combination between a new integral transform and the homotopy perturbation method. This

combination presents an accurate methodology to obtain an exact and numerical solutions for linear and nonlinear partial differential

equations. The aim of using this new integral transform is to overcome the deficiency. It is mainly caused by unsatisfied conditions in

the other semi-analytical methods such as HPM, VIM, and ADM. More than, this new method appears more applicable, it needs fewer

computations. As in the provided numerical example, this method can be used in engineering computations.

Keywords: Homotopy perturbation technique; The new integral transform; Biological population equation; Evaluation equation; The

parabolic partial differential equation.

1 Introduction

The numerical solutions of differential equations of
integer order has been a hot topic in numerical and
computional mathematics for a long time. There are many
different methods have been used to estimate he solution
of partial differential equations, such as Adomain
decomposition method [1, 2], variational iteration
method [3, 4] and homotopy perturbation method, it is
work mentioning that the HPM, proposed first by Ji-Huan
He [5–7], for solving linear and nonlinear partial
differential equations.

The HPM has been introduced as a means to solve
singular nonlinear differential equations [4], nonlinear
wave equations [8] and nonlinear oscillators [9]

On the other hand the integral transformations played
an essential role in many fields of science [10, 11],
especially, engineering mathematics [12], mathematical
physics [13], optics [14], image processing [15]. Many of
these transforms have been used and appplied on theory
and applications, such as Sumudu [16], Laplace [17, 18],
Elzaki [19] and new integral transform [20]. Among these
the most widely used is Laplace transform. here, the new
integral transform has many interesting properties which

make it rival to the Laplace transform. Our method yields
the solution in terms of a rapid convergent series with
easily compactable components for linear and nonlinear
partial differential equations.

This article is organized as follows: In section 2, we
introduce some basic definitions, proprieties for the new
integral transform and we give some of the advantage of
the considered methods. In section 3, we discussed the
method used in this work. Some applications are given in
section 4 to show accuracy. Finally, numerical results are
discussed in section 5.

2 Basic Definition of the New Integral Trans-

form (NT)

In this section we mension the following basic definitions
and theorems of the new transform which are used in the
present paper [20].

Definition of the New Transform. The transform of a
function f (t) is defined by

F(s) = T f (t) =

∞
∫

0

e−t f
( t

s

)

dt, s ∈ R,
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from this definition, we get

T (tn) =
n!

sn
.

Theorem 1. (Sufficient Condition). If a function h is
piecewise continuous on [0,∞) and exponential order s0,
then the transform of h exists for s > s0.

Theorem 2. (nth Derivatives). If the functions
Tu,Tu′, · · · ,Tu(n) are well defined, n = 1,2,3, · · · , then

Tu(n) = snTu−
n−1

∑
k=0

sn−ku(k)(0), (1)

3 The Advantage of the New Transform

The new transform has many interesting properties which
make it reival to the Laplace transform. Some of these
properties are:

1-The domain of the new transform is wider than or equal
to the domain of Laplace transform.

2-The new transform can solve all the problem which
would be solved by Laplace transform.

3-The unit step function in the t-domain is transformed
to unity in the u-domain.

4-The differentiation and integration in the t-domain are
equivalent to multipliciation and division of the
transformed function F(u) by u in the u-domain.

For more details see [20].

4 Analysis of the Method

To illustrate the modification algorithm of the NTHPM,
we consider the following nonlinear partial differential
equation with time derivatives of any order

L(u(x, t))+R(u(x, t))+N(u(x, t)) = g(x), (2)

where L is linear differential operator (L = dn/dtn) and
g(x, t) is the source term, subject to the initial conditions

∂ mu(x,0)

∂ tm
= hm(x), m = 0,1,2, · · · ,n− 1. (3)

In view of the homotopy technique, we can constract the
following homotopy

H(u(x, t), p)) = (1− p)[L(u(x, t))−L(u(x,0))]

+ p[L(u(x, t))+R(u(x, t))− g(x, t)]

= 0,

(4)

where p∈ [0,1], the homotopy parameter t always changes
from zero to unity. When p = 0, equation (4) becomes

L(u(x, t)) = L(u(x,0)), (5)

and when p = 1, equation (4) turns out to the original
Equation (2). Since u(x,0) is a function of x only,
equation (4) can be rewritten to be in the following form

∂ nu(x, t)

∂ tn
+ p[N(u(x, t))+R(u(x, t))− g(x, t)] = 0. (6)

According to the homotopy technique, the basic
assumption is that the solution of equation (6) can be
written as a power series in p as

u(x, t) =
∞

∑
i=0

piui(x, t), (7)

where ui(x, t) are unknown functions to be determined.
Now taking in mind the initial conditions (3), the NT for
Equation (6) gives

snT{u(x, t)}−
∞

∑
i=0

sn−kuk(x,0)+ pT [R(u(x, t))+N(u(x, t))

− g(x, t)] = 0, (8)

R and N are represents the general linear and nonlinear
differential operators respectively, again taking the inverse
of the NT for Equation (8), we obtain

u(x, t)−T−1

{

n−1

∑
k=0

1

sk
uk(x,0)

}

+T−1

{

1

sn
pT{[R(u(x, t))

+N(u(x, t))− g(x, t)]}
}

= 0. (9)

Substituting from Equation (7) into equation (9), yields

∞

∑
i=0

piui(x, t)−T−1

{

n−1

∑
k=0

1

sk

(

∞

∑
i=0

piu
(k)
i (x,0)

)}

+T−1

{

1

sn
pT

{

N

(

∞

∑
i=0

piui(x, t)

)

+R

(

∞

∑
i=0

piui(x, t)

)

− g(x, t)

}}

= 0.

(10)

Equating the identical powers of p, therefore, after doing
some calculations for the NT and the inverse of NT we
get the unknown functions u0,u1,u2, · · · ,. Now
substituting into Equation (7) with p = 1, we get the
solution of the problems (2), (3).

5 Applications on NTHPM

we will discuss this method by giving some examples of
linear and nonlinear partial differential equations.

Example 4.1. Consider the generalized biological
population model of the form

ut − u2
xx − u2

yy − u(1− ru) = 0, (11)
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subject to the initial conditions

u(x,u,0) = e
1
2

√
r
2 (x+y). (12)

Assume that the solution of Equation 11 can be written as
a power series of follows

u(x,y, t) =
∞

∑
i=0

piui(x,y, t), (13)

substituting from (13) into (10) for n = 1, g = 0,
N = −(u2

xx + u2
yy − ru2 + u), R = 0 and using the initial

condition (12), yields

∞

∑
i=0

piui(x,y, t)−T−1
(

e
1
2

√
r
2 (x+y)

)

−T−1

{

1

s
pT{

∞

∑
i=0

pi(u2
ixx + u2

ryy − ui(1− rui))

}}

= 0.

(14)

On putting the coefficients to the power of p equal to zero
in Equation (14), we obtain series of linear equations
which are easily to solve by using Mathematica software
to give

u0 = T−1
{

e
1
2

√
r
2 (x+y)

}

= e
1
2

√
r
2 (x+y),

u1 =T−1

{

1

s
T{u0 + ru2

0 + 2u2
0y+ 2u0+ u0yy + 2u2

0x

+ 2u0u0xx}
}

= T−1

{

1

s
e

√
r(x+y)

2
√

2

}

= e

√
r(x+y)

2
√

2 t,

u2 = T−1

{

1

s
T{−2ru0u1 + u1 + 4u0yu1x + 2u1u0yy

+ 2u0u1yy + 4u0xu1x + 2u1u0xx + 2u0u1xx}
}

= T−1

{

1

s

{

e

√
r(x+y)

2
√

2 · t
}

}

= T−1

{

e

√
2(x+y)

2
√

2

s2

}

= e

√
2(x+y)

2
√

2
t2

2!
,

u3 = T−1

{

1

s
T{u2 − ru2

1 − 2ru0u2 + 2u2
1y+ 4u0yu2y

+ 2u2u0yy + 2u1u1yy + 2u0u2yy + 2u2
1x+ 4u0xu2x

+ 2u2u0xx + 2u1u1xx + 2u0u2xx

}

= T−1

{

1

s
T

{

e

√
r(x+y)

2
√

2

2s
· t2

}

= T−1

{

1

s
T

{

e

√
r(x+y)

2
√

2

s3

}}

= e

√
r(x+y)

2
√

2
t3

3!

...

and so on. Proceeding as before the rest of compnents were
obtained, and the 4-term approximate solution of the initial
value problem (10)-(12) is given by

u(x,y, t) = e

√
r(x+y)

2
√

2

[

1+ t+
t2

2!
+

t3

3!

]

.

In the closed form the solution u(x,y, t) is readily to be

u(x,y, t) = e

√
r(x+y)

2
√

2 t. (15)

Fig. 1: The curves of the exact and approximate solutions of

Example (4.1)

Fig. 2: The figure explain the surface error for Example (4.1)

Example 4.2. Consider the following linear evaluation
equation

ut + uxxxx = 0, (16)
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subject to
u(x,0) = sinx. (17)

By applying the same steps used in example (4.1) we can
easily get

u0(x, t) = sinx,

u1(x, t) = T−1
{1

s
T{−u0xxxx}

}

= T−1

{

1

s
T{−sinx}

}

= T−1

{

− sinx

s

}

=−sinx · t,

u2 = T−1

{

1

s
T{−t ·u1xxxx}

}

= T−1

{

1

s
T{−t sinx}

}

= T−1

{

1

s2
sinx

}

= sinx · t2

2
,

u3 = T−1

{

1

s
T

{

−u2xxxx ·
t2

2

}}

= T−1

{

1

s
T

{

sinx · t2

2

}}

= T−1

{

1

s
T

{

sinx · t2

2

}}

= T−1

{

1

s3
sinx

}

= sinx · t3

3!

...

and so on. The 4-term approximate solution of the initial
value problems (16)-(17) is given by

u(x, t) =
∞

∑
i=0

= sinx− t sinx+
t2

!2
sin x− t3

!3
sinx

= sinx

(

−t +
t2

2!
− t3

3!

)

,

which in the closed form gives

u(x, t) = e−t sinx. (18)

Fig. 3: The curves of the exact and approximate solutions of

Example (4.2)

Fig. 4: The figure explain the surface error for Example (4.2)

Example 4.3. Consider the following singular fourth-
order parabolic partial differential equation in the two
space variable

utt + 2

(

1

x2
+

x4

6!

)

uxxxx + 2

(

1

y2
+

y4

6!

)

uyyyy = 0, (19)

subject to the initial condition

u(x,y,0) = 0, ut(x,y,0) = 2+
x6

6!
+

y6

6!
, (20)

substituting from (13) into (10), taking n = 2, R = 0

N = 2

(

1

x2
+

x4

6!

)

uxxxx + 2

(

1

y2
+

y4

6!

)

uyyyy,

and using the initial condition (20), we get

∞

∑
i=0

piui(x,y, t)−T−1

{

2+
x6

6!
+

y6

6!

}

+T−1

{

1

s
pT

{

2 ·
(

1

x
+

x4

6!

)

∞

∑
i=0

uixxxx

+ 2

(

1

y2
+

y4

6!

)

∞

∑
i=0

uiyyyy

}}

= 0, (21)

by butting the coefficients to the powers of p in (21) equal
zero, we get

u0(x, t) = T−1

{

u(x,y,0)+
1

s
u′t(x,y,0)

}

= T−1

{

1

s

(

2+
x6

6!

)}

=

(

2+
x6

6!
+

y6

6!

)

· t

= a(x,y) · t,

where a(x,y) = 2+ x6

6!
+ y6

6!

u1 = T−1

{−1

s2
T

{

2u0yyyy

y2
+

y4u0yyyy

360
+

2u0xxxx

x2

c© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 1, 51-57 (2022) / www.naturalspublishing.com/Journals.asp 55

+
x4x0xxxx

360

}}

= T−1

{

− 1

s2
T{a(x,y) · t}= T−1

{

− a(x,y)
1

s3

}

=−a(x,y) · t3

3!
,

u2 = T−1

{

− 1

s2
T

{

2u1yyyy

y2
+

y4u1yyyy

360
+

2u1xxxx

x2

x4u1xxxx

360

}}

= T−1

{

1

s2
T

{

a(x,y

3!
· t3

}}

= T−1

{

a(x,y)

s5

}

= a(x,y) · t5

5!
,

u3 = T−1

{

1

s2
T

{

2y2yyyy

y2
+

y4u2yyyy

360
+

2u2xxxx

x2

x4u2xxxx

360

}}

= T−1

{

1

s2
T

{

−a(x,y)
t5

5!

}

= T−1 a(x,y)

s7

}

= a(x,y) · t7

7!
,

The 4-term approximate solution of the initial value
problems (19)-(20) takes the form

u(x,y, t) = a(x,y)

[

t − t3

3!
+

t5

5!

t7

7!

]

,

in closed form

u(x,y, t) =

(

2+
x6

6!
+

y6

7!

)

sin t. (22)

Fig. 5: The curves of the exact and approximate solutions of

Example (4.3)

Fig. 6: The figure explain the surface error for Example (4.3)

Example 4.4. Consider the one dimentional linear system

ut − vx − u− v = 0, (23)

vt − ux+ u+ v = 0, (24)

subject to the initial conditions

u(x,0) = sinx, (25)

v(x,0) = cosx. (26)

Assume that the solutions of the equations (23) and (24)
can be written as a power series of follows

u(x, t) =
∞

∑
i=0

piui(x, t), (27)

v(x, t) =
∞

∑
i=0

piui(x, t), (28)

substituting from equations (27) and (28) into Equation
(10) and using the initial conditions (25) and (26)
respectively, we get the following after equating the
coefficients of the powers of p

u1 = T−1

{

1

s
T{u0 + v0 + v0x}

}

= T−1

{

1

s
T{cosx}

}

= T−1

{

cosx

s

}

= t · cosx,

v1 = T−1

{

1

s
T{−v0 − u0 − u0x}

}

= T−1

{

−1

s
T{sinx}

}

=−t · sinx,

u2 = T−1

{

1

s
T{u1 + v1 + v1x}

}

= T−1

{

−1

s
T{t · sinx}

}
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= T−1

{

− 1

s2
sinx

}

=− t2

2!
· sinx,

v2 = T−1

{

−1

s
T{v1 + u1 + u1x}

}

= T−1

{

−1

s
T{t · cosx}

}

= T−1

{

−cosx

s2

}

=− t2

2!
· cosx,

u3 = T−1

{

1

s
T{u2 + v2 + v2x}

}

= T−1

{

1

s
T{− t2

2!
· cosx}

}

T−1

{

− 1

s3
cosx

}

=− t3

3!
· sinx

...

v3 = T−1

{

−1

s
T{v2 + u2 − u2x}

}

= T−1

{

1

s
T{ t2

2!
· sinx}

}

T−1

{

− sinx

s3

}

=
t3

3!
· sinx

...

and so on. Then the 4-term approximate solution of the
Equations (23)-(24) is subject to the initial condition are

u(x, t) = sinx+ t cosx− t2

2!
sinx− t3

3!
cosx

= sinx

[

1− t2

2!
+

t4

4!

]

+ cosx

(

t − t3

3!
+

t5

5!

)

,

v(x, t) = cosx+ t sinx− t2

2!
cosx+

t3

3!
sinx

= cosx

[

1− t2

2!
+

t4

4!

]

− sinx

(

t − t3

3!
+

t5

5!

)

,

in closed form

u(x, t) = sin(x+ t),

v(x, t) = cos(x+ t).

Fig. 7a

Fig. 7b

Fig. 7: The curves of the exact and approximate solutions of

Example (4.4)

6 Discussion

In Fig. (1), Fig. (3), Fig. (5) and Fig. (7) we have plotted
the exact, second, thaired and four’s term-approximate
solutions for the initial value problems (11-12), (16-17),
(19-20) and (23-26). It is clear that, the approximate
solutions → exact solutions and the rate of convergence
can be increased by increasing the numbers of
approximations.
Furthermore, in Fig. (2), Fig. (4) and Fig. (6) explain the
surface errors for the initial value problems (11-12),
(16-17) and (19-20), respectively where, error_u =
|ex. solu.u− 4 th app. solu.|.
From these figures we achieved a very good approximation
for the solution of the initial value problems and also for
the system of partial differential equations.

7 Conclusion

In this paper, we present a numerical technique for
solving the linear and nonlinear partial differential
equations taking the advantage of the definition of our
new integral transform and the simplicity of the
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homotopy perturbation method, we transform the initial
value problems to a system of linear equations. By
solving this system, the numerical solution is acquired.
Numerical examples show that the numerical solutions is
in very good accordance with the exact solutions.
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