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Abstract: Approximations of functions in the generalized Zygmund class associated with Fourier series have been studied by various

researchers. In the present article, we have estimated the degree of approximation of functions of generalized Zygmund class associated

with Hardy-Littlewood series using Riesz mean. Our result generalizes the result of Das et al.[2].
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1 Introduction

Now-a-days the approximation of functions is a
fundamental problem for engineers and scientists. The
concept of approximating a function was first introduced
by the great mathematician Weierstrass. Since then, a lot
of results on degree of approximation of functions
associated with Fourier series and conjugate Fourier
series were studied by using different summability
methods. The degree of approximation of functions
belonging to Zygmund class (see, [1] and [4,5,6,7,8,9,
10]) have been studied by many researchers but we didn’t
find any one who has studied the the approximation of
functions in Zygmund class associated with
Hardy-Littlewood series (HL-series). In 1998, Das et
al.[2] have proved a result on degree of approximation of
functions associated with HL-series in Hölder metric by
using Borel’s exponential mean. This motivated us to
study the degree of approximation of functions of
generalized Zygmund class associated with HL-series
using Riesz mean.

2 Definitions and Notations

Let h(x) be a periodic function of period 2π , which is
Lebesgue integrable in [−π ,π ] and the Fourier series

associated with h(x) is given by

∞

∑
n=0

Un(x) =
a0

2
+

∞

∑
n=1

(

an cosnx+ bn sinnx
)

. (1)

Let SM
n (x) denote the nth modified partial sum of (1) given

by

SM
n (x) =

n−1

∑
k=0

Uk(x)+
Un(x)

2
.

Then the HL-series associated with h(x) is

C0

2
+

∞

∑
n=1

SM
n (x)− h(x)

n
(2)

where

C0 =
2

π

∫ π

0
φ(x,u)

u

2
cot

u

2
du

and

φ(x,u) = h(x+ u)+ h(x− u)−2h(x).

Let

η(u) =

∫ π

u
φ(x,w)

1

2
cot

w

2
dw . (3)

Clearly, η(u) is an even function and Lebesgue
integrable. Also, the HL-series (2) is the Fourier series of
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η(u) at u = 0. We denote

Ll [−π ,π ] =
{

η : [−π ,π ]→ R :

∫ π

0
|η(u)|ldu < ∞

}

, l ≥ 1.

Let us write

ξ p
n (x) =

2

π

∫ π

0
η(u)

sin
(

n+ 1
2

)

u

2sin u
2

du (4)

which represents the n-th partial sum of η(u). We define

‖η‖l =
( 1

π

∫ π

0
|η(u)|l du

) 1
l
,1 ≤ l < ∞

and

‖η‖l = ess sup
−π≤u≤π

|η(u)|, l = ∞.

Then the Zygmund modulus of continuity of η(u) (see
[11]) is defined as

m(η ;r) = sup
0≤r,u∈R

|η(u+w)+η(u−w)− 2η(u)|.

Let B represents the Banach space of all 2π periodic
functions which are continuous and defined over [−π ,π ]
under the supremum norm. We define

Z(α)

=
{

η ∈ B : |η(u+w)+η(u−w)− 2η(u)|, 0 < α ≤ 1
}

.

Clearly,

Z(α) = O
(

|w|α
)

and is a Banach space under the norm ‖.‖(α) defined by

‖η‖(α) = sup
−π≤u≤π

|η(u)|

+ sup
u,w 6=0

|η(u+w)+η(u−w)− 2η(u)|

|v|α
.

For η ∈ Ll [−π ,π ],(l ≥ 1), the integral Zygmund modulus
of continuity is defined by

ml(η ;r)

= sup
0<w≤r

{ 1

π

∫ π

0
|η(u+w)+η(u−w)− 2η(u)|l du

}
1
l

and for η ∈ B, l = ∞,

m∞(η ;r) = sup
0<w≤r

max
u

|η(u+w)+η(u−w)− 2η(u)|.

Clearly,

ml(η ;r)→ 0 as l → 0.

Suppose

Z(α), l =

{

η ∈ Ll [−π,π] :
(

∫ π

0
|η(u+w)+η(u−w)−2η(u)|l du

)
1
l
.

Then Z(α), l is a Banach space under the norm ‖.‖(α), l for
0 < α ≤ 1 and l ≥ 1. Clearly,

‖η‖(α), l = ‖η‖l + sup
w 6=0

‖η(.+w)+η(.−w)− 2η(.)‖l

|w|α
.

For the Zygmund modulus of continuity m satisfying

(a)m(0) = 0

(b)m(w1 +w2)≤ m(w1)+m(w2),

we write

Z(m) =
{

η ∈ B : |η(u+w)+η(u−w)−2η(u)| = O
(

m(w)
)}

and

Z
(m)
l

=
{

η ∈ Ll : 1 ≤ l < ∞, sup
w 6=0

‖η(.+w)+η(.−w)−2η(.)‖l

m(w)
< ∞

}

.

As Ll ,(l ≥ 1) is complete, Z
(m)
l is complete.

Clearly, Z
(m)
l is a Banach space under the norm ‖.‖

(m)
l ,

where

‖η‖
(m)
l = ‖η‖l + sup

w 6=0

‖η(.+w)+η(.−w)− 2η(.)‖l

m(w)
, l ≥ 1.

Let m(w) and µ(w) represent the Zygmund moduli of

continuity such that
(

m(w)
µ(w)

)

is positive and

non-decreasing then

‖η‖
(µ)
l ≤ max .

(

1,
m(2π)

µ(2π)

)

‖η‖
(m)
l ≤ ∞ (5)

Clearly,

Z
(m)
l ⊆ Z

(µ)
l ⊆ Ll ,(l ≥ 1).

Let ∑Un be an infinite series with sequence of partial sums
{sn} and {qn} be the sequence of non-negative numbers
such that

Qn =
n

∑
k=0

qk → ∞ as n → ∞. (6)

Let us write

tN
n =

1

Qn

n

∑
k=0

qksk, n = 0,1,2, ... . (7)

Then, tN
n represents the (N,qn) mean of {sn} generated by

the sequence {qn}. If

lim
n→∞

tN
n → s,

then the series ∑un is said to be summable (N,qn).
We know, (N,qn) method is regular [3].
The following notations are used in the rest part of our
paper:

Ω(u,w) = η(u+w)+η(u−w)− 2η(u) (8)

κN
n (w) =

1

π Qn

n

∑
k=0

qk

sin
(

k+ 1
2

)

w

sin
(

w
2

) (9)
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3 Known Result

Using Borel’s exponential mean, Das et al.[2] proved the
following theorem:
Theorem 3.1 If ξ p

n (x) is the nth partial sum of the HL-

series (2) and Bp(T ;x) is the Borel’s exponential mean of

{ξ
p

n (x)} then for 0 ≤ β < α ≤ 1 and h ∈ Hα ,

∥

∥

∥
Bp(T ;x)−η

(π

p

)
∥

∥

∥

β
= O

(

pβ−α(logp)1+
β
α

)

.

4 Main Theorem

In the present article, we establish the following theorem
on the degree of approximation of the HL-series of a
function using (N,qn) mean.
Theorem 4.1 Let ξ p

n (x) be the nth partial sum of the

HL-series (2) and τn
N be the (N,qn) mean of {ξ p

n (x)}. If

η ∈ Z
(m)
l then degree of approximation is given by

En(η) = inf
τn

N

‖τn
N −η‖

µ
l = O

(

∫ π

1
(n+1)

m(w)

w µ(w)
dw

)

. (10)

where m(w) and µ(w) are the Zygmund moduli of

continuity and
m(w)

w µ(w)
is positive and non-decreasing.

5 Lemmas

In order to establish the main theorem, we require
following lemmas.

Lemma 5.1 If κN
n (w) is as defined in (9), then

(i) |κN
n (w)| = O(n) for 0 ≤ w ≤

1

(n+ 1)
.

(ii) |κN
n (w)| = O

( 1

w

)

for
1

(n+ 1)
≤ w ≤ π .

Lemma 5.2 [4] If η ∈ Z
(m)
l then for 0 < w ≤ π ,

(i)‖Ω(.,w)|l = O
(

m(w)
)

.

(ii)‖Ω(.+ t,w)+Ω(.− t,w)−2Ω(.,w)‖l = O
(

m(w)
)

or O
(

m(t)
)

.

(iii)If m(w) and µ(w) are as defined in the Theorem 4.1, then

‖Ω(.+ t,w)+Ω(.− t,w)−2Ω(.,w)‖l = O
(

µ(t)
m(w)

µ(w)

)

.

Proof of Lemma 5.1
For 0 ≤ w ≤ 1

n+1
, we have sinnw ≤ nsinw. Then

|κN
n (w)|=

∣

∣

∣

∣

∣

1

π Qn

n

∑
k=0

qk

sin
(

k+ 1
2

)

w

sin w
2

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1

π Qn

n

∑
k=0

qk

(2k+ 1)sin w
2

sin w
2

∣

∣

∣

∣

∣

=
(2n+ 1)

π

∣

∣

∣

1

Qn

n

∑
k=0

qk

∣

∣

∣

= O(n) (11)

This completes the proof of (i).
For 1

n+1
≤ w ≤ π , using Jordan’s lemma

sin
(w

2

)

≥
w

π
.

Since, sin nw ≤ 1 for all w,

|κN
n (w)|=

∣

∣

∣

∣

∣

1

π Qn

n

∑
k=0

qk

sin
(

k+ 1
2

)

w

2sin w
2

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1

π Qn

n

∑
k=0

π

w
qk

∣

∣

∣

∣

∣

=
∣

∣

∣

1

w Qn

n

∑
k=0

qk

∣

∣

∣

= O
( 1

w

)

. (12)

This completes the proof of (ii).

Proof of Main Theorem

Let τN
n denote the (N,qn) mean of {ξ p

n (x)} then

τN
n =

1

Qn

n

∑
k=0

qk ξ p
k

and hence

τN
n −η(u) =

2

π

∫ π

0
Ω(u,w)

{ 1

Qn

n

∑
k=0

qk

sin
(

k+ 1
2

)

w

2sin w
2

}

dw

=
∫ π

0
Ω(u,w) κN

n (w) dw

= σn(u)(say).

Then,

σn(u+ t)+σn(u− t)−2σn(u)

=
∫ π

0

{

Ω(u+ t,w)+Ω(u− t,w)−2Ω(u,w)
}

κN
n (w) dw
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Using Minkowski’s inequality, we have

‖σn(.+ t)+σn(.− t)−2σn(.)‖l

=
{ 1

π

∫ π

0
|σn(u+ t)+σn(u− t)−2σn(u)|

l du
}

1
l

=
1

π

[

∫ π

0

∣

∣

∣

∫ π

0

{

Ω(u+ t,w)+Ω(u− t,w)−2Ω(u,w)
}

×κN
n (w) dw

∣

∣

∣

l
du
]

1
l

≤
∫ π

0
|κN

n (w)|
{ 1

π

∫ π

0
|Ω(u+ t,w)+Ω(u− t,w)

−2Ω(u,w)|ldu
}

1
l

dw

=

∫ π

0
‖Ω(.+ t,w)+Ω(.− t,w)−2Ω(.,w)‖l |κ

N
n (w)| dw

=
∫ 1

n+1

0
‖Ω(.+ t,w)+Ω(.− t,w)−2Ω(.,w)‖l |κ

N
n (w)| dw

+
∫ π

1
n+1

‖Ω(.+ t,w)+Ω(.− t,w)−2Ω(.,w)‖l |κ
N
n (w)| dw

= Γ1 +Γ2, (say) (13)

Using Lemma 5.1(i), Lemma 5.2 and monotonicity of
(

m(w)
µ(w)

)

with respect to ′w′, we have

Γ1

=

∫ 1
n+1

0
‖Ω(.+ t,w)+Ω(.− t,w)−2Ω(.,w)‖l |κ

N
n (w)| dw

=
∫ 1

n+1

0
O
(

µ(t)
m(w)

µ(w)

)

O(n) dw

By using the second mean value theorem of integral, we
have

Γ1 ≤ O

(

n µ(t)
m
(

(n+1)−1
)

µ
(

(n+1)−1
)

∫ 1
n+1

0
dw

)

= O

(

n

n+1
µ(t)

m
(

(n+1)−1
)

µ
(

(n+1)−1
)

)

= O

(

µ(t)
m
(

(n+1)−1
)

µ
(

(n+1)−1
)

)

(14)

Again, by using Lemma 5.1(ii) and Lemma 5.2, we get

Γ2

=

∫ π

1
n+1

‖Ω(.+ t,w)+Ω(.− t,w)−2Ω(.,w)‖l |κ
N
n (w)| dw

≤
∫ π

1
n+1

O
(

µ(t)
m(w)

µ(w)

) 1

w
dw

= O
(

µ(t)
∫ π

1
n+1

m(w)

w µ(w)
dw
)

(15)

By (13), (14) and (15), we have

‖σn(.+ t)+σn(.− t)−2σn(.)‖l

= O

(

µ(t)
m
(

(n+1)−1
)

µ
(

(n+1)−1
)

)

+O

(

µ(t)
∫ π

1
n+1

m(w)

w µ(w)
dw

)

Therefore, we have

sup
t 6=0

‖σn(.+ t)+σn(.− t)− 2σn(.)‖l

µ(t)

= O

(

m
(

(n+ 1)−1
)

µ
(

(n+ 1)−1
)

)

+O

(

∫ π

1
n+1

m(w)

w µ(w)
dw

)

(16)

Applying Minkowski’s inequality to (8), we get

‖Ω(u,w)‖l = ‖η(u+w)+η(u−w)− 2η(u)‖l

= O
(

m(w)
)

(17)

Also, by using Lemma 5.1 and (17), we have

‖σn(.)‖l ≤
(

∫ 1
n+1

0
+

∫ π

1
n+1

)

‖Ω(.,w)‖l |κN
n (w)| dw

= O
(

n

∫ 1
n+1

0
m(w) dw

)

+O
(

∫ π

1
n+1

m(w)

w
dw
)

= O
(

m
(

(n+ 1)−1
))

+O
(

∫ π

1
n+1

m(w)

w
dw
)

(18)

From (16) and (18), we have

‖σn(.)‖
µ
l
= ‖σn(.)‖l + sup

t 6=0

‖σn(.+ t)+σn(.− t)−2σn(.)‖l

µ(t)

= O
(

m
(

(n+1)−1
))

+O
(

∫ π

1
n+1

m(w)

w
dw
)

+O

(

m
(

(n+1)−1
)

µ
(

(n+1)−1
)

)

+O
(

∫ π

1
n+1

m(w)

w µ(w)
dw
)

=
4

∑
j=1

G j

In view of monotonicity of µ(w) for 0 < w ≤ π , we have

m(w) =
m(w)

µ(w)
.µ(w)≤ µ(π).

m(w)

µ(w)
= O

(m(w)

µ(w)

)

Therefore,

G1 = O(G3).

Again, by using monotonicity of µ(w),

G2 =

∫ π

1
n+1

m(w)

w
dv

=
∫ π

1
n+1

m(w)

w µ(w)
µ(w)dw ≤ µ(π)

∫ π

1
n+1

m(w)

w µ(w)
dw = O(G4)

Since,
m(w)
µ(w) is positive and increasing

G4 =

∫ π

1
n+1

m(w)

w µ(w)
dw

=
m

(

(n+ 1)−1
)

µ
(

(n+ 1)−1
)

∫ π

1
n+1

dw

w
≥

m

(

(n+ 1)−1
)

µ
(

(n+ 1)−1
)
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Therefore,

G3 = O(G4).

Thus,

‖σn(.)‖
µ
l = O(G4) = O

(

∫ π

1
n+1

m(w)

w µ(w)
dw

)

Hence,

En(η) = inf
n
‖σn(.)‖

µ
l = O

(

∫ π

1
n+1

m(w)

w µ(w)
dw
)

This completes the proof of the Main Theorem.

6 Conclusion

It can be seen that our main theorem is the generalization
of the result due to Das et al.[2]. The result obtained by us
is clearly the best approximation even though our result
seems to be similar with the results obtained earlier by
many researchers, as we have used the HL-series instead
of Fourier series and single mean instead of product
mean. Our result can be further generalized by taking
product summability mean, which can be treated as the
future scope for the researchers.
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