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Abstract: In this article, we applied two different methods namely as the (1/G
′
)-expansion method and the Bernoulli sub-equation

method to investigate the generalized Kadomtsev-Petviashvili modified equal width-Burgers equation, which is designated the

propagation of long-wave with dissipation and dispersion in nonlinear media. To transform the given equation into a nonlinear

ordinary differential equation, a traveling wave transformation has been carried out. As a result, we constructed distinct exact solutions

like complex solutions, singular solutions, and complex singular solutions. Besides, 2D, 3D, and contour surfaces are illustrated to

demonstrate the physical properties of the obtained solutions.
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1 Introduction

Nonlinear evolution equations (NLEEs) have been helpful
to implement for representing the natural phenomena of
sciences and engineering. NLEEs covers several areas of
science, like physics, mathematics, and engineering [1,2,
3]. Recently, research on the propagation of nonlinear
equations among researchers has received a great deal of
attention, such as Alberto et al. have been investigated the
relation between the Langmuir wave field and the
transverse electromagnetic field [1]. The behavior of ion-
solitary waves in plasma was investigated by Pakzad [2].
Salahuddin et al. have been analyzed the ion-acoustic
cover solitons in a collisionless unmagnetized
electron-positron-ion plasma [3]. Various numerical and
computational approaches have been formulated to handle
the solutions of these types of nonlinear models, such as
the exp-function scheme [4], the Homotopy perturbation
scheme [5], the Adomian decomposition scheme [6], the

sin-Gordon scheme [7], the (G/G
′
)-expansion scheme

[8], the Shooting scheme [9], and Hirota’s simple method
[10,11,12,13,14,15]. Many of these methods are
problem-dependent. Some of the methods work well for
some problems but are not suitable for other different
problems [16,17,18,19,20,21,22,23,24,25,26].

The Kadomtsev-Petviashvili (KP) equation was
introduced by two Soviet physicists, Kadomtsev and
Petviashvili in 1970 [27], this model is represented by the
Korteweg-de Vries (KdV) equation. The KP equation was
instantly adopted as a natural amplification of the
classical KdV equation to two locative dimensions and
was subsequently reproduced as a model for surface and
inner water waves [28], and in nonlinear optics in [29].
The exploration of the KP equation occurred nearly
meanwhile with the progress of the inverse scattering
transform (IST) [30,31].

The generalized KP-MEW equation [32] is given by

(qt +α (qn)x+ γqxxt)x + δqyy = 0, (1)

where α,γ , and δ are constants. Recently, many authors
investigated the different types of solutions of generalized
(KP-MEW) equations with the help of different
techniques. Wazwaz [32] explored the exact solutions
with distinct physical structures of generalized
(KP-MEW) equation with the aid of two approaches, the
tanh method, and the sine-cosine method. Saha [33]
discovered the traveling wave solutions of generalized
(KPMEW) equation by using the method of bifurcation
theory. Wei et al. [34] developed the solitary wave
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solutions of generalized (KP-MEW) (2,2) equation by
applying the differential equations qualitative theory. Li
and Song [35] constructed the kink-type wave and
comaction-type wave solutions of generalized KP-MEW
(2,2) equation. The Lie symmetry analysis was carried
out by Adem et al. [36], and the symmetries and adjoint
representations are supplied. Cai et al. [37] investigated
the KP-MEW (3,2) problem and created parametric
representations of periodic peakon and smooth periodic
wave solutions using the approach of bifurcation theory of
dynamical systems. Wei et al. [38] solved the KP-MEW
(2, 2) problem using the qualitative theory of differential
equations and found single peak solitary wave solutions.
Zhong et al. [39] found compacton, peakon, cuspons,
loop solutions and smooth solitons for the generalized
KP-MEW equation. The generalized KP-MEW-Burgers
equation, which was introduced for the first time [40] as

(qt +α (qn)x+β qxx − γqxxt)x + δqyy = 0, (2)

where β is referred to damping parameter, the first term is
represented as an evolution term, the second term
expresses as a nonlinear term, the thirds one is typified as
a dissipative term and the fourth term stands for
dispersion term. Saha [40] obtained the bifurcation
behavior of the KP-MEW-Burgers equation, also he has
presented the stable oscillations of the KP-MEW-Burgers
equation. Seadawy et al. [41] used the modified extended
auxiliary equation mapping method, the single
bright–dark solitons, the double bright–dark solitons, and
traveling wave solutions have obtained. In this study, we
construct distinct exact solutions like complex solutions,
and complex singular solutions in terms of periodic, as
well as singular solutions. These new solutions are
obtained by using two different methods, which are

(1/G
′
)-expansion method and the Bernoulli sub-equation

method.
The outlines of the paper are designed as follows: In

Section 2, fundamental concepts of the (1/G
′
)-expansion

method are presented, and the Bernoulli sub-equation
method are presented. In Section 3, the mathematical
calculation of the given equation is addressed as well as
the implementation of both methods to the governing
equation is presented, and eventually, results are
concluded in Section 4.

2 Methodology

In the current section, the main concepts of the (1/G
′
)-

expansion method and the Bernoulli sub-equation method
(BSEM) are addressed in this section.

2.1 The (1/G
′
)-expansion scheme

The main steps of the (1/G
′
)-expansion method are

presented in this portion [42,43]:
Step 1. Consider the following nonlinear partial

differential equation (NPDE):

P(q,qt ,qx,qxt ,qxx, ...) = 0. (3)

Step 2. Let the following wave transform

q(x, t) = H (ξ ) , ξ = a(x− bt), (4)

where a, and b are non zero constants.
Inserting Eq. (4) into Eq. (3), we get the nonlinear

ordinary differential equation (NODE)

N(H
′
,H

′′
,H

′′′
, ...) = 0. (5)

Step 3. Let the solution of Eq. (5) could be specified

as a polynomial in
(

1/G
′
)

as

H (ξ ) =
k

∑
i=0

Ai

(

1

G′

)i

, (6)

where A0, A1, A2, ...,Ak are constants to be announced
later, and k is a balance terms, and G = G(ξ ) satisfy the
following second order linear ordinary differential
equation:

G
′′
+λ G

′
+ µ = 0, (7)

where λ and µ are constants to be announced later.
Plugging Eq. (6) with Eq. (7) into Eq. (5), one may

acquire a polynomial of
(

1
G′
)

. Setting the coefficients of
(

1
G′
)

with likely order to zero, one cane obtained a system
of equations. Solving the obtained system, we get the value
of Ai, i ≥ 0 and λ , µ scalars and then putting the founded
values into Eq. (6), one can easily get the solutions of Eq.
(3).

2.2 The BSEM

In the current subsection, the main concepts of the BSEM
are presented [20].

Step 1. Let the NPDE

P(qx,qt ,qxt ,qxx, . . .) = 0. (8)

Consider the following wave transformation

q(x, t) = H (ξ ) , ξ = αx−β t, (9)

where α, β are nonzero scalars.
Plugging Eq. (9) into Eq. (8), we obtain the NODE as

follows:
N
(

H,H ′,H ′′, . . .
)

= 0. (10)

Step 2. Take the solution of Eq. (10) of the form:

H =
k

∑
i=0

AiF
i = A0 +A1F +A2F2 + . . .+AkFk, (11)
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and

F ′ = bF + dFM,b 6= 0,d 6= 0, M ∈ R−{0,1,2} , (12)

where F = F (ξ ) is the Bernoulli differential polynomial,
putting Eq. (11) along with Eq. (12) in Eq. (10), one can
obtain an equation of polynomial Φ (F (ξ )) of F (ξ ) as
follows:

Φ (F) = ρrFr + . . .+ρ1F +ρ0 = 0. (13)

By using the balance principle, the relationships among k

and M will be found.
Step 3. Let the coefficients of Φ (F) all be zero,

obtaining a system of equations as follows:

ρ1 = 0, i = 0, . . . ,r, (14)

solving the obtained system, the values of A0, ...,Am will
be found.

Step 4. By solving Eq. (12), two situations are
obtained as

F (ξ ) =

[−d

b
+

E

eb(M−1)ξ

] 1
1−M

, b 6= d, (15)

F (ξ )=





(E −1)+(E +1) tan
(

b(1−M)ξ
2

)

1− tan
(

b(1−M)ξ
2

)





1
1−M

, b= d , E ∈R,

(16)

where E is a constant of integration, with the assist of
computational computer packets, the solutions of Eq. (10)
can be achieved.

3 Mathematical calculation

In this portion, we try to find some distinct wave solutions
of the generalized KP-MEW-B equation via applying two
recent analytical schemes, which is given by [38]

(qt +α (qn)x+β qxx − γqxxt)x + δqyy = 0, (17)

Consider n = 2, then Eq. (17) takes the form

(qt +α
(

q2
)

x+β qxx − γqxxt)x
+ δqyy = 0. (18)

Let the following wave transformation

q(x,y, t) = H (ξ ) , ξ = kx+ ly−ωt. (19)

Plugging Eq. (19) into Eq. (18), we get

−ωkH
′′
+2αk2

(

HH
′)

ξ
+βk3H

′′′
+ γωk3H

′′′′
+ l2δH

′′
= 0.

(20)

Integrating Eq. (20) twice with respect to ξ , and letting the
integration constants to be zero, then Eq. (20) reduces to
the following form

(

l2δ −ωk
)

H +αk2H2 +β k3H
′
+ γωk3H

′′
= 0. (21)

3.1 Application of the (1/G
′
)-expansion method

In this portion, implementation of the (1/G
′
)-expansion

method to the generalized KP-MEW-B equation is

presented. Balancing H
′′

and H2 in Eq. (21), we get
k = 2. With k = 2 Eq. (6) reduces to the form

H = A0 +A1

(

1

G′

)

+A2

(

1

G′

)2

, (22)

H ′ =−2A2 (−µ −λ G′)

(G′)3
− A1 (−µ −λ G′)

(G′)2
, (23)

and

H ′′ =
2A2λ (−µ −λ G′)

(G′)3
+

A1λ (−µ −λ G′)

(G′)2

+
6A2(−µ −λ G′)2

(G′)4
+

2A1(−µ −λ G′)2

(G′)3
.

(24)

Plugging Eq. (22), Eq. (23) and Eq. (24) into Eq. (21), we
get a polynomial in powers of ( 1

G′ ) as follows:

a2
0k2α + a0l2δ − a0kω +

a2
2k2α

(G′)4
+

6a2k3γµ2ω

(G′)4

+
2a1a2k2α

(G′)3
+

2a2k3β µ

(G′)3
+

10a2k3γλ µω

(G′)3
+

2a1k3γµ2ω

(G′)3
+

a2
1k2α

(G′)2
+

2a0a2k2α

(G′)2
+

a2l2δ

(G′)2
+

2a2k3β λ

(G′)2
+

a1k3β µ

(G′)2
− a2kω

(G′)2
+

4a2k3γλ 2ω

(G′)2
+

3a1k3γλ µω

(G′)2
+

2a0a1k2α

G′ +
a1l2δ

G′ +
a1k3β λ

G′

− a1kω

G′ +
a1k3γλ 2ω

G′ = 0.

Combining the coefficients of ( 1
G′ ) with the same powers,

and setting each collection to zero, gives a system of
equations as follows:

Constants : A2
0k2α +A0l2δ −A0kω = 0,

1

G′ : 2A0A1k2α +A1l2δ +A1k3βλ −A1kω +A1k3γλ 2ω = 0,

1

(G′)2
: A2

1k2α +2A0A2k2α +A2l2δ +2A2k3βλ +A1k3β µ−

A2kω +4A2k3γλ 2ω +3A1k3γλ µω = 0,

1

(G′)3
: A1A2k2α +2A2k3β µ +10A2k3γλ µω +2A1k3γµ2ω = 0,

1

(G′)4
: A2

2k2α +6A2k3γµ2ω = 0.

To achieve the solutions of Eq. (21), we solve the above
system of equations.
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Set 1. When

A0 =− iβ

5α
√

γ
, A1 =−12(−1)1/4

l
√

β γ1/4
√

δ µ

5α
,

ω =−6(−1)3/4
l
√

β
√

δ

5γ1/4
, k =

(−1)1/4
lγ1/4

√
δ

√

β
,

A2 =−36l2γδ µ2

5α
,λ =

(−1)1/4
√

β

6lγ3/4
√

δ
,

(25)

we get the following complex periodic solutions (as seen
in figure 1):

q(x,y, t) =
−iβ

5α
√

γ
− 36l2γδ µ2

5α

(

be
− (−1)1/4

√
βξ

6lγ3/4
√

δ +
6(−1)3/4

lγ3/4
√

δ µ√
β

)2

− 12(−1)1/4l
√

βγ1/4
√

δ µ

5α

(

be
− (−1)1/4

√
β ξ

6lγ3/4
√

δ +
6(−1)3/4

lγ3/4
√

δ µ√
β

) .

(26)

Fig. 1: The sketch of Eq. (26) where λ = 0.2, µ = 2, b =
0.02, l = 0.01, γ = 0.9, δ = 5, α = 0.5, and β = 0.06.

Set 2. When

A0 =
A2λ 2

µ2
, A1 =

2A2λ

µ
, α =

µ2
(

−l2δ + kω
)

a2k2λ 2
,

γ =
l2δ − kω

6k3λ 2ω
, β =

5l2δ − 5kω

6k3λ
,

(27)

we have the following singular solution (see figure 2):

q(x,y, t) =
A2λ 2

µ2
+

A2
(

be−λ (kx+ly−ωt)− µ
λ

)2

+
2Aa2λ

µ
(

be−λ (kx+ly−ωt)− µ
λ

) .

(28)

Fig. 2: The sketch of Eq. (28) where λ = 2.5, µ = 0.3, b =
5, k = 1.5, l = 0.2, a2 = 0.6, and ω = 0.9.

Set 3. When

A0 =
−5l2γδ +

√

γ (−24k4β 2 + 25l4γδ 2)

10k2αγ
,

A2 =−
3
(

5l2γδ +
√

γ (−24k4β 2 + 25l4γδ 2)
)

µ2

5α
,

λ =−−5l2γδ +
√

γ (−24k4β 2 + 25l4γδ 2)

12k3β γ
,

ω =
5l2γδ +

√

γ (−24k4β 2 + 25l4γδ 2)

10kγ
,

A1 =−12kβ µ

5α
,

(29)

c© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 2, 249-258 (2022) / www.naturalspublishing.com/Journals.asp 253

we construct the following singular solution (as shown in
figure 3):

q(x,y, t) =
D

10k2αγ
+











3Dµ2

5α

(

be
(D)ξ

12k3βγ + 12k3β γµ
D

)2











−









12kβ µ

5α

(

be
(D)ξ

12k3βγ + 12k3β γµ
D

)









,

(30)

where D =−5l2γδ +
√

γ (−24k4β 2 + 25l4γδ 2).

Fig. 3: The sketch of Eq. (30) using λ = 2.5, µ = 0.3, b= 5, k =
1.5, l = 0.2, a2 = 0.6, and ω = 0.9.

Set 4. When

A0 =− 6l2δ

5k2α
, A1 =

12il2√γδ µ

5kα
, A2 =

6l2γδ µ2

5α
,

β =− il2√γδ

k2
, λ =

i

k
√

γ
, ω =− l2δ

5k
,

(31)

we obtain the following complex periodic solutions (as
seen in figure 4):

q(x,y, t) =− 6l2δ

5k2α
+

6l2γδ µ2

5α

(

be
− iξ

k
√

γ + ik
√

γµ

)2

+
12il2√γδ µ

5kα

(

be
− iξ

k
√

γ + ik
√

γµ

) .

(32)

Fig. 4: The sketch of Eq. (32) using λ = 0.2, µ = 0.3, b =
0.5, k = 0.5, l = 0.2, γ = 0.5, δ = 0.3, and α = 0.4.

3.2 Implementation of the BSEM

In this portion, application of the BSEM to the generalized
KP-MEW-B equation is presented.

Balancing H
′′

and H2 in Eq. (21), yields the relation M =
k
2
+ 1, by choosing k = 4, we get M = 3. With k = 4 Eq.

(11) takes the form

H = A0 +A1F +A2F2 +A3F3 +A4F4, (33)

H ′ = A1

(

bF + dF3
)

+ 2A2F
(

bF + dF3
)

+

3A3F2
(

bF + dF3
)

+ 4A4F3
(

bF + dF3
)

,
(34)
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and

H ′′ = 2A2

(

bF + dF3
)2

+ 6A3F
(

bF + dF3
)2
+

A1

(

b
(

bF + dF3
)

+ 3dF2
(

bF + dF3
))

+ 2A2F
(

b
(

bF + dF3
)

+ 3dF2
(

bF + dF3
))

+ 3A3F2
(

b
(

bF + dF3
)

+ 3dF2
(

bF + dF3
))

+ 4A4F3
(

b
(

bF + dF3
)

+ 3dF2
(

bF + dF3
))

+ 12A4F2
(

bF + dF3
)2
.

(35)

Plugging Eq. (33), Eq. (34) and Eq. (35) into Eq. (21), we
have the following polynomial in powers of F :

A2
0k2α +A0l2δ −A0kω +2A0A1k2αF +A1bk3βF +A1l2δF

−A1kωF +A1b2k3γωF +A2
1k2αF2 +2A0A2k2αF2+

2A2bk3βF2 +A2l2δF2 −A2kωF2 +4A2b2k3γωF2+

2A1A2k2αF3 +2A0A3k2αF3 +3A3bk3βF3 +A1dk3βF3+

A3l2δF3 −A3kωF3 +9A3b2k3γωF3 +4A1bdk3γωF3+

A2
2k2αF4 +2A1A3k2αF4 +2A0A4k2αF4 +4A4bk3βF4+

2A2dk3βF4 +A4l2δF4 −A4kωF4 +16A4b2k3γωF4+

12A2bdk3γωF4 +2A2A3k2αF5 +2A1A4k2αF5 +3A3dk3βF5

+24A3bdk3γωF5 +3A1d2k3γωF5 +A2
3k2αF6 +2A2A4k2αF6

+4A4dk3βF6 +40A4bdk3γωF6 +8A2d2k3γωF6 +2A3A4k2αF7

+15A3d2k3γωF7 +A2
4k2αF8 +24A4d2k3γωF8 = 0.

Summing the coefficients of F with like powers, then
equating each summation to zero, yields the following
system of equations:

Constant : A2
0k2α +A0l2δ −A0kω,

F : 2A0A1k2α +A1bk3β +A1l2δ −A1kω +A1b2k3γω,

F2 : A2
1k2α +2A0A2k2α +2A2bk3β +A2l2δ −A2kω+

4A2b2k3γω,

F3 : 2A1A2k2α +2A0A3k2α +3A3bk3β +A1dk3β +A3l2δ

−A3kω +9A3b2k3γω +4A1bdk3γω,

F4 : A2
2k2α +2A1A3k2α +2A0A4k2α +4A4bk3β +2A2dk3β

+A4l2δ −A4kω +16A4b2k3γω +12A2bdk3γω,

F5 : 2A2A3k2α +2A1A4k2α +3A3dk3β +24A3bdk3γω+

3A1d2k3γω,

F6 : A2
3k2α +2A2A4k2α +4A4dk3β +40A4bdk3γω+

8A2d2k3γω,

F7 : 2A3A4k2α +15A3d2k3γω,

F8 : A2
4k2α +24A4d2k3γω,

To achieve the solutions of Eq. (21), we solve the
above system of equations.

Set 1. When

A0 =−12bkβ

5α
, A1 = 0, A2 =−24dkβ

5α
, A3 = 0,

A4 =−12d2kβ

5bα
, ω =

β

10bγ
, l =−

√
k
√

β
√

1+ 24b2k2γ√
10
√

b
√

γ
√

δ
,

(36)

we gain the following singular solution (as shown in figure
5):

q(x,y, t) =

(

−12bkβ

5α

)

−
(

12d2kβ

5b
(

− d
b
+ eBE

)2
α

)

(

24dkβ

5
(

− d
b
+ eBE

)

α

)

,

(37)

where B =−2b

(

kx− tβ
10bγ −

√
ky
√

β
√

1+24b2k2γ√
10
√

b
√

γ
√

δ

)

.

Fig. 5: The sketch of Eq. (37) using k = 0.3, E = 2, α = 4, b =
0.5, d = 0.4, β = 0.4, and δ = 2.5.

Set 2. When

A0 =− 6l2δ

5k2α
, A1 = 0, A2 =

24idl2√γδ

5kα
, β =− il2√γδ

k2
,

A3 = 0, A4 =
24d2l2γδ

5α
, b =

i

2k
√

γ
, ω =− l2δ

5k
,

(38)
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we get the following complex periodic singular solutions
(see figure 6):

q(x,y, t) =

(

6l2δ

5k2α

)

+

















24idl2√γδ

5kα



e
−

i

(

kx+ly+ l2tδ
5k

)

k
√

γ E +2idk
√

γ





















+



















24d2l2γδ

5α



e
−

i

(

kx+ly+ l2tδ
5k

)

k
√

γ E +2idk
√

γ





2



















.

(39)

Fig. 6: The sketch of Eq. (39) where k = 0.3, E = 4, α =
0.3, d = 3, β = 0.5, δ = 2, γ = 4, and l = 0.5.

Set 3. When

A0 =
24b2l2γδ

5α
, A1 = 0, A2 =

48bdl2γδ

5α
, A3 = 0,

A4 =
24d2l2γδ

5α
, ω =−2

5
ibl2√γδ , k =− i

2b
√

γ
,

β =−4ib2l2γ3/2δ ,

(40)

we construct the following periodic singular solution (as
shown in figure 7):

q(x,y, t) =

(

24b2l2γδ

5α

)

+

(

24d2l2γδ

5
(

− d
b
+ eAE

)2
α

)

+

(

48bdl2γδ

5
(

− d
b
+ eAE

)

α

)

,

(41)

where A =−2b
(

ly− ix
2b

√
γ +

2
5
ibl2t

√
γδ
)

.

Fig. 7: The sketch of Eq. (41) using E = 2, α = 2, b = 2, d =
3, l = 0.1, γ = 1.2, and δ = 6.
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4 Conclusion

This study developed a new technique to investigate the
generalized Kadomtsev–Petviashvili modified equal
width-Burgers equation that describes the propagation of
long-wave with dissipation and dispersion in nonlinear

media. The (1/G
′
)-expansion method and the Bernoulli

sub-equation method. Several new distinct analytical
solutions have been obtained, such as complex periodic
solutions as presented in figures 1, 4, singular solutions
are addressed in figures 2, 3, and 5, as well as complex
periodic singular solutions as shown in figures 6 and 7. In
order to understand the physical properties of the
obtained solutions, all of them are drawn in 2D, 3D, and
contour plots according to the convenient values of the
parameters. Both methods are efficient in achieving
analytical solutions for nonlinear partial differential
equations. All results are new when compared to other
soliton solutions reported in refs [34,35] and also all
solutions satisfy the main generalized KP-MEW-B
equation. We think these results can help to explain the
dynamic behaviors of the studied equation.
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