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Abstract: In this paper, we introduce a two parameter generalization of Lupas-Kantorovich operators based on Polya distribution. We

obtain the moments of the operators by deriving a recurrence relation and then prove and study Voronovskaja-type asymptotic theorem,

local approximation, weighted approximation, rate of convergence and pointwise estimates using the Lipschitz type maximal function.

Keywords: Asymptotic formula, modulus of continuity, K-functional, Polya distribution, weighted approximation.

1 Introduction and preliminaries

In the field of mathematical analysis, Karl Weierstrass
established an elegant theorem, the first Weierstrass
approximation theorem, in 1885. This theorem has
specially a big role in polynomial interpolation
corresponding to every continuous function f on interval
[a,b]. The proof given by Weierstrass was rigorous and
difficult to understand. In 1912, Bernstein [1] gave a
simple proof of this theorem by introducing the Bernstein
polynomials with the aid of the binomial distribution,
hence for f ∈C[0,1], we have

Bn( f ;x) =
n

∑
k=0

pn,k(x) f

(
k

n

)
,n ∈ N,

where pn,k(x) =
(

n
k

)
xk(1− x)n−k,x ∈ [0,1] is the Bernstein

basis function. Many mathematicians researched in this
direction and studied various modifications in several
functional spaces using different error optimization
techniques.
In 1930, Kantorovich [2] introduced the following
integral modification of Bernstein polynomials for
f ∈ L1[0,1](the class of Lebesgue integrable functions on
[0,1]):

Kn( f ;x) = (n+ 1)
n

∑
k=0

pn,k(x)

∫ 1

0
φn,k(t) f (t)dt,

where φn,k(t) is the characteristic function of the interval
[k/(n+ 1),(k + 1)/(n+ 1)]. After that Kantorovich type
modification of several sequences of linear positive
operators has been made and studied for their
approximation behaviour. Several researchers also defined
different types of generalizations of these operators and
studied their approximation properties, we refer the
reader to e.g. [[3], [4], [5]] etc.
In [6], for f ∈ C(I), I = [0,1], Miclaus studied some
approximation properties of Bernsteini Stancu type
operators based on Polya distribution given by

P
(1/n)
n ( f ;x) =

n

∑
k=0

p
(1/n)
n,k (x) f

(
k

n

)
, (1)

where

p
(1/n)
n,k (x) =

2(n!)

(2n)!

(
n

k

)
(nx)k(n− nx)n−k,

and (n)k = n(n + 1)(n + 2)...(x + k − 1) is the rising
factorial.
To approximate Lebesgue integrable functions, Agrawal
et al. [7] introduced the following Kantorovich type
modification of the operators defined by Lupas and Lupas
[8] as follows:

D
∗(1/n)
n ( f ;x) = (n+ 1)

n

∑
k=0

p
(1/n)
n,k (x)

∫ k+1
n+1

k
n+1

f (t)dt. (2)
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In [7], Agrawal et al. studied the Voronovskaja type
theorem, local approximation, pointwise estimates and
global approximation results. Later, Ispir et al. [9]
estimated the rate of convergence for absolutely
continuous functions having a derivative coinciding a.e.
with a function of bounded variation.
It is very well known that the polynomial approximation
of continuous functions has an important role in
numerical analysis. The Lagrange interpolating
polynomials have a great practical interest in
approximation theory of continuous functions, but they
do not provide always uniform convergence of
approximating sequences for any continuous function on
a compact interval of the real axis, no matter how the
nodes are chosen.
In 1905, Borel proposed a way to obtain an
approximation polynomial of a function f ∈ C[0,1] by
using an interpolation polynomial having a similar form
with the Lagrange ones and using the nodes
xn,k =

k
n
,k = 0,1...n and with an appropriate selection of

the basic polynomials pn,k(x).
In 1912, Bernstein had the wonderful idea to select
pn,k(x) =

(
n
k

)
xk(1 − x)n−k, inspired by the binomial

probability distribution. He considered the binomial
probability distribution assuming that the discrete random
variable has the value f ( k

n
) with probability pn,k(x) and

then he calculate the mean value. In 1969, [10], Stancu
wanted to choose the nodes in another different way, in
order to obtain more flexibility. So, he considered the
nodes such as, when n → ∞ the distance between two
consecutive nodes and the distance between 0 and first
node and also between last node and 1 to tend all to zero.
Thus, Stancu introduced the following linear positive
operators which are known as Bernstein-Stancu
polynomials in literature

P
(α ,β )
n ( f ;x) =

n

∑
k=0

pn,k(x) f

(
k+α

n+β

)
,

acting from C[0,1] into C[0,1], the space of all real valued
continuous functions defined on [0,1], where n ∈ N,
f ∈ C[0,1],x ∈ [0,1] and α,β are any two real numbers
which satisfy the condition that 0 ≤ α ≤ β .
In the recent years, Stancu type generalization of the
certain operators introduced by several researchers and
obtained different type of approximation properties of
many operators, we refer some of the important papers in
this direction as [11], [12], [13], [14], [15], [16], [17],
[18] etc.
Inspired by the above work, for f ∈ C[0,1] we introduce
the Stancu type generalization of the operators (2):

D
∗(1/n)
n,α ,β

( f ;x) = (n+β + 1)
n

∑
k=0

p
(1/n)
n,k (x)

∫ k+α+1
n+β+1

k+α
n+β+1

f (t)dt.(3)

The goal of the present paper is to study the basic
convergence theorem, Voronovskaja type asymptotic
result, local approximation theorem, rate of convergence,
weighted approximation and pointwise estimation of the
operators (3).

2 Moment and central moment estimates

In this section, we prove some basic results which are
useful to prove several theorems and results.
Let ei(t) = t i, i = 0,1,2,3,4.

Lemma 1.[7] For the operators D
∗(1/n)
n ( f ;x), we have

1.D
∗(1/n)
n (1;x) = 1;

2.D
∗(1/n)
n (t;x) = 2nx+1

2(n+1)
;

3.D
∗(1/n)
n (t2;x) = 3n3x2+9n2x−3n2x2+3nx+n+1

3(n+1)3 ;

4.D
∗(1/n)
n (t3;x) =

4(n5+3n4+2n3)x3+6(n4+n3−2n2)x2+4(n3+9n2+2n)x+(n+1)(n+2)
4(n+1)4(n+2)

;

5.D
∗(1/n)
n (t4;x) = n4x4

(n+1)4 +

x(1−x)(60x2n7+60x2n5+180n6x−60n5x+130n5−10n4)

5n(n+1)5(n+2)(n+3)
+ nx

(n+1)4

+
2n2(n3+10n2−3n−10)x2+8n2(1+2n)x2−12n4x3

(n+1)5(n+2)
.

Lemma 2.For x ∈ I and 0 ≤ α ≤ β , we have the
following recursive relation between

D
∗(1/n)
n,α ,β (tm;x),m = 0,1,2... and D

∗(1/n)
n (t i;x), i = 0,1,2...

where f (t) = t i is the test function as

D
∗(1/n)
n,α ,β ( f ;x) =

m

∑
i=0

(
m

i

)(
n

n+β

)i( α

n+β

)m−i

D
∗(1/n)
n (t i;x).

Proof.From equation (3), we have

D
∗(1/n)
n,α ,β ( f ;x) = (n+β + 1)

n

∑
k=0

p
(1/n)
n,k (x)

∫ k+α+1
n+β+1

k+α
n+β+1

f (t)dt.

We can rewrite this equation as

D
∗(1/n)
n,α ,β

( f ;x)

= (n+β +1)
n

∑
k=0

p
(1/n)
n,k (x)

∫ k+1
n+1

k
n+1

f

(
nt +α

n+β

)
.

n+1

n+β +1
dt

= (n+1)
n

∑
k=0

p
(1/n)
n,k (x)

∫ k+1
n+1

k
n+1

f

(
nt +α

n+β

)
dt

= (n+1)
n

∑
k=0

p
(1/n)
n,k (x)

∫ k+1
n+1

k
n+1

m

∑
i=0

(
m

i

)(
nt

n+β

)i( α

n+β

)m−i

dt.

D
∗(1/n)
n,α ,β ( f ;x)

=
m

∑
i=0

(
m

i

)(
n

n+β

)i( α

n+β

)m−i

(n+1)
n

∑
k=0

p
(1/n)
n,k (x)

∫ k+1
n+1

k
n+1

t idt

=
m

∑
i=0

(
m

i

)(
n

n+β

)i( α

n+β

)m−i

D
∗(1/n)
n (t i;x).

Lemma 3.For the operators D
∗(1/n)
n,α ,β

( f ;x), we have

1.D
∗(1/n)
n,α ,β

(1;x) = 1;

2.D
∗(1/n)
n,α ,β (t;x) =

2n2x+n+2α(n+1)
2(n+β )(n+1) ;

c© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 2, 259-268 (2022) / www.naturalspublishing.com/Journals.asp 261

3.D
∗(1/n)
n,α ,β (t2;x) = n4(n−1)x2

(n+β )2(n+1)3 +
(n3(3n+1)+2n2α(n+1)2)x

(n+β )2(n+1)3 +

n2+3nα(n+1)+3α2(n+1)2

3(n+β )2(n+1)2 ;

4.D
∗(1/n)
n,α ,β (t3;x) = 1

4(n+β )3(n+1)4(n+1)

(
4n8(n + 2)x3 +

6n7x2(1−x)
n+1

+ 6n6x(1−x)
n+2

+ 6n5x(1 − x) + 6n4x + 5n3 +

3n2α(n + 2)(n3x2 + 5n2x − n2x2 + 3nx + 2n + 3)
)
+

3nα2(nx+1)+α3(n+1)

(n+β )3(n+1)
;

5.D
∗(1/n)
n,α ,β

(t4;x) = 1
(n+β )4n(n+1)5(n+2)(n+3)

(
n11(n+1)x4+

11n10(n2+1)x3(1−x)
(n+2)(n+3) + 6n8(3n−1)x2(1−x)

(n+1)(n+2) +

5n7(11n−1)x(1−x)
(n+2)(n+3)

+ 10n7(n + 1)x3 + 48n8x2(1−x)
(n+2)

+

60n7x(1−x)
(n+2) + 55n6(n+ 1)x2 + 70n6x(1− x)+ 50n5(n+

1)x + 24n4(n + 1) + 4n6(n + 1)αx3 + 8n7x2(1−x)α
n+2

+
11n6x(1−x)α

n+2
+ 6n5x(1 − x)α + 11n4(n + 2)αx +

4n3(n + 3)αx + 6n2α2(n + 2)(n + 3)(n3x2 + 2n2x −
n2x2 + 4nx+ 2n+ 2)

)
+ 6nα3(nx+1)+α4(n+1)

(n+β )4(n+1)
.

Proof.From Lemma 1 and recursive relation in Lemma 2,
we prove Lemma 3.

Lemma 4.For f ∈C(I) (space of all real valued functions

on I endowed with norm ‖ f ‖C(I)= sup
x∈I

| f (x)|), we have

‖ D
∗(1/n)
n,α ,β

( f ) ‖≤‖ f ‖ .

Proof.In view of (3) and Lemma 3, we get

‖D
∗(1/n)
n,α ,β ( f )‖ ≤ (n+β + 1)

n

∑
k=0

p
(1/n)
n,k (x)

∫ k+α+1
n+β+1

k+α
n+β+1

| f (t)|dt

≤ ‖ f‖D
∗(1/n)
n,α ,β

(1;x) = ‖ f‖.

Remark.By simple applications of Lemma 3, we have

D
∗(1/n)
n,α ,β ((t − x);x) =

n(1+ 2α)+ 2α− 2(n+ nβ +β )x

2(n+β )(n+ 1)

= ξ
∗(1/n)
n,α ,β (x)

and
D
∗(1/n)
n,α ,β

(
(t − x)2;x

)

=
dn(β )x

2

(n+β )2(n+ 1)3
+

dn(α,β )x

(n+β )2(n+ 1)3

+
n2 + 3nα(n+ 1)+ 3α2(n+ 1)2

3(n+β )2(n+ 1)2

= ζ
∗(1/n)
n,α ,β (x),

where dn(β ) = −2n4 + n3 + n3β 2 + 2n3β + 3n2β 2 +
3nβ 2 + 4n2β + 2nβ + n2 +β 2 and dn(α,β ) = 3n4 + n3 +
2n2α(n+ 1)2 − (n+ 2nα+ 2α)(n+β )(n+ 1)2.
Further,

D
∗(1/n)
n,α ,β

(
(t − x)4;x

)
= O

(
1

n2

)
, as n → ∞.

3 Direct Estimates

In this section we give some approximation results in
several settings. For the reader’s convenience we split up
this section in more subsections.

Theorem 1.Let f ∈C[0,1]. Then lim
n→∞

D
∗(1/n)
n,α ,β ( f ;x) = f (x),

uniformly in each compact subset of [0,1].

Proof.In view of Lemma 3, we get

lim
n→∞

D
∗(1/n)
n,α ,β (ei;x) = xi, i = 0,1,2,

uniformly in each compact subset of [0,1]. Applying
Bohman-Korovkin theorem, it follows that

lim
n→∞

D
∗(1/n)
n,α ,β ( f ;x) = f (x), uniformly in each compact

subset of [0,1].

3.1 Voronovskaja type theorem

A general Voronovskaja type theorem for a sequence of
linear positive operators (Ln)n, is a limit of the form:

lim
n→∞

αn (Ln( f ;x)− f (x)) = E(x, f ′(x), f ′′, ...).

For classical operators of approximation the usual value
for αn is αn = n.
Now, we prove Voronvoskaja type theorem for the

operators D
∗(1/n)
n,α ,β .

Theorem 2.Let f be a bounded and integrable function

on [0,1], second derivative of f exists at a fixed point x ∈
[0,1], then

limn→∞ n
(

D
∗(1/n)
n,α ,β

( f ;x)− f (x)
)

=

(
(2α + 1)− 2(β + 1)x

2

)
f ′(x)+ x(1− x) f ′′(x).

Proof.Let x ∈ [0,1] be fixed. Using Taylor’s expansion
formula of function f , it follows

f (t) = f (x)+(t −x) f ′(x)+
1

2
(t −x)2 f ′′(x)+ r(t,x)(t −x)2, (4)

where r(t,x) is a continuous function on [0,1] and
lim
t→x

r(t,x) = 0.

Applying D
∗(1/n)
n,α ,β on both sides of (4), we get

n
(

D
∗(1/n)
n,α ,β

( f ;x)− f (x)
)
= n f ′(x)D∗(1/n)

n,α ,β
((t − x);x)

+
1

2
n f ′′(x)D∗(1/n)

n,α ,β

(
(t − x)2;x

)

+nD
∗(1/n)
n,α ,β

(
(t − x)2r(t,x);x

)
.

In view of Remark 2, we have

lim
n→∞

nD
∗(1/n)
n,α ,β

((t − x);x) =
(2α + 1)− 2(β + 1)x

2
(5)
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and

lim
n→∞

nD
∗(1/n)
n,α ,β

(
(t − x)2;x

)
= 2x(1− x). (6)

Now, we shall show that

lim
n→∞

nD
∗(1/n)
n,α ,β

(
r(t,x)(t − x)2;x

)
= 0.

By using Cauchy-Schwarz inequality, we have

D
∗(1/n)
n,α ,β

(
r(t,x)(t − x)2;x

)
≤

(
D
∗(1/n)
n,α ,β

(r2(t,x);x)
)1/2

(
D
∗(1/n)
n,α ,β ((t − x)4;x)

)1/2

.(7)

We observe that r2(x,x) = 0 and r2(.,x) ∈C[0,1]. Then, it
follows that

lim
n→∞

D
∗(1/n)
n,α ,β

(r2(t,x);x) = r2(x,x) = 0. (8)

Now, from (7) and (8) we obtain

lim
n→∞

nD
∗(1/n)
n,α ,β

(
r(t,x)(t − x)2;x

)
= 0. (9)

From (5), (6) and (9), we get the required result.

Next theorem uses the asymptotic formulae fulfilled

by D
∗(1/n)
n,α ,β and D

∗(1/n)
n to state a sort of weak result that

shows that for certain family of illustrative functions the
new sequence approximates better than the previous
operators.

Theorem 3.Let f ∈C2(I). Assume that there exists n0 ∈N,
such that

f (x) ≤ D
∗(1/n)
n,α ,β ( f ;x) ≤ D

∗(1/n)
n ( f ;x), (10)

for all n ≥ n0 and x ∈ (0,1). Then

x(1− x) f ′′(x)≥ (α −β x) f ′(x)≥ 0, x ∈ (0,1). (11)

Particular f ′(x)≥ 0 and f ′′(x)≥ 0.

Conversely, if (12) holds with strict inequalities at a given

point x ∈ (0,1), then there exists n0 ∈ N such that for n ≥
n0

f (x) < D
∗(1/n)
n,α ,β ( f ;x) < D

∗(1/n)
n ( f ;x).

Proof.From (10) we have that

0 ≤ n(D
∗(1/n)
n,α ,β

( f ;x)− f (x)) ≤ n(D
∗(1/n)
n ( f ;x)− f (x)),

for all n ≥ n0 and x ∈ (0,1).
Then, using Theorem 2 and [7],

0 ≤ (α −β x) f ′(x)≤ x(1− x) f ′′(x),

from which (12) follows directly.
Conversely, if (12) holds with strict inequalities for a given
x ∈ (0,1), then directly

0 < (α −β x) f ′(x)< x(1− x) f ′′(x),

and using again Theorem 2 and [7], the proof follows.

3.2 Local approximation

This section deals with the local approximation properties
for the defined operators.
For CB[0,∞), let us consider the following K-functional:

K2( f ;δ ) = inf
x∈W 2

∞

{‖ f − g ‖+δ ‖ g′′ ‖},

where δ > 0 and W 2
∞ = {g ∈ CB[0,∞) : g′,g′′ ∈CB[0,∞)}.

By p. 177, Theorem 2.4 in [19], there exists an absolute
constant M > 0 such that

K2( f ;δ ) ≤ Mω2( f ;
√

δ ), (12)

where ω2( f ;
√

δ ) is second order modulus of continuity
defined by

ω2( f ;
√

δ ) = sup
0<|h|≤

√
δ

sup
x∈[0,∞)

| f (x+2h)−2 f (x+h)+ f (x) | .

The usual modulus of smoothness (or simply modulus of
continuity of first order) for f ∈ CB[0,∞) gives the
maximum oscillation of f in any interval of length not
exceeding δ > 0 and is defined as

ω( f ,δ ) = sup
0<|h|≤δ

sup
x∈[0,∞)

| f (x+ h)− f (x) | .

Now, we present the direct local approximation theorem

for the operators D
∗(1/n)
n,α ,β ( f ;x) .

Theorem 4.Let f ∈ C[0,1]. Then, for every x ∈ [0,1], we
have

| D
∗(1/n)
n,α ,β ( f ;x)− f (x) | ≤ Mω2

(
f ,χ

∗(1/n)
n,α ,β (x)

)
+ω

(
f ,ξ

∗(1/n)
n,α ,β

)
,

where M is a positive constant and

χ
∗(1/n)
n,α ,β (x) =

(
ζ
∗(1/n)
n,α ,β (x)+

(
ξ
∗(1/n)
n,α ,β

)2)1/2

.

Proof.For x ∈ [0,1], we consider the auxiliary operators

D
∗(1/n)
n,α ,β defined by

D
∗(1/n)
n,α ,β ( f ;x)

= D
∗(1/n)
n,α ,β

( f ;x)− f

(
2n2x+ n+ 2α(n+ 1)

2(n+β )(n+ 1)

)
+ f (x).(13)

From Lemma 3, we observe that the operators D
∗(1/n)
n,α ,β are

linear and reproduce the linear functions.
Hence

D
∗(1/n)
n,α ,β ((t − x);x) = 0. (14)

Let g∈W 2
∞ and x, t ∈ [0,1]. By Taylor’s expansion we have

g(t) = g(x)+ (t − x)g′(x)+
∫ t

x
(t − v)g′′(v)dv.

Applying the operator D
∗(1/n)
n,α ,β on both sides of the above

equation and using (14), we get

D
∗(1/n)
n,α ,β (g;x)− g(x) = D

∗(1/n)
n,α ,β

(∫ t

x
(t − v)g′′(v)dv,x

)
.

c© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 2, 259-268 (2022) / www.naturalspublishing.com/Journals.asp 263

Thus, by (13) we get

|D∗(1/n)
n,α ,β (g;x)−g(x)|

≤ D
∗(1/n)
n,α ,β

(∣∣∣∣
∫ t

x
(t −v)g′′(v)dv

∣∣∣∣,x
)

+

∣∣∣∣
∫ 2n2x+n+2α(n+1)

2(n+β )(n+1)

x

(
2n2x+n+2α(n+1)

2(n+β )(n+1)
−v

)
g′′(v)dv

∣∣∣∣

≤
(

ζ
∗(1/n)
n,α ,β

(x)+

(
ξ
∗(1/n)
n,α ,β

(x)

)2)
‖ g′′ ‖

≤
(

χ
∗(1/n)
n,α ,β (x)

)2
‖ g′′ ‖ . (15)

On other hand, by (13) and Lemma 4, we have

|D∗(1/n)
n,α ,β ( f ;x)| ≤ ‖ f ‖ . (16)

Using (15) and (16) in (13), we obtain

|D∗(1/n)
n,α ,β

( f ;x)− f (x)|

≤ |D∗(1/n)
n,α ,β ( f −g;x)|+ |( f −g)(x)|+ |D∗(1/n)

n,α ,β (g;x)−g(x)|

+

∣∣∣∣ f

(
2n2x+n+2α(n+1)

2(n+β )(n+1)

)
− f (x)

∣∣∣∣

≤ 2 ‖ f −g ‖+
(

χ
∗(1/n)
n,α ,β

(x)
)2

‖ g′′ ‖

+

∣∣∣∣ f

(
n2x+n(α +1)+2α

(n+β )(n+2)

)
− f (x)

∣∣∣∣.

Taking infimum over all g ∈W 2
∞, we get

| D
∗(1/n)
n,α ,β

( f ;x)− f (x) |

≤ K2

(
f ,(χ

∗(1/n)
n,α ,β (x))2

)
+ω

(
f ,ξ

∗(1/n)
n,α ,β (x)

)
.

In view of (12), we get

| D
∗(1/n)
n,α ,β ( f ;x)− f (x) |

≤ Mω2

(
f ,χ

∗(1/n)
n,α ,β

(x)
)
+ω

(
f ,ξ

∗(1/n)
n,α ,β

(x)
)
,

which completed the proof.

Next, we obtain the local direct estimate of the
operators defined in (3), using the Lipschitz-type maximal
function of order η introduced by B. Lenze [20] as
follows:

ω̃η( f ,x) = sup
t 6=x,t∈[0,1]

| f (t)− f (x)|
|t − x|η ,x ∈ [0,1],η ∈ (0,1].(17)

Here, an upper bound can be obtained for the defined
operators (3) with the function in the terms of Lipschitz
Maximal function.

Theorem 5.Let f ∈ C[0,1] and 0 < η ≤ 1. Then, for all

x ∈ [0,1], we have

|D∗(1/n)
n,α ,β

( f ;x)− f (x)| ≤ ω̃η ( f ,x)
(

ζ
∗(1/n)
n,α ,β

(x)
)η/2

.

Proof.In view of (17), we have

| f (t)− f (x)| ≤ ω̃η( f ,x)|t − x|η

and

|D∗(1/n)
n,α ,β ( f ;x)− f (x)| ≤ ω̃η( f ,x)D

∗(1/n)
n,α ,β (|t − x|η ;x).

Applying the Hölder’s inequality with p =
2

η
and

1

q
= 1−

1

p
, we get

|D∗(1/n)
n,α ,β

( f ;x)− f (x)| ≤ ω̃η( f ,x)D
∗(1/n)
n,α ,β

((t − x)2;x)η/2

≤ ω̃η( f ,x)
(

ζ
∗(1/n)
n,α ,β

(x)
)η/2

.

Thus, the proof is completed.

Özarslan and Aktuğlu [21] defined a new type of
Lipschitz-space having two parameters. Let a,b > 0 be
fixed numbers, then Lipschitz-type-space is defined by:

Lip
(a,b)
M (η) =

(
f ∈C[0,1] : | f (t)− f (x)| ≤ M

|t −x|η
(t +ax2 +bx)η/2

)
,

where M is a positive constant x, t ∈ (0,1) and 0 < η ≤ 1.
Using the above definition, we have the local
approximation result:

Theorem 6.Let f ∈ Lip
(a,b)
M (η). Then, for all x ∈ (0,1], we

have

|D∗(1/n)
n,α ,β ( f ;x)− f (x)| ≤ M


ζ

∗(1/n)
n,α ,β

(x)

ax2 + bx




η/2

.

Proof.First, we prove the result for the case η = 1. Then,

for f ∈ Lip
(a,b)
M (1), and x ∈ (0,1], we have

|D∗(1/n)
n,α ,β

( f ;x)− f (x)| ≤ D
∗(1/n)
n,α ,β

(| f (t)− f (x)|;x)

≤ MD
∗(1/n)
n,α ,β

( |t − x|
(t + ax2 + bx)1/2

;x

)

≤ M

(ax2 + bx)1/2
D
∗(1/n)
n,α ,β

(|t − x|;x).

Applying Cauchy-Schwarz inequality, we get

|D∗(1/n)
n,α ,β

( f ;x)− f (x)| ≤ M

(ax2 +bx)1/2

(
D
∗(1/n)
n,α ,β

((t −x)2;x)
)1/2

≤ M




ζ
∗(1/n)
n,α ,β

(x)

ax2 +bx




1/2

.

Thus the result holds for η = 1.
Now, we prove that the result is true for the case 0<η < 1.

Then, for f ∈ Lip
(a,b)
M (η), and x ∈ (0,1], we get

|D∗(1/n)
n,α ,β ( f ;x)− f (x)| ≤ M

(ax2 + bx)η/2
D
∗(1/n)
n,α ,β (|t − x|η ;x).
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Taking p = 1
η and q = 1

1−η , applying the Hölders

inequality, we have

|D∗(1/n)
n,α ,β ( f ;x)− f (x)| ≤ M

(ax2 +bx)η/2

(
D
∗(1/n)
n,α ,β (|t −x|;x)

)η
.

Finally by Cauchy-Schwarz inequality, we get

|D∗(1/n)
n,α ,β

( f ;x)− f (x)| ≤ M



ζ
∗(1/n)
n,α ,β (x)

ax2 + bx




η/2

.

Thus, the proof is completed.

3.3 Pointwise estimates

In the present section, we obtain some pointwise
estimates of the rate of convergence of the operators

D
∗(1/n)
n,α ,β . First, we give the relationship between the local

smoothness of f and local approximation.
We know that a function f ∈ C[0,1] is in LipM f

(η) on E ,

η ∈ (0,1], E⊂ [0,1] if it satisfies the condition

| f (t)− f (x)| ≤ M f |t − x|η , t ∈ E and x ∈ [0,1],

where M f is a constant depending only on η and f .

Theorem 7.Let f ∈ C[0,1]∩ LipM f
(η), η ∈ (0,1] and E

be any bounded subset of the interval [0,1]. Then, for each
x ∈ [0,1], we have

|D∗(1/n)
n,α ,β ( f ;x)− f (x)| ≤ M f

((
ζ
∗(1/n)
n,α ,β (x)

)η/2
+2(d(x,E))η

)
,

where M f is a constant depending on η and f and d(x,E)
is the distance between x and E defined as

d(x,E) = inf{|t − x| : t ∈ E}.

Proof.Let E be the closure of E in [0,1]. Then, there
exists at least one point x0 ∈ E such that

d(x,E) = |x− x0|.

From the triangle inequality, we have

| f (t)− f (x)| ≤ | f (t)− f (x0)|+ | f (x)− f (x0)|.

Using the definition of LipM f
(η), we get

|D∗(1/n)
n,α ,β ( f ;x)− f (x)|

≤ D
∗(1/n)
n,α ,β (| f (t)− f (x0)|;x)+D

∗(1/n)
n,α ,β (| f (x)− f (x0)|;x)

≤ M f

(
D
∗(1/n)
n,α ,β (|t − x0|η ;x)+ |x− x0|η

)

≤ M f

(
D
∗(1/n)
n,α ,β

(|t − x|η ;x)+ 2|x− x0|η
)
.

Now, applying Hölder’s inequality with p =
2

η
and

1

q
=

1− 1

p
, we obtain

|D∗(1/n)
n,α ,β ( f ;x)− f (x)|

≤ M f

(
{D

∗(1/n)
n,α ,β (|t − x|2;x)}η/2 + 2(d(x,E))η

)
,

from which the desired result immediate.

3.4 Rate of convergence

Let ωa( f ,δ ) denote the usual modulus of continuity of f

on the closed interval [0,a],a > 0, and defined as

ωa( f ,δ ) = sup
|t−x|≤δ

sup
x,t∈[0,a]

| f (t)− f (x)|.

We observe that for a function f ∈ CB[0,∞), the modulus
of continuity ωa( f ,δ ) tends to zero.
Now, we give a rate of convergence theorem for the

operators D
∗(1/n)
n,α ,β

.

Theorem 8.Let f ∈ CB[0,∞) and ωa+1( f ,δ ) be its

modulus of continuity on the finite interval

[0,a+ 1]⊂ [0,∞), where a > 0. Then, we have

|D∗(1/n)
n,α ,β ( f ;x)− f (x)|

≤ 6M f (1+ a2)ζ
∗(1/n)
n,α ,β

(a)+ 2ωa+1

(
f ,

√
ζ
∗(1/n)
n,α ,β

(a)

)
,

where ζ
∗(1/n)
n,α ,β (a) is defined in Remark 2 and M f is a

constant depending only on f .

Proof.For x ∈ [0,a] and t > a+1. Since t − x > 1, we have

| f (t)− f (x)| ≤ M f (2+ x2 + t2)

≤ M f (t − x)2(2+ 3x2+ 2(t − x)2)

≤ 6M f (1+ a2)(t − x)2.

For x ∈ [0,a] and t ≤ a+ 1, we have

| f (t)− f (x)| ≤ ωa+1( f , |t − x|)≤
(

1+
|t − x|

δ

)
ωa+1( f ,δ )

with δ > 0.
From the above, we have

| f (t)− f (x)| ≤ 6M f (1+a2)(t −x)2 +

(
1+

|t −x|
δ

)
ωa+1( f ,δ ),

for x ∈ [0,a] and t ≥ 0.
Thus
|D∗(1/n)

n,α ,β
( f ;x)− f (x)|

≤ 6M f (1+ a2)(D
∗(1/n)
n,α ,β

(t − x)2;x)

+ωa+1( f ,δ )

(
1+

1

δ
(D

∗(1/n)
n,α ,β

(t − x)2;x)
1
2

)
.
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Applying Cauchy-Schwarz’s inequality, we get

|D∗(1/n)
n,α ,β

( f ;x)− f (x)|

≤ 6M f (1+ a2)ζ
∗(1/n)
n,α ,β

(a)+ 2ωa+1

(
f ,

√
ζ
∗(1/n)
n,α ,β

(a)

)
,

on choosing δ =
√

ζ
∗(1/n)
n,α ,β (a). This completes the proof of

theorem.

3.5 Weighted approximation

In this section we give some weighted approximation

properties of the operators D
∗(1/n)
n,α ,β

. We do this for the

following class of continuous functions defined on [0,1].
Let Bν [0,1] denote the weighted space of real-valued
functions f defined on [0,1] with the property
| f (x)| ≤ M f ν(x) for all x ∈ [0,1], where ν(x) = 1+ x2 is
a weight function and M f is a constant depending on the
function f . We also consider the weighted subspace
Cν [0,1] of Bν [0,1] given by Cν [0,1] = { f ∈ Bν [0,1] : f is
continuous on [0,1]} and C∗

ν [0,1] denotes the subspace of

all functions f ∈ Cν [0,1] for which lim
|x|→∞

f (x)

ν(x)
exists

finitely.
It is obvious that C∗

ν [0,1]⊂Cν [0,1]⊂ Bν [0,1]. The space
Bν [0,1] is a normed linear space with the following norm:

‖ f ‖ν= sup
x∈[0,1]

| f (x)|
ν(x)

.

Theorem 9.For each f ∈C∗
ν [0,1], we have

lim
n→∞

‖ D
∗(1/n)
n,α ,β ( f )− f ‖ν= 0.

Proof.From [22], we know that it is sufficient to verify the
following three conditions

lim
n→∞

‖ D
∗(1/n)
n,α ,β (ei)− ei ‖ν= 0, i = 0,1,2. (18)

Since D
∗(1/n)
n,α ,β (1;x) = 1, the condition in (18) holds true for

i = 0.
By Lemma 3, we have

‖ D
∗(1/n)
n,α ,β

(t)− x ‖ν = sup
x∈[0,1]

|D∗(1/n)
n,α ,β

(t;x)− x|
1+ x2

≤
∣∣∣∣
2n+(n+ 1)(2α+β )

2(n+β )(n+ 1)

∣∣∣∣

which implies that lim
n→∞

‖ D
∗(1/n)
n,α ,β

(t)− x ‖ν= 0.

Again by Lemma 3, we have

‖ D
∗(1/n)
n,α ,β

(t2)−x2 ‖ν = sup
x∈[0,1]

|D∗(1/n)
n,α ,β

(t2;x)−x2|
1+x2

≤
∣∣∣∣

n4(n−1)

(n+β )2(n+1)3
−1

∣∣∣∣+
∣∣∣∣

(
n3(3n+1)+2n2α(n+1)2

)

(n+β )2(n+1)3

∣∣∣∣

+

∣∣∣∣
n2 +3nα(n+1)+3α2(n+1)2

3(n+β )2(n+1)2

∣∣∣∣,

which implies that lim
n→∞

‖ D
∗(1/n)
n,α ,β (t2)− x2 ‖ν= 0.

This completes the proof of theorem.

Now we give the following theorem to approximate all
functions in C∗

ν . Such type of results are given in [23] for
locally integrable functions.

Theorem 10.For each f ∈C∗
ν and ϑ > 0, we have

lim
n→∞

sup
x∈[0,1]

|D∗(1/n)
n,α ,β

( f ;x)− f (x)|
(1+ x2)1+ϑ

= 0.

Proof.For any fixed x0 ∈ [0,1],

supx∈[0,1]
|D∗(1/n)

n,α,β
( f ;x)− f (x)|

(1+x2)1+ϑ

≤ sup
x∈[0,x0]

|D∗(1/n)
n,α ,β ( f ;x)− f (x)|
(1+x2)1+ϑ

+ sup
x∈[x0,1]

|D∗(1/n)
n,α ,β ( f ;x)− f (x)|
(1+x2)1+ϑ

≤ ‖ D
∗(1/n)
n,α ,β ( f )− f ‖C[0,x0] + ‖ f ‖ν sup

x∈[x0,1]

|D∗(1/n)
n,α ,β (1+ t2;x)|
(1+x2)1+ϑ

+ sup
x∈[x0,1]

| f (x)|
(1+x2)1+ϑ

= J1 +J2 +J3, (say) (19)

Since ‖ f‖ν = supx∈[0,1]
| f (x)|
(1+x2)

=⇒ | f (x)| ≤ ‖ f‖ν(1+x2),

we obtain
J3 = supx∈[x0,1]

| f (x)|
(1+x2)1+ϑ

≤ sup
x∈[x0,1]

‖ f‖ν

(1+ x2)ϑ
≤ sup

x∈[x0,1]

‖ f‖ν

(1+ x2
0)

ϑ
(20)

Let ε > 0 be arbitrary. In view of Remark(2), there exists
a n0 ∈ N such that

‖ f‖ν
|D∗(1/n)

n,α,β
((1+t2);x)|

(1+x2)1+ϑ

<
‖ f‖ν

(1+ x2)1+ϑ

(
(1+ x2)+

ε

3‖ f‖ν
)

)
,∀ n ≥ n0

<
‖ f‖ν

(1+ x2)ϑ
+

ε

3(1+ x2)1+ϑ
, ∀ n ≥ n0.

Hence, J2 = ‖ f‖ν supx∈[x0,1]

|D∗(1/n)
n,α,β

((1+t2);x)|
(1+x2)1+ϑ <

‖ f‖ν

(1+x2
0)

ϑ + ε
3
, ∀ n ≥ n0.

Choose x0 large enough, so that
‖ f‖ν

(1+x2
0)

ϑ < ε
6
. Then, we

get

J2 + J3 <
2ε

3
, ∀n ≥ n0. (21)
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J1 = ‖D
∗(1/n)
n,α ,β ( f )− f‖C[0,x0] <

ε

3
∀n ≥ n1. (22)

Let n′ = max{n0,n1}. From (21) and (22) we have

lim
n→∞

sup
x∈[0,1]

|D∗(1/n)
n,α ,β ( f ;x)− f (x)|
(1+ x2)1+ϑ

< ε ∀n ≥ n′.

This completes the proof.
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