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Abstract: Many disciplines of pure and applied mathematics have found fractional integral inequalities to be one of the most significant
and powerful instruments for their progress. These inequalities get a variety of applications in numerical quadrature, transform theory,
probability, and statistical problems, however the most relevant one is determining the uniqueness of fractional boundary value problem
solutions. They also offer upper and lower limits for the solutions to the equations above. Among this article, we define an integral
inequality of Griiss type linked to the bounded integrable function associated with the fractional integral operator, which involves the
generalized multi-index Mittag-Leffler function as a kernel. Our key finding is of a general nature and may give rise, as a special case,
to integral inequalities of the type Griiss representing different fractional integral operators described in the literature.
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1 Introduction and Mathematical
Preliminaries

In 1935, Griiss [1] has defined and shown a valuable
inequality that defines the relationship between the
integral product of the two functions and the product of
the integrals of the individual functions, as:

Suppose p and ¢ are two integrable functions on [c,d|
and satisfy the inequalities: [ < p(t) < L and
m < q(t) <M for all ¢ € [¢,d] and I, L, m, M € R. The
preceding inequalities therefore hold true:
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The Griiss-inequality (1) has many applications in diverse
research subjects such as coding theory, difference

equations, integral arithmetic mean, numerical analysis,
spaces with inner product and statistics. Therefore, many
researchers have given ample attention to this inequality
(see, e.g., [2,3,4,5,6,7]). In addition, many researchers
have learned a great deal of fractional integral inequalities
and related applications through the usage of fractional
integral operators (see, for example, [8,9,10,11,12,13,
14]).

Recently, Srivastava et al. [15] defined a new
fractional integral operator containing generalized
multi-index Mittag-Leffler function (GMIMLF) as a
kernel. Using this fractional integral operator we propose
a new generalization of (1). First, we recall some basic
definitions available in the literature to establish the main
results.

In 1903, Gosta Mittag-Leffler [16] analyzed and
defined the Mittag-Leffler (M-L) function Ey, (u) as

r

EMH):;W’

(LeC,Ru)>0). (2

Since then numerous notable generalizations of popularly
known M-L function (2) have been presented in literature.

* Corresponding author e-mail: sunil_a_purohit@yahoo.com

@© 2022 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/amis/160214

270 NS E

K. Jangid et al.: Griiss type fractional integral inequality

In 1905, Wiman [17] generalized the M-L function and
defined as

ur

Eu,v(u)ima (1,veC, Ru)>0). (3

In 1971, Prabhakar [18] established a new generalization
of the M-L and Wiman'’s functions as

y v W
Ej v rZOF (irv) 1 (1, v,yeC, R(u) >0),
“)

where, (y), is a symbol of the Pochhammer and is
described as:
I'(y+r)
(’)/)r = ( ’
rw

Further, Srivastava and Tomovski [19] generalized the
function E}, , (1), and expressed as

(v,reC). (5

=

7,0 . (V)pr M_r
Eiv() =) T(ur+v)rl’ ©®

(u,v,y€ C, R(u) >max (0,R%(p) —1),%R(p) > 0).

Also, Shukla and Prajapati [20] gave the generalization of
the function Ezﬁv(u), which may be obtained by setting
p =g in (6).

Additionally, Salim and Faraj [21] introduced and
studied the subsequent two generalizations of above
mentioned Mittag-Leffler functions

B =y e )
w700 = Xy Far+v) ()0
(p,g €RT; 1,v,n,8 €C; R(u) >0)
and

() or(M)gr u’
6 (V)or(0)pr I'(ur+v)’

w,9.n.q _
u,v,v,c.ﬁ,p(”) -

®)

s

r

p:q €RT; g <R(u)+ps u,v,M,8,u,v,9,0 €C;
min{R(1),R(B),%R(0)} > 0.
In 2010, Saxena and Nishimoto [22,23] introduced and
defined a new GMIMLF, E7('If v) (u), which is
Vi) m
considered in this paper, and expressed in the following

manner

EJ(/I“!:J Vi) () = Byp (1, v))frsul

Z—”—,, ©)

I (ujr+ VJ)

T

”]’vj7y’p7u€(c7 m(”]) >O (j: 1"""m)’

R(Y ) > max{0.R(p)~ 1. (10)
=1

Finally, we recall the familiar Fox-Wright function
%Wy, which is given by the following series (see [24]):

alvAl ) a 7A ;
qj {EblvBlg Ebng g i|
< T10_I'(a;+Ajr)
_ Z é 1 ( J J u_' (11)
S T(bj+Bjr) r
where, Aj,B; € R, aj,b; € C and series converges
absolutely for all z € C when
A=1+Y" B;—Y" 4;>0.
Remark. GMIMLF and Fox-Wright function are related as

follows:

‘ ! )
E%/lfjav])m(u) B W 1 (vh”]),(,,){,l)’)(vm’”m); u} ’

(12)
may be obtained from (9) and (11).

Various integral operators involving distinct
generalizations of M-L function have been studied by
several mathematicians (see for details, [15,18,19,21,
25]). Among them, we recall the following integral
operator introduced by [15]:

(e:ﬂzz;f:ﬂ,,,vw) e

7/ )" E yulj,vj),,,(w(x*t)“)‘lf(f)dt, (x> a),

(13)
where,
1,V Vi, v p, 0 € CR(py) > 0;min {R(v), R(p)} >
0% < ¥ | > max{0,%(p) — 1}.
j=1

Motivated by the above cited work, we propose to
investigate Griiss type inequalities involving integral
operator (13) containing GMIMLEF in the kernel.

Before going to prove the main results, first we prove
important result of fractional integral operator (13)
containing GMIMLF in the kernel. This result will be
used to prove the subsequent important results.

Lemma 1.If { >0, u, v, uj, vj, v, p, @ € C, R(u;) >0,
m
R < r Nj) >

j=!

min{R(v),R(p)} > 0 and

max {0,R(p) — 1}, then,

. _ L I(©)
7,031 -1 _ vHE-12\5)
(80+;(Ivtj~,"j)m;"t ) () =x r(y) )
P): u
2Wnr1 |:(C+v 'LL l,[.l]}, m,,um) ox } (19
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Proof.Let us consider the L.H.S of (14) as

_ (gorpin 1
1= (ij)mvﬁ )(x). (15)

Using the definitions (9) and (13) in above equation,
interchanging the order of integration and summation,
and then after little simplification, we arrive at

[=xVte-! wx

I'(y)
 T(veunC(ytpr)  (ox)
ZF(C—FV—HU) & F(Vj-i—ujr) R (16)

finally, using (12), we obtain the desire result (14).

Throughout this paper we consider the existence
conditions given by (10) of GMIMLF (9) and fractional
integral operator (13) containing GMIMLF in the kernel
unless otherwise stated.

2 Main Results

Below we create a modified integral inequality
concerning the (13) fractional operators that provides an
approximation of the fractional integral of the product of
two functions as regards the product of the individual
fractional integrals of both the functions. For this purpose,
we first get a functional relationship for fractional
operators, which includes GMIMLF in the kernel
associated with the bounded integrable function described
by the subsequent lemma.

Lemma 2.Assume that f, | and v, are integrable
Sfunctions described in [0, ) so that if

(1) < (1) < wa(0),

Then the preceding relation holds true:

JFO) 0 - (e 0)

e, 1) ()
(egmom, | TO—elT0% i) ()

— (o) (egTRE ()~ E() (1)~ va (1)) ()

(@) (TR i (1)6(0)) (9

vi0) 0 (2100

)(sg’jgzr“v, W00 ()

= (T 2 0) 0 (5700, 1)) 9

+(enmew, @) (10 we®) W

— (@) (TR (0w (n) (), (18)

tef0,00).  (17)

T (o) (700,

,( 31,31

80+ (L, V)msV l1/2( )

7.
<£0+ (1j,v7)

() (4
+,§Jm+] (wxH

where
v
A2, (0xt) = *
+1( ) (,y)
(v, ). (v.p): "
qum+1 (1+V,[J),( la.ul)v (Vnhﬂm) X

19)

Proof.For the functions given in (17), and any &, ¥ > 0,
we consider

(¥2(8) — () (E) — ya(E)) + (wa(€) — F(E) (D) — ya (D))

— (ya(&) ~ H(E))(E(E) — Wi(E)) — (ya(®) — F(9)) (D) — i (9))
(&) +P(8) — 20(E)(8) + ya(9)(E) + wi (E)E(8)

Cw@w(e +%<é><19>+wl< £6) — wi(9)ya(é)

—a(E)E) + v (E)ya(E > (E)E(E) — ya(D)F(D)

Y O)(9) — v (9D 20

Forx > 0 and § € (0, x), assume that

F(x,§) ==& " 'Eff ) (0(x=&)). @D

Multiplying the two sides of (20) by F(x,&) and
integrating the subsequent relation with respect to & from
0 to x, and employing (13), we get

(va(®) —£8)) (770, F0)) () = (702, w1 () (@)
(0 e ¥2(0) ) = (200 e ) (0) (50) = w1 (9))
= (870 (v20) = EO)(E() = va(1)) ) ()

~ (ya(®) £ (E(9) — i (9)) (5707, ., {1}) ()

- (8g’+y(ﬁj” j)m"’f2<t)) @) +f2<19) (€0+ f‘/“ jmv {1 }) *)

—26(9) (770, ), 1)) (04 va(®) (2707, 1)) ()
TP TP
( 042 (j.v s V‘I’l ) ( 04,7 s v Wi (t))(x)
TP B-HT
(o+ wjov v V- )X+V/| (£o+ (). ,mv

ﬁ)(ow e 120)) ()= (205, ya () t>) ")
+(30"’+V(ﬁ“v e V1 (1)W1 >><x> (g)*yzfuf’”w' )

—w ) (785, (1) ()

A1) @)

W OE) (15 (1)) 0 -

Fva(O)a(o) (7708,

Next, multiplying both sides of (22) by F(x,?¥) given in
(21), and integrating with respect to ¥ from 0 to x, we
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obtain

2 (875 00 10 (8755,1,00) )
(&0 10) @)= (208, ) ()
=200, (al) ~EO)(E) — w1 (1)) ()

( €011y, iy {1})( )

T PH DT PH
2(0+ (1. Vj)m:v {]} (0+ (15:))m

L B0 ()

2 ( ( et t)) x))

+2(enTen () () (eT0R, ) ()

—2 (g, ) @) (87708, wnOf0) ()

+2(e)T0n () () (08, ) (x)

—2(emeb ) ) (TR weE0)) ()

—2 (e wn0) @) (770K, e 0) ()

w2 (egmon, ) @) (e, w0 (),
(23)

which, by using the result (14), gives rise to the intended
result (18).

Now, we are providing our key finding of satisfying
the inequality of the Cauchy-Schwarz form as stated by
the upcoming theorem.

Theorem 1.Suppose f, g, y1, Y», ¢ and @, are integrable
Sfunctions on [0,e0) such that

V(1) <f(1) <ya(r), @i(r) <gt) < @a(t), 1 €[0,).

(24
Thereupon the preceeding inequality holds true:
(@) (62708, T0E() ()
.31 ;7,51
(80+ (IJ],V] ms ( )) ( ) ( 0+; (IJ] V] ms Vg(t)) (.X)’
<V T v, v) T(2.01,92), (25)

where,
T (1, v,w) =
( €0 (v v Wt )) (¥) = (8((;)+;Tiﬁfv,-)m;vu(t)) (x)) x
((emos, | u) ()= (epmo, v(1) ()

+ A (0x4) (eé";?z,’i;f‘v,.)m;vva)u(t)) ()

() @) (sé’&z,“v,)m () ()
g (o) (e T0H win)u(n)) (x)
— (epmen, WD) () (eg’J(ﬁ,“ e 4(0)) ()
() 0 (&80 () )

— A1 (@X) (%ﬂ(ﬁfvﬂm;vv(l)w(ﬂ) (x), (26)

and 7 (wx*) is given in (19).

Proof-Let us define a function (-, ) by

H(§,0) = (£(8) —1(9)) (&(§) — (D)), (x>0, 0 <&, B < x).
Multiplying both sides of (27) by F(x,&) F(x, ), wlizz:
F(x,&) and F(x, ) are given by (21), and integrating the

subsequent relation with respect to & and 9, respectively,
from O to x, we get

[ a9 -0 B (o6 £))x
B[, (00— 0)) /(5. 9)dEdv
= (o) (705, (0e)) ()
= (8 e ) ) (25120 0 B

Now, implement the Cauchy-Schwarz inequality to the
right-hand side of the above equation, we obtain

{ (@) (7100, T0£0)) @)
(B 1) 0 (85800 )
< (o) (708, PO)
(e, t0) @) )

(T (@) (e, &%) (¥)

- ((ggly(ﬁ,ﬂv,)m y8(t )) (X))Z) : (29)

The function F(x,&) given by (21) stands positive for all
£ € (0,x) (x> 0). Thus, under the assumption of Lemma
2, it is noticeable that either if a function f is integrable and
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e Thk, | 0)(x) 20
)

or if a function f is integrable and non-positive on [0,

then (80+7(Z7# Vim: vf(t)) (x) <0.

Now, by noting the relation that for all z € (0, o),
(va(t) — f@)(f@) — w(@) = 0 and
(@2(1) — (1)) (e(r) — @1(1)) = 0, we get

non-negative on [0, o), then (

E

(@) (2708, (Yal) ) (F0) — wi (1) ) (¥)
Z 07

and

a(00) (0708, (2(0) —£(0)(2t) — 01(1))) ()
> 0.

Hence, on employing Lemma 2, we arrive at

- - 2
Gl CHAMILO) R CHAMIMOI NG

@3Y.p3H £ VPiH
< (80+ (:uﬁvl) Wz( ) 0+ (ll; Vj)m vf(t)) (x))(
@37,p31 @;Y,p;1
(80+'(lij~"j)m'vf( )= &y (1),V))msV Yyl )) (x)

(@) (TR i (1)6(0)) (4
< g:Ly(Z/ Vi)miV vV (t)) (x) (8317’/(72/’”‘//%‘/ f(t)> (x)
i (oxt) (eT0%, wa()H0)) ()

@;7,p3l oy.pi
(80+ (M. Vi)msv WZ( ))( ) (80+;(lij~,\’j)m;v

+ (e, ) @ (83)+Y<Z,”v,> v ¥2(0) ()
R
= y(fy v, V/z) (30)

A similar argument will give rise to the preceding
inequality:

{mrt) (2700, 20) () -
(e85, 20) ) } < TG00 G

Subsequently, taking advantage of the inequalities (29),
(30) and (31), we are immediately led to the desired
inequality (25). This finishes the theorem assertion.

3 Consequent Results and Special Cases

The fractional integral operator involving GMIMLF as
kernel defined in (13) contains, as particular cases, the
integral operators characterized by Kilbas et al. [25],
Shukla and Prajapati [20], Srivastava and Tomovski [19]
and Kiryakova [12]. If we set:

(i) p =m =1, we obtain the fractional integration
operator defined by Prabhakar [18] and Kilbas et al.
[25].

(8[}1/ V,0,a+ W) (x)
_ /(X

where, 1, v,y,0 € C; R(u) > 0and R(v) >0

0 ELy (@0 —0)*)y(n)dr, (x> a),

(i) p=m=1 and w — 0, then by virtue of the limit
formula we obtain the familiar Riemann-Liouville
fractional integral defined as

X

(oo = s =0 w(0de, (> a 9w) >0).

(iii)) m = 1, we obtain the integral operator defined by
Srivastava and Tomovski [19]

(ealivy) (x)

:/(x

where, i, v,y,0 € C; R(u) >0, R(v) >0, R(p) >0
and R(u) = R(p) — 1 > 0, which for p = g is
reduced to that given by Shukla and Prajapati [20].

)Y ERR (o(x— 1)) y(t)dt, (x > a),

(iv) y=p =1, we obtain integral operator associated
with the multi-index Mittag-Leffler function defined
by Kiryakova [12]

;U
(8a+-<u,-,v,->m-v‘/f) )
/ x—1)"" 1E

where, uj,vj,o € C, EK(NJ') > 0, EK(VJ') >0
jzla"'am

(@ =D)F)y(0)dt, (x> a),

Likewise, by appropriately specializing the values of the
parameters, the inequality (25) in Theorem 1 would give
rise to further Griiss type of integral inequalities
containing the aforementioned integral operators.

If we specialize the integrable functions (), W (z),
@1 (¢) and @,(¢) in Theorem 1 as either constant functions
or linear functions, then we obtain the fractional integral
inequalities given by the preceding corollaries:

Corollary 1.Suppose f and g be two integrable functions
on [0, ) satisfying the following inequalities
m<flt)<M and p<g(t)<P

(1 €[0,%)), (32)
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where, m, M, p and P are real constants. Then the
following inequality holds true:

[T (x) (e, H(1e() ()
S CrAaO) [O] G A I

< (21 (@x) (M —m)(P—p).  (33)

ProofIf we set yi(t) = m, yr(t) = M, ¢;(r) = p and
@ (f) = P into (24), then Theorem 1 asserted the
corollary.

In addition, if we take g (1) =1, yo(t) =1+ 1, @1 (t) =
t—1 and @,(t) = in Theorem 1, and use formula (14),
we obtain the fractional integral inequality claimed by the
following corollary.

Corollary 2.Suppose f and g be two integrable functions
on [0, «) and satisfy the following inequalities

t<f(r)<t+1 and

t—1<g(t)<t,(t€[0,)). (34)

Then the following inequality holds true:

2o (2125, i(0)s(0)) (0

(&R, ) () (2708 e(r)) ()
<\ T(Et,t4+1) T(g,1—1,1), (35)
here,
T(E,t,t+1) =
(Zhr(@x) +ay (xt) = (2704 (1)) ()

( 0+ #J VJ ms
R AT i
< (&0 T0) ()= Zha ()
" e PiH
+ i (oxt) (e)T08 (r)) (x)

£OTPiM

3
1 (@x €043,V s

+ 1 (xt) (&) ”;”V 1+ D)F(0) ) ()
— (B (@) + 2, (o) (0704, H0) ()
)

+%m+] xt) (B2, (0x") + a2, | (ox*))

)
— Ty (OX) (G (OXH) + 25 (0x))

T(g,t—1,1)=
(o) = (7105, 20) @) x
(e, ) v e®) () = B2y (0x) + 72, (0x4))
+ 1 (05t (85°;.7(’Z;.’j‘v_) MEIHON®

~ (B (@) — 2 (o) (7704, e(1)) (4
i (@xt) (&) ”,’;‘VJ L 2(0) ()

2 () (bt e(1) (%)

m

(02 () 7 (05
G (OXH) (Gory 1 (0x) = By (02)),
Br(0) =
et [ (v, T2 (i @3]
B0t = 2
2 [(2+v7u ({ %(% )  (Vins ) “’xu}’
and
Gfont) = T LB
et [ 34 v, 1) BT (i) @]

4 Concluding Remark

Here, we have described Griiss type inequality involving
fractional integrals, linked to the bounded integrable
functions. The inequality is derived by taking into
consideration the fractional integral operator that includes
the generalized Mittag-Leffler multi-index function as a
kernel. Some inequalities are also identified by the
specialization of the values of the parameters, as
particular instances.

We draw the conclusion by once again emphasizing
that our main outcome here seems to be of a general type,
may be skilled in producing lots of interesting fractional
integral inequalities, along with some known
consequences. By suitably specializing the arbitrary
integrable functions v (), (1), @) (¢) and ¢ () one can
further easily obtain additional integral inequalities from
our main results in in Theorem 1.
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