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1 Introduction

The stability theory of functional equations originated
from a question of Ulam in his famous lecture in 1940 to
the Mathematics Club of the University of Wisconsin.
Such question is related to the stability of group
homomorphisms as follows: Let (G,∗1) be a group,

(Hd ,∗2) a metric group, and f : G → Hd a mapping. For

any ε > 0, does there exist a δ > 0 such that

d( f (x∗1 y), f (x)∗2 f (y)) < δ

for all x,y ∈ G implies there is a homomorphism A : G →
Hd such that

d( f (x),A(x)) < ε for all x ∈ G?

If the answer is affirmative, then we say that the functional
equation

f (x∗1 y) = f (x)∗2 f (y) for all x,y ∈ G

is stable. This kind of such question forms the basic of
stability theory. In 1941, Hyers [1] obtained the first
important result in this field as follows:

Theorem 1.1 ([1]). Let G and H be Banach spaces and let
f be a δ–linear transformation of G into H, i.e.,

‖ f (x+ y)− f (x)− f (y)‖< δ

for all x,y ∈ G, where δ > 0. Then the limit

ℓ(x) := lim
n→∞

f (2nx)

2n

exists for each x ∈ G, ℓ is a linear transformation of G into
H, and the inequality

‖ f (x)− ℓ(x)‖ ≤ δ

is true for all x ∈ G. Moreover, ℓ is the only linear
transformation satisfying this inequality.

This theorem was generalized by Aoki [2] for additive
mappings, and by Rassias [3] for linear mappings by
considering an unbounded Cauchy difference. Latter, the
Rassias theorem was generalized by replacing the
unbounded Cauchy difference by a general control
function, in the spirit of Rassias’ approach, by Gǎvruta
[4].

Recently, a number of papers [5,6,7,8] have been
published dealing with the following ρ–functional
inequalities:

‖ f (x+ y)− f (x)− f (y)‖

≤

∥

∥

∥

∥

ρ

(

2 f

(

x+ y

2

)

− f (x)− f (y)

)∥

∥

∥

∥

, (1)

∥

∥

∥

∥

2 f

(

x+ y

2

)

− f (x)− f (y)

∥

∥

∥

∥

≤ ‖ρ ( f (x+ y)− f (x)− f (y))‖ , (2)
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∥

∥

∥

∥

∥

f

(

k

∑
j=1

x j

)

−
k

∑
j=1

f (x j)

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

ρ

(

k f

(

1

k

k

∑
j=1

x j

)

−
k

∑
j=1

f (x j)

)∥

∥

∥

∥

∥

, (3)

∥

∥

∥

∥

∥

k f

(

1

k

k

∑
j=1

x j

)

−
k

∑
j=1

f (x j)

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

ρ

(

f

(

k

∑
j=1

x j

)

−
k

∑
j=1

f (x j)

)
∥

∥

∥

∥

∥

, (4)

‖ f (x+ y)− f (x)− f (y)‖

≤ ‖ρ ( f (x− y)− f (x)− f (−y))‖ , (5)

‖ f (x+ y+ z)− f (x)− f (y)− f (z)‖

≤

∥

∥

∥

∥

ρ̂

(

2 f

(

x+ y

2
+ z

)

− f (x)− f (y)− 2 f (z)

)
∥

∥

∥

∥

, (6)

∥

∥

∥

∥

2 f

(

x+ y

2
+ z

)

− f (x)− f (y)− 2 f (z)

∥

∥

∥

∥

≤

∥

∥

∥

∥

ρ

(

2 f

(

x+ y+ z

2

)

− f (x)− f (y)− f (z)

)
∥

∥

∥

∥

, (7)

‖ f (x+ y+ z)− f (x)− f (y)− f (z)‖

≤

∥

∥

∥

∥

ρ

(

2 f

(

x+ y+ z

2

)

− f (x)− f (y)− f (z)

)∥

∥

∥

∥

, (8)

where ρ and ρ̂ are nonzero complex numbers with
|ρ |< 1 and |ρ̂ |< 1/2, as well as their stability. It is easily
see that the additive mapping satisfies the inequalities (1)
and (2), while the inequalities (3) and (4) are the
generalized forms of (1) and (2), respectively. These first
two functional inequalities are in the forms of Cauchy and
Jensen functional equations. The inequalities (5), (6), (7)
and (8) are related to the additive mapping. Closely
involved to the inequalities (6), (7) and (8) are following
functional equations:

f

(

x+ y

2
+ z

)

+ f

(

x− y

2
+ z

)

= f (x)+ 2 f (z), (9)

f

(

x+ y

2
+ z

)

− f

(

x− y

2
+ z

)

= f (y), (10)

2 f

(

x+ y

2
+ z

)

= f (x)+ f (y)+ 2 f (z),

(11)

which were introduced and solved in 2006 by Baak [9];
their stability was also proved in complex Banach spaces.
These equations are called the Cauchy–Jensen functional

equations. Notice that the functional equation (11)
becomes to the Cauchy additive functional equation when
y = x, while when z = 0 it becomes to the Jensen
functional equation.

In the present work, the following ρ–functional
equations:

f

(

x+ y

2
+ z

)

+ f

(

x− y

2
+ z

)

− f (x)− 2 f (z)

= ρ1

(

f

(

x+ y

2
+ z

)

− f

(

x− y

2
+ z

)

− f (y)

)

, (12)

g

(

x+ y

2
+ z

)

− g

(

x− y

2
+ z

)

− g(y)

= ρ2

(

2g

(

x+ y

2
+ z

)

− g(x)− g(y)− 2g(z)

)

, (13)

h

(

x+ y

2
+ z

)

+ h

(

x− y

2
+ z

)

− h(x)− 2h(z)

= ρ3

(

2h

(

x+ y

2
+ z

)

− h(x)− h(y)− 2h(z)

)

, (14)

are derived via their inequality forms (in Section 2),
without any regularity assumptions, where ρ1,ρ2,ρ3 are
fixed nonzero complex numbers with |ρ1| < 1 and
|ρ2|, |ρ3| < 1/2. An analysis of their stability is
investigated in complex Banach spaces (in Section 3).
These equations arised from the regarding Cauchy-Jensen
functional equations. In Section 4, the isomorphisms
between unital Banach algebras are here also carried out.
As this section is related to the multiplicative equation,
the readers can be read the following works [10,11,12,
13] for more details involving multiplicative inverse
functional equations which were published recently. For
the last section, we give some remarks related to the
duality of some theorems.

2 Additive ρ–Functional Inequalities and

Equations

Throughout this paper, denote generalically, unless
otherwise specified, by X a complex normed space, and
denote by Y a complex Banach space. Let ρ1,ρ2,ρ3 be
fixed nonzero complex numbers with |ρ1| < 1 and
|ρ2|, |ρ3|< 1/2.

The solutions of our results involve the use of Cauchy

additive and Jensen functional equations ([14, Chapter 1]),
which are the functional equations of the following forms,
respectively,

f (x+ y) = f (x)+ f (y), f

(

x+ y

2

)

=
f (x)+ f (y)

2
.

The function solutions of these equations are called
Cauchy additive mapping and Jensen mapping,
respectively. This section shows the relation between
three focussed ρ-functional equations with the additive
functional equation. We begin with the following lemma.

Lemma 2.1. Let X and Y be real or complex vector spaces.
Then the mappings f ,g,h : X → Y satisfy the following
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functional inequalities

∥

∥

∥

∥

f

(

x+ y

2
+ z

)

+ f

(

x− y

2
+ z

)

− f (x)− 2 f (z)

∥

∥

∥

∥

≤

∥

∥

∥

∥

ρ1

(

f

(

x+ y

2
+ z

)

− f

(

x− y

2
+ z

)

− f (y)

)
∥

∥

∥

∥

,

(15)
∥

∥

∥

∥

g

(

x+ y

2
+ z

)

− g

(

x− y

2
+ z

)

− g(y)

∥

∥

∥

∥

≤

∥

∥

∥

∥

ρ2

(

2g

(

x+ y

2
+ z

)

− g(x)− g(y)− 2g(z)

)∥

∥

∥

∥

, (16)

∥

∥

∥

∥

h

(

x+ y

2
+ z

)

+ h

(

x− y

2
+ z

)

− h(x)− 2h(z)

∥

∥

∥

∥

≤

∥

∥

∥

∥

ρ3

(

2h

(

x+ y

2
+ z

)

− h(x)− h(y)− 2h(z)

)∥

∥

∥

∥

(17)

for all x,y,z ∈ X if and only if f ,g,h : X → Y are additive.

Proof. As the proofs of (15), (16), and (17) are similar, we
here show only that of (17). Taking y = x in (17), we have

‖h(x+ z)− h(x)− h(z)‖≤ ‖2ρ3 (h(x+ z)− h(x)− h(z))‖

for all x,y,z ∈ X . Since |ρ3| <
1
2
, the result follows. The

converse is obviously holds.

Immediate from Lemma 2.1 is:

Corollary 2.1. Let X and Y be real or complex vector
spaces. Then the mappings f ,g,h : X → Y satisfy the
following functional equations

f

(

x+ y

2
+ z

)

+ f

(

x− y

2
+ z

)

− f (x)− 2 f (z)

= ρ1

(

f

(

x+ y

2
+ z

)

− f

(

x− y

2
+ z

)

− f (y)

)

,

g

(

x+ y

2
+ z

)

− g

(

x− y

2
+ z

)

− g(y)

= ρ2

(

2g

(

x+ y

2
+ z

)

− g(x)− g(y)− 2g(z)

)

,

h

(

x+ y

2
+ z

)

+ h

(

x− y

2
+ z

)

− h(x)− 2h(z)

= ρ3

(

2h

(

x+ y

2
+ z

)

− h(x)− h(y)− 2h(z)

)

,

for all x,y,z ∈ X if and only if f ,g,h : X → Y are additive.

3 Stability Results

In this section, we investigate the stability of the
functional equations (12), (13), and (14). The results so
obtained can be applied to the next section. We now first
prove the stability of the ρ–functional equation (12) as
follows:

Theorem 3.1. Let φ : X3 → [0,∞) be a fixed function
satisfying

Φ(x,y,z) :=
∞

∑
j=1

2 jφ
( x

2 j
,

y

2 j
,

z

2 j

)

< ∞ (18)

for all x,y,z ∈ X . Assume that f : X → Y is a function
satisfying the following inequality
∥

∥

∥

∥

f

(

x+y

2
+ z

)

+ f

(

x−y

2
+ z

)

− f (x)−2 f (z)

−ρ1

(

f

(

x+y

2
+ z

)

− f

(

x−y

2
+ z

)

− f (y)

)
∥

∥

∥

∥

≤ φ(x,y,z)

(19)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖ f (x)−A(x)‖ ≤

(

1

2 |1−ρ1|

)

Φ(x,x,x) (20)

for all x ∈ X .

Proof. Letting x = y = z in (19), we get

‖ f (2x)− 2 f (x)‖ ≤

(

1

|1−ρ1|

)

φ(x,x,x) (21)

and so
∥

∥

∥
f (x)− 2 f

( x

2

)∥

∥

∥
≤

(

1

|1−ρ1|

)

φ
( x

2
,

x

2
,

x

2

)

(22)

for all x ∈ X . Triangle inequality and (22) yield
∥

∥

∥
2m f

( x

2m

)

− 2n f
( x

2n

)
∥

∥

∥

≤
m−1

∑
i=n

∥

∥

∥
2i f
( x

2i

)

− 2i+1 f
( x

2i+1

)∥

∥

∥

≤
m−1

∑
i=n

(

2i

|1−ρ1|

)

φ
( x

2i+1
,

x

2i+1
,

x

2i+1

)

=

(

1

2 |1−ρ1|

)

m−1

∑
i=n

2i+1φ
( x

2i+1
,

x

2i+1
,

x

2i+1

)

(23)

= Sm−1 − Sn−1, (24)

where

Sk :=

(

1

2 |1−ρ1|

)

k

∑
i=1

2i+1φ
( x

2i+1
,

x

2i+1
,

x

2i+1

)

< ∞,

and so there exists s ≥ 0 such that Sk → s as n→ ∞. Taking
limit as n,m → ∞ in (24), we have

∥

∥

∥
2m f

( x

2m

)

− 2n f
( x

2n

)∥

∥

∥
→ 0 (n,m → ∞),

showing that the sequence
{

2n f
(

x
2n

)}

is a Cauchy
sequence in Y . By the completeness of Y , one can define a
mapping A : X → Y by

A(x) := lim
n→∞

2n f
( x

2n

)

(25)
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for all x ∈ X . Putting n = 0 and also taking limit as m → ∞
in (23), and using (25) we get

‖ f (x)−A(x)‖ ≤

(

1

2 |1−ρ1|

)

Φ(x,x,x) (26)

for all x ∈ X , as desired. To show that A is an additive,
consider
∥

∥

∥

∥

A

(

x+ y

2
+ z

)

+A

(

x− y

2
+ z

)

−A(x)− 2A(z)

−ρ1

(

A

(

x+ y

2
+ z

)

−A

(

x− y

2
+ z

)

−A(y)

)
∥

∥

∥

∥

= lim
n→∞

2n

∥

∥

∥

∥

f

(

x+ y

2n ·2
+

z

2n

)

+ f

(

x− y

2n ·2
+

z

2n

)

− f
( x

2n

)

− 2 f

( z

2n

)

−ρ1

(

f

(

x+ y

2n ·2
+

z

2n

)

− f

(

x− y

2n ·2
+

z

2n

)

− f
( y

2n

))∥

∥

∥

≤ lim
n→∞

2nφ
( x

2n
,

y

2n
,

z

2n

)

= 0,

and the result follows from Corollary 2.1.
It now remains to verify the uniqueness of a mapping

A. Indeed, assume that there exists another additive
mapping Â : X → Y satisfying the inequality (20). Since
the mappings A and Â are additive, we see that

∥

∥A(x)− Â(x)
∥

∥=
∥

∥

∥
2tA
( x

2t

)

− 2tÂ
( x

2t

)∥

∥

∥

≤
∥

∥

∥
2tA
( x

2t

)

− 2t f
( x

2t

)∥

∥

∥

+
∥

∥

∥
2t f

( x

2t

)

− 2t Â

( x

2t

)∥

∥

∥

≤

(

2t

|1−ρ1|

)

Φ
( x

2t
,

x

2t
,

x

2t

)

→ 0 (t → ∞).

This proves the uniqueness of A, and the proof of this
theorem is completed.

Immediate from Theorem 3.1 are the following, which
illustrate some examples of functions φ satisfying (18).

Corollary 3.1. Let p > 1 and θ be positive real numbers,
and let f : X → Y be a mapping satisfying the following
inequality

∥

∥

∥

∥

f

(

x+ y

2
+ z

)

+ f

(

x− y

2
+ z

)

− f (x)− 2 f (z)

−ρ1

(

f

(

x+ y

2
+ z

)

− f

(

x− y

2
+ z

)

− f (y)

)∥

∥

∥

∥

≤ θ (‖x‖p + ‖y‖p + ‖z‖p) (27)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖ f (x)−A(x)‖ ≤

(

3θ

(2p − 2) |1−ρ1|

)

‖x‖p
(28)

for all x ∈ X .

Proof. Substituting φ(x,y,z) := θ (‖x‖p + ‖y‖p + ‖z‖p)
into (19), the result follows.

Corollary 3.2. Let p1, p2, p3 and θ be positive real
numbers with p1 + p2 + p3 < 1, and let f : X → Y be a
mapping satisfying the following inequality

∥

∥

∥

∥

f

(

x+ y

2
+ z

)

+ f

(

x− y

2
+ z

)

− f (x)− 2 f (z)

−ρ1

(

f

(

x+ y

2
+ z

)

− f

(

x− y

2
+ z

)

− f (y)

)∥

∥

∥

∥

≤ θ · (‖x‖p1 · ‖y‖p2 · ‖z‖p3) (29)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖ f (x)−A(x)‖ ≤

(

θ

(2p1+p2+p3 − 2) |1−ρ1|

)

‖x‖p1+p2+p3

(30)

for all x ∈ X .

Proof. Substituting φ(x,y,z) := θ · (‖x‖p1 · ‖y‖p2 · ‖z‖p3)
into (19), the result follows.

The same conclusion as Therem 3.1 remains holds
when the function φ satisfies the condition that similar to
(18).

Theorem 3.2. Let φ : X3 → [0,∞) be a fixed function
satisfying

Φ(x,y,z) :=
∞

∑
j=0

1

2 j
φ
(

2 jx,2 jy,2 jz
)

< ∞ (31)

for all x,y,z ∈ X . Assume that f : X → Y be a function
satisfying the following inequality
∥

∥

∥

∥

f

(

x+y

2
+ z

)

+ f

(

x−y

2
+ z

)

− f (x)−2 f (z)

−ρ1

(

f

(

x+y

2
+ z

)

− f

(

x−y

2
+ z

)

− f (y)

)
∥

∥

∥

∥

≤ φ(x,y,z)

(32)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖ f (x)−A(x)‖ ≤

(

1

2 |1−ρ1|

)

Φ(x,x,x) (33)

for all x ∈ X .

Proof. Letting x = y = z in (32), we get

‖ f (2x)− 2 f (x)‖ ≤

(

1

|1−ρ1|

)

φ(x,x,x) (34)

and so
∥

∥

∥

∥

f (x)−
1

2
f (2x)

∥

∥

∥

∥

≤

(

1

2 |1−ρ1|

)

φ (x,x,x) (35)

c© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 2, 277-285 (2022) / www.naturalspublishing.com/Journals.asp 281

for all x ∈ X . By using the same arguments as in the proof
of Theorem 3.1, one can shows that

∥

∥

∥

∥

1

2m
f (2m)−

1

2n
f (2n)

∥

∥

∥

∥

≤

(

1

2 |1−ρ1|

)

m−1

∑
i=n

1

2i
φ
(

2ix,2ix,2ix
)

, (36)

yielding that the sequence
{

1
2n f (2nx)

}

is a Cauchy
sequence in Y . By the completeness of Y , one can define a
mapping A : X → Y by

A(x) := lim
n→∞

1

2n
f (2n) (37)

for all x ∈ X . Using (36) and (37), we get

‖ f (x)−A(x)‖ ≤

(

1

2 |1−ρ1|

)

Φ(x,x,x) (38)

for all x ∈ X , which is the desired assertion. The rest of the
proof is similar to that of Theorem 3.1.

Similar to Corollaries 3.1 and 3.2 are the following
results whose analogous proofs are omitted.

Corollary 3.3. Let p > 1 and θ be positive real numbers,
and let f : X → Y be a mapping satisfying the following
inequality

∥

∥

∥

∥

f

(

x+y

2
+ z

)

+ f

(

x−y

2
+ z

)

− f (x)−2 f (z)

−ρ1

(

f

(

x+y

2
+ z

)

− f

(

x−y

2
+ z

)

− f (y)

)
∥

∥

∥

∥

≤ θ (‖x‖p +‖y‖p +‖z‖p) (39)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖ f (x)−A(x)‖ ≤

(

3θ

(2− 2p) |1−ρ1|

)

‖x‖p
(40)

for all x ∈ X .

Corollary 3.4. Let p1, p2, p3 and θ be positive real
numbers with p1 + p2 + p3 < 1, and let f : X → Y be a
mapping satisfying the following inequality

∥

∥

∥

∥

f

(

x+ y

2
+ z

)

+ f

(

x− y

2
+ z

)

− f (x)− 2 f (z)

−ρ1

(

f

(

x+ y

2
+ z

)

− f

(

x− y

2
+ z

)

− f (y)

)∥

∥

∥

∥

≤ θ · (‖x‖p1 · ‖y‖p2 · ‖z‖p3) (41)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖ f (x)−A(x)‖ ≤

(

θ

(2− 2p1+p2+p3) |1−ρ1|

)

‖x‖p1+p2+p3

(42)

for all x ∈ X .

We now move on to the proof of stability of the ρ–
functional equation (13).

Theorem 3.3. Let φ : X3 → [0,∞) be a fixed function
satisfying

Φ(x,y,z) :=
∞

∑
j=1

2 jφ
( x

2 j
,

y

2 j
,

z

2 j

)

< ∞ (43)

for all x,y,z ∈ X . Assume that g : X → Y be a function
satisfying the following inequality

∥

∥

∥

∥

g

(

x+ y

2
+ z

)

− g

(

x− y

2
+ z

)

− g(y)

−ρ2

(

2g

(

x+ y

2
+ z

)

− g(x)− g(y)− 2g(z)

)∥

∥

∥

∥

≤ φ(x,y,z)

(44)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖g(x)−A(x)‖ ≤

(

1

2 |1− 2ρ2|

)

Φ(x,x,x) (45)

for all x ∈ X .

Proof. Letting x = y = z in (44), we get

‖g(2x)− 2g(x)‖ ≤

(

1

|1− 2ρ2|

)

φ(x,x,x) (46)

since |s2|<
1
2
, and so

∥

∥

∥
g(x)− 2g

(x

2

)
∥

∥

∥
≤

(

1

|1− 2ρ2|

)

φ
( x

2
,

x

2
,

x

2

)

(47)

for all x ∈ X . The rest of the proof is similar to that of the
Theorem 3.1.

Immediate from Theorem 3.3 are the following:

Corollary 3.5. Let p > 1 and θ be positive real numbers,
and let g : X → Y be a mapping satisfying the following
inequality

∥

∥

∥

∥

g

(

x+ y

2
+ z

)

− g

(

x− y

2
+ z

)

− g(y)

−ρ2

(

2g

(

x+ y

2
+ z

)

− g(x)− g(y)− 2g(z)

)∥

∥

∥

∥

≤ θ (‖x‖p + ‖y‖p + ‖z‖p) (48)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖g(x)−A(x)‖ ≤

(

3θ

(2p − 2) |1− 2ρ2|

)

‖x‖p
(49)

for all x ∈ X .
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Corollary 3.6. Let p1, p2, p3 and θ be positive real
numbers with p1 + p2 + p3 < 1, and let g : X → Y be a
mapping satisfying the following inequality

∥

∥

∥

∥

g

(

x+ y

2
+ z

)

− g

(

x− y

2
+ z

)

− g(y)

−ρ2

(

2g

(

x+ y

2
+ z

)

− g(x)− g(y)− 2g(z)

)
∥

∥

∥

∥

≤ θ · (‖x‖p1 · ‖y‖p2 · ‖z‖p3) (50)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖g(x)−A(x)‖ ≤

(

θ

(2p1+p2+p3 −2) |1−2ρ2|

)

‖x‖p1+p2+p3

(51)

for all x ∈ X .

If the function φ satisfies the condition that similar to
(43), the same conclusion as Therem 3.1 then still holds.

Theorem 3.4. Let φ : X3 → [0,∞) be a fixed function
satisfying

Φ(x,y,z) :=
∞

∑
j=0

1

2 j
φ
(

2 jx,2 jy,2 jz
)

< ∞ (52)

for all x,y,z ∈ X . Assume that g : X → Y be a function
satisfying the following inequality

∥

∥

∥

∥

g

(

x+y

2
+ z

)

−g

(

x−y

2
+ z

)

−g(y)

−ρ2

(

2g

(

x+y

2
+ z

)

−g(x)−g(y)−2g(z)

)
∥

∥

∥

∥

≤ φ(x,y,z)

(53)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖g(x)−A(x)‖ ≤

(

1

2 |1− 2ρ2|

)

Φ(x,x,x) (54)

for all x ∈ X .

Proof. Letting x = y = z in (53), we get

‖g(2x)− 2g(x)‖ ≤

(

1

|1− 2ρ2|

)

φ(x,x,x) (55)

and so

∥

∥

∥

∥

g(x)−
1

2
g(2x)

∥

∥

∥

∥

≤

(

1

2 |1− 2ρ2|

)

φ (x,x,x) (56)

for all x ∈ X . The rest of the proof is similar to that of the
former.

Corollary 3.7. Let p > 1 and θ be positive real numbers,
and let g : X → Y be a mapping satisfying the following

inequality

∥

∥

∥

∥

g

(

x+ y

2
+ z

)

− g

(

x− y

2
+ z

)

− g(y)

−ρ2

(

2g

(

x+ y

2
+ z

)

− g(x)− g(y)− 2g(z)

)∥

∥

∥

∥

≤ θ (‖x‖p + ‖y‖p + ‖z‖p) (57)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖g(x)−A(x)‖ ≤

(

3θ

(2− 2p) |1− 2ρ2|

)

‖x‖p
(58)

for all x ∈ X .

Corollary 3.8. Let p1, p2, p3 and θ be positive real
numbers with p1 + p2 + p3 < 1, and let g : X → Y be a
mapping satisfying the following inequality

∥

∥

∥

∥

g

(

x+ y

2
+ z

)

− g

(

x− y

2
+ z

)

− g(y)

−ρ2

(

2g

(

x+ y

2
+ z

)

− g(x)− g(y)− 2g(z)

)∥

∥

∥

∥

≤ θ · (‖x‖p1 · ‖y‖p2 · ‖z‖p3) (59)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖g(x)−A(x)‖ ≤

(

θ

(2− 2p1+p2+p3) |1− 2ρ2|

)

‖x‖p1+p2+p3

(60)

for all x ∈ X .
We now arrive at the last results whose analogous

proofs are omitted.

Theorem 3.5. Let φ : X3 → [0,∞) be a fixed function
satisfying

Φ(x,y,z) :=
∞

∑
j=1

2 jφ
( x

2 j
,

y

2 j
,

z

2 j

)

< ∞ (61)

for all x,y,z ∈ X . Assume that h : X → Y be a function
satisfying the following inequality
∥

∥

∥

∥

h

(

x+y

2
+ z

)

+h

(

x−y

2
+ z

)

−h(x)−2h(z)

−ρ3

(

2h

(

x+y

2
+ z

)

−h(x)−h(y)−2h(z)

)
∥

∥

∥

∥

≤ φ(x,y,z)

(62)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖h(x)−A(x)‖ ≤

(

1

2 |1− 2ρ3|

)

Φ(x,x,x) (63)

for all x ∈ X .
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Proof. The proof is similar to that of Theorem 3.3.

Corollary 3.9. Let p > 1 and θ be positive real numbers,
and let h : X → Y be a mapping satisfying the following
inequality

∥

∥

∥

∥

h

(

x+ y

2
+ z

)

+ h

(

x− y

2
+ z

)

− h(x)− 2h(z)

−ρ3

(

2h

(

x+ y

2
+ z

)

− h(x)− h(y)− 2h(z)

)
∥

∥

∥

∥

≤ θ (‖x‖p + ‖y‖p + ‖z‖p) (64)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖h(x)−A(x)‖ ≤

(

3θ

(2p − 2) |1− 2ρ3|

)

‖x‖p
(65)

for all x ∈ X .

Corollary 3.10. Let p1, p2, p3 and θ be positive real
numbers with p1 + p2 + p3 < 1, and let h : X → Y be a
mapping satisfying the following inequality

∥

∥

∥

∥

h

(

x+ y

2
+ z

)

+ h

(

x− y

2
+ z

)

− h(x)− 2h(z)

−ρ3

(

2h

(

x+ y

2
+ z

)

− h(x)− h(y)− 2h(z)

)∥

∥

∥

∥

≤ θ · (‖x‖p1 · ‖y‖p2 · ‖z‖p3) (66)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖h(x)−A(x)‖ ≤

(

θ

(2p1+p2+p3 − 2) |1− 2ρ3|

)

‖x‖p1+p2+p3

(67)

for all x ∈ X .
Similar to Theorems 3.2 and 3.4 are the following

results.

Theorem 3.6. Let φ : X3 → [0,∞) be a fixed function
satisfying

Φ(x,y,z) :=
∞

∑
j=0

1

2 j
φ
(

2 jx,2 jy,2 jz
)

< ∞ (68)

for all x,y,z ∈ X . Assume that h : X → Y be a function
satisfying the following inequality
∥

∥

∥

∥

h

(

x+y

2
+ z

)

+h

(

x−y

2
+ z

)

−h(x)−2h(z)

−ρ3

(

2h

(

x+y

2
+ z

)

−h(x)−h(y)−2h(z)

)
∥

∥

∥

∥

≤ φ(x,y,z)

(69)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖h(x)−A(x)‖ ≤

(

1

2 |1− 2ρ3|

)

Φ(x,x,x) (70)

for all x ∈ X .

Proof. The proof is similar to that of Theorem 3.4.

Corollary 3.11. Let p > 1 and θ be positive real numbers,
and let h : X → Y be a mapping satisfying the following
inequality

∥

∥

∥

∥

h

(

x+ y

2
+ z

)

+ h

(

x− y

2
+ z

)

− h(x)− 2h(z)

−ρ3

(

2h

(

x+ y

2
+ z

)

− h(x)− h(y)− 2h(z)

)
∥

∥

∥

∥

≤ θ (‖x‖p + ‖y‖p + ‖z‖p) (71)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖h(x)−A(x)‖ ≤

(

3θ

(2− 2p) |1− 2ρ3|

)

‖x‖p
(72)

for all x ∈ X .

Corollary 3.12. Let p1, p2, p3 and θ be positive real
numbers with p1 + p2 + p3 < 1, and let h : X → Y be a
mapping satisfying the following inequality

∥

∥

∥

∥

h

(

x+ y

2
+ z

)

+ h

(

x− y

2
+ z

)

− h(x)− 2h(z)

−ρ3

(

2h

(

x+ y

2
+ z

)

− h(x)− h(y)− 2h(z)

)∥

∥

∥

∥

≤ θ · (‖x‖p1 · ‖y‖p2 · ‖z‖p3) (73)

for all x,y,z ∈ X . Then there exists the unique additive
mapping A : X → Y such that

‖h(x)−A(x)‖ ≤

(

θ

(2− 2p1+p2+p3) |1− 2ρ3|

)

‖x‖p1+p2+p3

(74)

for all x ∈ X .

4 Applications

In this section, we show only the application of Theorem
3.1 as that of the rest are similar. We now investigate the
isomorphisms between unital Banach algebras. Our results
involve the use of multiplicative function ([14, Chapter 1]),
which is the function satisfying the functional equation

f (xy) = f (x) f (y).

From now on, assume that B1 is a unital Banach
algebra over a field F (R or C) with the unit e, and that B2

is a unital Banach algebra over a field F with the unit e′.

Theorem 4.1. Let φ : B3
1 → [0,∞) be a fixed

positive–valued function satisfying

Φ(x,y,z) :=
∞

∑
j=1

2 jφ
( x

2 j
,

y

2 j
,

z

2 j

)

< ∞ (75)
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for all x,y,z ∈ B1. Assume that f : B1 → B2 is a bijective
multiplicative mapping satisfying

∥

∥

∥

∥

f

(

λ x+λ y

2
+λ z

)

+λ f

(

x− y

2
+ z

)

−λ f (x)− 2λ f (z)

−ρ1

(

f

(

λ x+λ y

2
+λ z

)

−λ f

(

x− y

2
+ z

)

−λ f (y)

)
∥

∥

∥

∥

≤ φ(x,y,z) (76)

for all x,y,z ∈ B1 and all λ ∈ F with the condition that

lim
n→∞

2n f

( e

2n

)

= e′. (77)

Then a mapping f : B1 → B2 is an isomorphism between
unital Banach algebras B1 and B2.

Proof. Putting λ = 1 into (76), Theorem 3.1 then implies
that there exists a unique additive mapping A : B1 → B2,
which is defined as

A(x) := lim
n→∞

2n f
( x

2n

)

(78)

for all x ∈ B1, satisfying

‖ f (x)−A(x)‖ ≤

(

1

2(1−|ρ1|)

)

Φ(x,x,x) (79)

for all x ∈ B1. By (76) and (78), we see that

|1−ρ1|‖A(2λ x)− 2λ A(x)‖

= lim
n→∞

2n

∥

∥

∥

∥

f

(

2λ x

2n

)

− 2λ f
( x

2n

)

−ρ1

(

f

(

2λ x

2n

)

− 2λ f
( x

2n

)

)
∥

∥

∥

∥

≤ lim
n→∞

2nφ
( x

2n
,

x

2n
,

x

2n

)

= 0 (80)

for all x ∈ B1 and all λ ∈ F. Since |ρ1|< 1, we must have
A(2λ x) = 2λ A(x) yielding that

A(λ x) = λ A(x) (81)

for all x ∈ B1 and all λ ∈ F. By (81) and the additivity of
A, we conclude that A : B1 → B2 is an F–linear mapping.

To show that A is an isomorphism, by (78) and the
multiplicity of f , we have

A(xy) = lim
n→∞

2n f

(xy

2n

)

= lim
n→∞

2n f

( x

2n

)

f (y) = A(x) f (y)

(82)

for all x,y ∈ B1. By (77) and (78), we have

A(e) = lim
n→∞

2n f
( e

2n

)

= e′

and so

A(x) = A(ex) = A(e) f (x) = e′ f (x) = f (x) (83)

for all x ∈ B1. Using (82) and (83), the result follows.
Immediate from Theorem 4.1 are the following:

Corollary 4.1. Let p > 1 and θ be positive real numbers,
and let f : B1 → B2 be a bijective multiplicative mapping
satisfying the following inequality

∥

∥

∥

∥

f

(

λ x+λ y

2
+λ z

)

+λ f

(

x− y

2
+ z

)

−λ f (x)− 2λ f (z)

−ρ1

(

f

(

λ x+λ y

2
+λ z

)

−λ f

(

x− y

2
+ z

)

−λ f (y)

)∥

∥

∥

∥

≤ θ (‖x‖p + ‖x‖p + ‖x‖p)

for all x,y,z ∈ B1 and all λ ∈ F with the condition that

lim
n→∞

2n f
( e

2n

)

= e′.

Then a mapping f : B1 → B2 is an isomorphism between
unital Banach algebras B1 and B2.

Proof. Substituting φ(x,y,z) := θ (‖x‖p + ‖x‖p + ‖x‖p)
into (76) and applying Theorem 4.1, the result follows.

Corollary 4.2. Let p1, p2, p3 and θ be positive real
numbers with p1 + p2 + p3 < 1, and let f : B1 → B2 be a
bijective multiplicative mapping satisfying the following
inequality

∥

∥

∥

∥

f

(

λ x+λ y

2
+λ z

)

+λ f

(

x− y

2
+ z

)

−λ f (x)− 2λ f (z)

−ρ1

(

f

(

λ x+λ y

2
+λ z

)

−λ f

(

x− y

2
+ z

)

−λ f (y)

)∥

∥

∥

∥

≤ θ · (‖x‖p1 · ‖x‖p2 · ‖x‖p3)

with the condition that

lim
n→∞

2n f
( e

2n

)

= e′

for all x,y,z ∈ B1 and all λ ∈ F. Then a mapping f : B1 →
B2 is an isomorphism between unital Banach algebras B1

and B2.

Proof. Substituting φ(x,y,z) := θ · (‖x‖p1 · ‖x‖p2 · ‖x‖p3)
into (20) and applying Theorem 4.1, the result follows.

5 Final Remarks

Note from the conditions (18) and (31) of Theorems 3.1
and 3.2, respectively, that they are dual of each other.
Thus, we can say that Theorem 3.1 and Theorem 3.2 are
dual of each other. Similarly, Theorems 3.3 and 3.4 as
well as their corresponding corollaries are dual of each
other. From this we can combine them, say (18) and (31),
into single condition of the theorem as follows:

Φ(x,y,z) :=
∞

∑
j=1

2α jφ
(

2α jx,2α jy,2α jz
)

< ∞, (84)
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where α ∈ {−1,1} for a fixed function Φ , so that to prove
the stabilities of these two theorems, for instance, it suffic
to consider one only one condition, say (84). As the proof
may not be straightforward, to obtain the stability result it
requires some more steps which is worthy to present the
future researches.
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