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Abstract: The determination of this current paper is to find certain coefficient estimates, Fekete-Szegö inequality results for a

normalized analytic function defined in the open unit disk D= {z : z ∈C and |z|< 1} by convolution operator with Bessel function.

In particular, we derived Fekete-Szegö inequality for a class of functions defined through Poisson distribution.The results presented in

this paper would generalize some related works of several earlier authors.
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1 Introduction, Definitions and Preliminary

results

Let A be the set of all analytic functions,comprising of the
functions

f (z) = z+
∞

∑
n=2

anzn, (1)

in the open unit disc

D := {z : z ∈C and |z|< 1}

and S be the subclass of A comprising of univalent
functions. Let the functions f and g be analytic in D. We
say that the function f is subordinate to g, if there exists a
Schwarz function ω , which is analytic in D with

ω(0) = 0 and |ω(z)|< 1 (z ∈D),

such that

f (z) = g
(

ω(z)
)

.

This subordination is denoted by

f ≺ g or f (z) ≺ g(z) (z ∈ D).

It is well known that (see [1]), if the function g is univalent
in D, then

f ≺ g (z ∈D) ⇐⇒ f (0) = g(0) and f (D)⊆ g(D).

We recall here a Bessel function of the first kind of
order υ , denoted by Jυ(z), is defined by the infinite series:

Jυ(z) =
∞

∑
n=0

(−1)n

n! Γ (n+υ + 1)

( z

2

)2n+υ
(z ∈C,υ ∈R)

(2)
which is the particular solution of the second order linear
homogeneous differential equation

z2ω ′′(z)+ zω ′(z)+ [z2 −υ2]ω(z) = 0, (3)

where υ ∈ C, which is the natural Bessel’s equation.
Solutions of (3) are referred to as Bessel function of order
υ . Although the series defined in (2) is convergent every
where, in general Jυ is not univalent in U. Latterly, Szász
and Kupán[2] inspected the univalence of the normalized
Bessel function of the first kind

uυ : D→ C

given by the transformation (see also[3,4])

uυ(z) = 2υΓ (υ + 1) z1 −υ
2 Jυ (

√
z),

√
1 = 1.
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We can express uυ(z) as

uυ(z) = z+
∞

∑
n=1

(−1/4)n−1Γ (υ + 1)

(n− 1)!Γ (n+υ)
zn, (4)

is analytic on C and satisfies the differential equation

4z2u′′(z)+ 4(υ + 1)zu′(z)+ cu(z) = 0.

Quantum calculus (q-calculus and h-calculus)simply
the study of classical calculus without the notion of
limits. Here, h represents Planckı́s constant, while q

represents quantum. Due to its application in a variety of
branches such as physics, mathematics, the area of
q-calculus has added excessive prominence for
researchers. The first study on q-calculus was
systematically established by Jackson [5]. Recently,
Kanas and Raducanu [6] defined a q− analogue of the
Ruscheweyh differential operator[7] by using the concept
of convolution and then studied some of its properties by
Aldweby and Darus [8]. Now, we give some notational
details of q-calculus which are used in the paper.

For f ∈ A the Jackson’s q-derivative (0 < q < 1) is
expressed by

Dq f (z) =







f (z)− f (qz)

(1− q)z
, z 6= 0

f ′(0), z = 0

(5)

and D2
q f (z) = Dq(Dq f (z)). Thus, from (5), we presume

that

Dq f (z) = 1+
∞

∑
n=2

[n]qanzn−1,

where

[n]q =
1− qn

1− q
.

If q → 1−, we get [n]q → n. For the function h(z) = zn,

we get Dqh(z) = Dqzn = 1−qn

1−q
zn−1 = [n]qzn−1 and

limq→1− Dqh(z) = limq→1−
(

[n]qzn−1
)

= nzn−1 = h′(z),
where h′ is the usual derivative.

For 0 < q < 1, and f ∈ A of the form (1),the q−
derivative of uυ is defined by:

Dquυ(z) = Dq

[

z+
∞

∑
n=1

(−1/4)n−1Γ (υ + 1)

(n− 1)!Γ (n+υ)
zn

]

=
uυ(z)− uυ(qz)

(1− q)z

= 1+
∞

∑
n=1

(−1/4)n−1Γ (υ + 1)

(n− 1)!Γ (n+υ)
[n]qzn−1. (6)

Let a ∈ R and n ∈ N. The q-generalized Pochhammer

symbol is defined by

[a;n]q = [a]q[a+ 1]q[a+ 2]q...[a+ n− 1]q (7)

and for a > 0 the q-gamma function is defined by

Γa(a+ 1) = [a]qΓq(a) and Γq(1) = 1. (8)

For f ∈ A , Kanas and Raducanu [6] defined the
Ruscheweyh q-differential operator as below:

R
δ
q f (z) = f (z)∗Fq,δ+1(z) (δ >−1, z ∈ U) (9)

where

Fq,δ+1(z) = z+
∞

∑
n=2

Γq(n+ δ )

[n− 1]q!Γq(1+ δ )
zn

= z+
∞

∑
n=2

[δ + 1;n]q
[n− 1]q!

zn. (10)

using, (9) and (10), Aldweby and Darus[8] defined the

q−analogue of Ruscheweyh operator Rδ
q : A → A as

follows:

R
δ
q f (z) = z+

∞

∑
n=2

Γq(n+ δ )

[n− 1]q!Γq(1+ δ )
anzn (z ∈U)..

(11)

As q → 1−, we note that

R
0
q f (z) = f (z), R

1
q f (z) = z f ′(z),

It is easy to check that

zDq(Fq,δ+1(z)) =

(

1+
[δ ]

qδ

)

Fq,δ+2(z)−
[δ ]

qδ
Fq,δ+1(z),

(12)
z ∈ U. From (9), (12) and by the concept of Hadamard
product, we have

z(Rδ
q f (z))′ = (1+ δ )R1+δ

q f (z)− δR
δ
q f (z), (z ∈U).

(13)
From (11),as q → 1− we note that

lim
q→1−

Fq,δ+1(z) =
z

(1− z)δ+1
,

lim
q→1−

R
δ
q f (z) = f (z)∗ z

(1− z)δ+1

the usual Ruscheweyh derivative [7].
By the description of q− derivative and the perception of
Hadamard product ,we describe the linear operator

Ψδ
υ,q : A → A

defined by

Ψδ
υ,q f (z) = uυ(z)∗ (Rδ

q f (z)) (14)

= z+
∞

∑
n=2

(−1/4)n−1Γ (υ + 1)

(n− 1)!Γ (n+υ)

Γq(n+ δ )

[n− 1]q!Γq(1+ δ )
anzn

(15)

= z+
∞

∑
n=2

Θnanzn (z ∈U) (16)
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where

Θn =
(−1/4)n−1Γ (υ + 1)

(n− 1)!Γ (n+υ)

Γq(n+ δ )

[n− 1]q!Γq(1+ δ )
. (17)

Ma and Minda[9], unified various subclasses of starlike
and convex functions for which either of the functions

z f ′(z)
f (z)

and 1+
z f ′′(z)
f ′(z)

(z ∈ D).

is subordinate to a more general superordinate function
and denoted such function classes by S ∗(φ) and C (Φ),
respectively. For this purpose,they considered an analytic
function Φ as below ,

Definition 1.[9] Suppose Φ is an analytic function such

that

1.ℜ (Φ)> 0 in U

2.Φ(0) = 1, Φ ′(0)> 0
3.Φ maps U onto a region starlike with respect to 1 and

symmetric with respect to the real axis.

Further they gave Φ(z) in series by

Φ(z) = 1+B1z+B2z2 +B3z3 + · · · , (18)

where B′
ns are real with B1 > 0;B2 ≧ 0.

Fixing Φ(z) =
1+(1− 2β )z

1− z
, (z ∈ D; 0 ≦ β < 1)

we get the well-known classes S ∗(β ) (and C (β )) of
starlike functions (and the class of convex functions) of
order β (0 ≦ β < 1) respectively. In [10],Guo and Liu
defined a subclass M(µ ,λ ,ρ) as below which unifies
certain subclasses of analytic functions.

Let µ ≧ 0, λ ≧ 0 and 0 ≦ ρ < 1 and f ∈ A . We say
that f ∈ M(µ ,λ ,ρ) if it hold the analytic criterion

ℜ

{

z f ′(z)
f (z)

(

f (z)

z

)µ

+ λ

[

1+
z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

+ µ

(

z f ′(z)
f (z)

− 1

)]}

> ρ .

In [9], the authors have obtained the Fekete-Szegö
inequality f in S ∗(Φ) and C (Φ).For a brief history of
Fekete-Szegö problem various subclasses of analytic
functions, one may refer to [11] and the references cited
there in. Motivated essentially by the aforementioned
works on Fekete-Szegö inequality and the definition of
hadamard product we define a more general class of
analytic functions which unifies the class S ∗(Φ) and
C (Φ),Mλ (Φ) based on Bessel function. Also, we give
applications of our results to certain functions defined
through of Poisson distribution series.

Now, we define the following new function class

G
υ,δ ,q
µ,λ (Φ) :

Definition 2.For µ ≧ 0, λ ≧ 0, let Φ(z) be in Definition1

and f ∈ A is in the class G
υ,δ ,q
µ,λ (Φ) if

z(Ψ δ
υ,q f (z))′

Ψδ
υ,q f (z)

(

Ψδ
υ,q f (z)

z

)µ

+ λ

[

1+
z(Ψδ

υ,q f (z))′′

(Ψ δ
υ,q f (z))′

−
z(Ψ δ

υ,q f (z))′

Ψδ
υ,q f (z)

+ µ

(

z(Ψδ
υ,q f (z))′

Ψδ
υ,q f (z)

− 1

)]

≺ Φ(z), z ∈D.

By specializing the parameters, suitably we deduce
the following new subclasses based on Bessel functions ,
which are not yet been studied.

Definition 3.For µ = 0, λ ≧ 0 and let Φ(z) be given in

Definition1 and f ∈ A is in the class

G
υ,δ ,q
0λ (Φ) = M

υ,δ ,q
λ (Φ) if

λ

(

1+
z(Ψδ

υ,q f (z))′′

(Ψ δ
υ,q f (z))′

)

+(1−λ )
z(Ψδ

υ,q f (z))′

Ψ δ
υ,q f (z)

≺Φ(z),z∈D.

Note that

M
υ,δ ,q
0 (Φ)≡ Sυ,δ ,q(Φ) and M

υ,δ ,q
1 (Φ)≡C

υ,δ ,q(Φ).

Definition 4.For µ ≧ 0, λ = 0 and let Φ(z) be in

Definition1 and f ∈ A is in the class

G
υ,δ ,q
µ,0 (Φ) = B

υ,δ ,q
µ (Φ) if

(Ψδ
υ,q f (z))′

(

Ψδ
υ,q f (z)

z

)µ−1

≺ Φ(z),z ∈ D.

Definition 5.For µ = 1, λ = 0 and let Φ(z) be in

Definition1 and f ∈ A is in the class

G
υ,δ ,q
1,0 (Φ) = Rυ,δ ,q(Φ) if

(Ψδ
υ,q f (z))′ ≺ Φ(z),z ∈ D.

To prove our main result, we need the following
lemmas:

Lemma 1.[12] If ϖ ∈ P and given by

ϖ(z) = 1+ c1z+ c2z2 + · · · (19)

then |c j| ≤ 2 for all j ≥ 1, and the result is best possible

for φ1(z) =
1+ηz

1−ηz
, |η |= 1.

Lemma 2.[9] If ϖ(z) ∈ P and given by (19) then

|c2 −ϑc2
1|≦















−4ϑ + 2, if ϑ ≦ 0,

2, if 0 ≦ ϑ ≦ 1,

4ϑ − 2, if ϑ ≧ 1.
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When ϑ < 0 or ϑ > 1, the equality holds if and only

if p1(z) =
1+ z

1− z
or one of its rotations. If 0 < ϑ < 1, then

the above upper bound is sharp,for p2(z) =
1+ z2

1− z2
or one

of its rotations. If ϑ = 0,the above upper bound is sharp,

for

p3(z) =

(

1

2
+

η

2

)

1+ z

1− z
+

(

1

2
− η

2

)

1− z

1+ z
(0 ≦ η ≦ 1)

or one of its rotations. If ϑ = 1, the equality holds if and

only if p1 is the reciprocal of one of the functions such that

the equality holds in the case of ϑ = 0.

Although the above upper bound is sharp, when 0 <
ϑ < 1, it can be improved as follows:

|c2 −ϑc2
1|+ϑ |c1|2 ≦ 2 (0 < ϑ ≦ 1/2)

and

|c2 −ϑc2
1|+(1−ϑ)|c1|2 ≦ 2 (1/2 < ϑ ≦ 1).

We also need the following:

Lemma 3.[13] If ϖ(z) = 1+ c1z+ c2z2 + · · · is a member

of P, then

|c2 −ϑc2
1|≦ 2max(1, |2ϑ − 1|).

The result is sharp for the functions

p(z) =
1+ z2

1− z2
, p(z) =

1+ z

1− z
(z ∈D).

2 Coefficient Estimates and Fekete-Szegö

inequality

To start with in this section we determine the initial
Coefficient estimates a2 anda3. Unless otherwise stated,
we let the following in our study:

Θ2 =
(−1/4)Γ (υ + 1)

Γ (2+υ)

Γq(2+ δ )

[1]q!Γq(1+ δ )

and

Θ3 =
(−1/4)2Γ (υ + 1)

2Γ (3+υ)

Γq(3+ δ )

[2]q!Γq(1+ δ )
. (20)

Theorem 1.Let µ ≧ 0 and λ ≧ 0 and µ a real number

and Φ(z) be given by (18). If f (z) given by (1) belongs to

G
υ,δ ,q
µ,λ (Φ), then

|a2| ≤
∣

∣

∣

∣

B1

τΘ2

∣

∣

∣

∣

,

|a3| ≤
B1

2ξΘ3

∣

∣

∣

∣

−B2

B1

+
B1Λ

τ2

∣

∣

∣

∣

,

where Λ =
1

2
(µ2 + µ)− (µ + 3)λ − 1;

τ := (1+µ)(1+λ ), and ξ := (µ +2)(1+2λ ). (21)

These results are sharp.

Proof.If f ∈ G
υ,δ ,q
µ,λ (Φ), then there is a Schwarz function

ω(z), analytic in D with ω(0) = 0 and |ω(z)| < 1 in D

such that

z(Ψ δ
υ,q f (z))′

Ψδ
υ,q f (z)

(

Ψδ
υ,q f (z)

z

)µ

+ λ

[

1+
z(Ψδ

υ,q f (z))′′

(Ψ δ
υ,q f (z))′

−
z(Ψ δ

υ,q f (z))′

Ψδ
υ,q f (z)

+ µ

(

z(Ψδ
υ,q f (z))′

Ψδ
υ,q f (z)

− 1

)]

≺ Φ(z) = Φ(ω(z)).

(22)

Define the function p1(z) by

p1(z) :=
1+ω(z)

1−ω(z)
= 1+ c1z+ c2z2 + · · · . (23)

Since ω(z) is a Schwarz function, we see that ℜ(p1(z))>
0 and p1(0) = 1. Let us define the function p(z) by

p(z) :=
z(Ψδ

υ,q f (z))′

Ψ δ
υ,q f (z)

(

Ψ δ
υ,q f (z)

z

)µ

+ λ

[

1+
z(Ψ δ

υ,q f (z))′′

(Ψδ
υ,q f (z))′

−
z(Ψ δ

υ,q f (z))′

Ψ δ
υ,q f (z)

+ µ

(

z(Ψ δ
υ,q f (z))′

Ψδ
υ,q f (z)

− 1

)]

= 1+ b1z+ b2z2 + · · · . (24)

In view of (22), (23), (24), we have

p(z) = Φ

(

p1(z)− 1

p1(z)+ 1

)

. (25)

Using (23) in (25), we get,

b1 =
1

2
B1c1 and b2 =

1

2
B1

(

c2 −
1

2
c2

1

)

+
1

4
B2c2

1.

A computation shows that

z(Ψδ
υ,q f (z))′

Ψδ
υ,q f (z)

= 1+Θ2a2z+(2Θ3a3 −Θ 2
2 a2

2)z
2

+ (3Θ4a4 +Θ 3
2 a3

2 − 3Θ3Θ2a3a2)z
3

+ · · · .
Similarly we have

1+
z(Ψδ

υ,q f (z))′′

(Ψ δ
υ,q f (z))′

= 1+2Θ2a2z+(6Θ3a3−4Θ 2
2 a2

2)z
2+ · · · .
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An easy computation shows that

z(Ψ δ
υ,q f (z))′

Ψδ
υ,q f (z)

(

Ψδ
υ,q f (z)

z

)µ

+ λ

[

1+
z(Ψδ

υ,q f (z))′′

(Ψ δ
υ,q f (z))′

−
z(Ψ δ

υ,q f (z))′

Ψδ
υ,q f (z)

+ µ

(

z(Ψ δ
υ,q f (z))′

Ψδ
υ,q f (z)

− 1

)]

= 1+(1+ µ)(1+λ )Θ2a2z+(µ + 2)(1+ 2λ )Θ3a3z2

+

(

µ2 + µ

2
− (µ + 3)λ − 1

)

Θ 2
2 a2

2z2 + · · · .

In prospect of (24), we see that

b1 = (1+ µ)(1+λ )Θ2a2

b2 = (µ + 2)(1+ 2λ )Θ3a3

+

(

µ2 + µ

2
− (µ + 3)λ − 1

)

Θ 2
2 a2

2

= (µ + 2)(1+ 2λ )Θ3a3 +ΛΘ 2
2 a2

2

where Λ = 1
2
(µ2 + µ)− (µ + 3)λ − 1. Equivalently, we

have

a2 =
B1c1

2(1+ µ)(1+λ )Θ2

=
B1c1

2τΘ2

, (26)

a3 =
B1

2(µ + 2)(1+ 2λ )Θ3

×
[

c2 −
1

2

(

1− B2

B1

+
B1Λ

[(1+ µ)(1+λ )]2

)

c2
1

]

=
B1

2ξΘ3

[

c2 −
1

2

(

1− B2

B1

+
B1Λ

τ2

)

c2
1

]

. (27)

From(26) and applying Lemma 1,, we get

|a2| ≤
∣

∣

∣

∣

B1

τΘ2

∣

∣

∣

∣

.

From (27), by using the estimate

|c2 −ϑc2
1|≦ 2max{1, |2ϑ − 1|}

where ϑ = 1
2

(

1− B2
B1

+ B1Λ
τ2

)

, given in Lemma 3 we have

|a3| ≦
B1

(µ + 2)(1+ 2λ )Θ3

× max{1,
∣

∣2× 1

2

(

1− B2

B1

+
B1Λ

τ2

)

− 1
∣

∣}

=
B1

ξΘ3

max{1,
∣

∣− B2

B1

+
B1Λ

τ2

∣

∣}

where τ,ξ are as assumed in (21) and Λ = 1
2
(µ2 + µ)−

(µ + 3)λ − 1.

Using Lemma 2, we prove the following:

Theorem 2.Let µ ≧ 0 and λ ≧ 0 and ν a real number and

Φ(z) be given by (18). If f ∈ G
υ,δ ,q
µ,λ (Φ)(z), then

|a3−νa2
2|≦







































B1

ξΘ3

(

B2

B1

− B1Λ

τ2
− νξ B1Θ3

τ2Θ 2
2

)

, if ν ≦ σ1,

B1

Θ3ξ
, if σ1 ≦ ν ≦ σ2,

B1

ξΘ3

(

−B2

B1

+
B1Λ

τ2
+

νξ B1Θ3

τ2Θ 2
2

)

, if ν ≧ σ2,

where, for convenience,

σ1 :=
τ2Θ 2

2

ξ B1Θ3

(

−1+
B2

B1

− B1Λ

τ2

)

,

σ2 :=
τ2Θ 2

2

ξ B1Θ3

(

1+
B2

B1

− B1Λ

τ2

)

,

σ3 :=
τ2Θ 2

2

ξ B1Θ3

(

B2

B1

− B1Λ

τ2

)

,

also τ,ξ are as defined in (21) and Λ = 1
2
(µ2 +µ)− (µ+

3)λ − 1.
Further, if σ1 ≦ ν ≦ σ3, then

|a3 −νa2
2| +

τ2Θ 2
2

ξ B1Θ3

(

1− B2

B1

+
B1Λ

τ2
+

νξ B1Θ3

τ2Θ 2
2

)

|a2|2

≦
B1

ξΘ3
.

If σ3 ≦ ν ≦ σ2, then

|a3 −νa2
2| +

τ2Θ 2
2

ξ B1Θ3

(

1+
B2

B1

− B1Λ

τ2
− νξ B1Θ3

τ2Θ 2
2

)

|a2|2

≦
B1

ξΘ3

.

These results are sharp.

Proof.From (26) and (27),we have

a3 −νa2
2 =

B1

2ξΘ3

[

c2 −
c2

1

2

(

1− B2

B1

+
B1Λ

τ2

)]

− c2
1

4

νB2
1

(τΘ2)2

=
B1

2ξΘ3

[

c2 −
c2

1

2

(

1− B2

B1

+
B1Λ

τ2
+

νξ B1Θ3

(τΘ2)2

)]

.

Therefore, we have

a3 −νa2
2 =

B1

2ξΘ3

(

c2 − vc2
1

)

where

v :=
1

2

(

1− B2

B1

+
B1Λ

τ2
+

νξ B1

(τΘ2)2

)

.
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By applying Lemma 2 we get the desired result. To prove
the bounds are sharp, we define the functions KΦn (n =
2,3, . . .) with KΦn(0) = 0 = [KΦn ]

′(0)− 1, by

z(Ψ δ
υ,qKΦn(z))

′

Ψδ
υ,qKΦn(z)

(

Ψδ
υ,qKΦn(z)

z

)µ

+ λ

[

1+
z(Ψδ

υ,qKΦn(z))
′′

(Ψ δ
υ,qKΦn(z))

′ −
z(Ψ δ

υ,qKΦn(z))
′

Ψδ
υ,qKΦn(z)

+ µ

(

z(Ψ δ
υ KΦn(z))

′

Ψ δ
υ,qKΦn(z)

− 1

)]

= Φ(zn−1)

and the functions Fρ and Gρ (0 ≦ ρ ≦ 1), respectively,
with Fρ(0) = 0 = F ′

ρ(0)− 1 and Gρ(0) = 0 = G′
ρ(0)− 1

by

z(Ψ δ
υ,qFρ(z))

′

Ψδ
υ,qFρ(z)

(

Ψδ
υ,qFρ(z)

z

)µ

+ λ

[

1+
z(Ψδ

υ,qFρ(z))
′′

(Ψ δ
υ,qFρ(z))′

−
z(Ψ δ

υ,qFρ(z))
′

Ψδ
υ,qFρ(z)

+ µ

(

z(Ψ δ
υ,qFρ(z))

′

Ψδ
υ,qFρ(z)

− 1

)]

= Φ

(

z(z+ρ)

1+ρz

)

,

and

z(Ψ δ
υ,qGρ(z))

′

Ψδ
υ,qGρ(z)

(

Ψ δ
υ,qGρ(z)

z

)µ

+ λ

[

1+
z(Ψδ

υ,qGρ(z))
′′

(Ψ δ
υ,qGρ(z))′

− z(Ψ δ
υ Gρ(z))

′

Ψδ
υ,qFρ(z)

+ µ

(

z(Ψ δ
υ,qGρ(z))

′

Ψδ
υ,qGρ(z)

− 1

)]

= Φ

(

− z(z+ρ)

1+ρz

)

,

respectively.

Clearly the functions KΦn ,Fρ ,Gρ ∈ G
υ,δ ,q
µ,λ (Φ). Also

we write KΦ := KΦ2
.

If µ < σ1 or µ > σ2, then the bounds are sharp if and
only if f is KΦ or one of its rotations. When σ1 < µ <
σ2, then the bounds are sharp if and only if f is KΦ3

or
one of its rotations. If µ = σ1 then the bounds are sharp if
and only if f is Fρ or one of its rotations. If µ = σ2 then
the bounds are sharp if and only if f is Gρ or one of its
rotations.

By making use of Lemma 3, we immediately obtain
the following:

Theorem 3. Let µ ≧ 0 and λ ≧ 0 further, let Φ(z) be of

the form (18). If f ∈ G
υ,δ ,q
µ,λ (Φ), then for complex ν , we

have

|a3 −νa2
2|=

B1

ξΘ3

max

{

1,

∣

∣

∣

∣

−B2

B1

+
B1Λ

τ2
+

νξΘ3

τ2Θ 2
2

B1

∣

∣

∣

∣

}

where ξ ,τ are as assumed in (21) and Λ = 1
2
(µ2 + µ)−

(µ + 3)λ − 1. The result is sharp.

3 Coefficient inequalities for the function

f−1 ∈ G
υ,δ ,q
µ,λ (Φ)

Theorem 4. If f ∈ G
υ,δ ,q
µ,λ (Φ) and f−1(w) = w+

∞

∑
n=2

dnwn

is the inverse function of f with
(

|w|< r0( f );r0( f )≥ 1
4

)

the Koebe domain of the class f ∈ G
υ,δ ,q
µ,λ

(Φ), then for any

complex number ν , we have

| d3 −νd2
2 | ≤ B1

ξΘ3

× max
{

1, | −B2

B1

+
B1Λ

τ2
+

(2−ν)B1ξΘ3

τ2Θ 2
2

|
}

.

(28)

where τ,ξ are as assumed in (21) and Λ = 1
2
(µ2 + µ)−

(µ + 3)λ − 1.

Proof.As

f−1(w) = w+
∞

∑
n=2

dnwn (29)

is the inverse function of f , it can be seen that

f−1( f (z)) = f{ f−1(z)} = z. (30)

From equations (1) and (30), we get

f−1(z+
∞

∑
n=2

anzn) = z. (31)

From (30) and (31), one can obtain

z+(a2 + d2)z
2 +(a3 + 2a2d2 + d3)z

3 + .........= z. (32)

By equating corresponding coefficients , of (32), we have

d2 =−a2 (33)

d3 = 2a2
2 − a3. (34)

From relations (26),(27),(33) and (34)

d2 =− B1c1

2(1+ µ)(1+λ )Θ2

=− B1c1

2τΘ2

; (35)

d3 =
B2

1c2
1

2τ2Θ 2
2

− B1

2ξΘ3

(

c2 −
1

2

(

1− B2

B1

+
B1Λ

τ2

)

c2
1

)

;

=
B1

2ξΘ3

[

−c2 +
c2

1

2

(

1− B2

B1

+
B1Λ

τ2
+

2B1ξΘ3

τ2Θ 2
2

)]

;

=
−B1

2ξΘ3

[

c2 −
c2

1

2

(

1− B2

B1

+
B1Λ

τ2
+

2B1ξΘ3

τ2Θ 2
2

)]

;

(36)

where τ,ξ are as assumed in (21) and Λ = 1
2
(µ2 + µ)−

(µ + 3)λ − 1. For any complex number ν , consider

d3 −νd2
2 = − B1

2ξΘ3

×
[

c2 −
c2

1

2

(

1− B2

B1
+

B1Λ

τ2
+

(2−ν)B1ξΘ3

τ2Θ 2
2

)]

.

(37)
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Taking modulus on both sides and by applying Lemma 3
on the right hand side of (37), one can obtain the result as
in (28). Hence this completes the proof.

4 Application to Functions Defined by

Poisson distribution

A variable χ is said to be Poisson distributed if it takes

the values 0,1,2,3, · · · with probabilities e−κ , m e−κ

1!
,

κ2 e−κ

2!
, κ3 e−κ

3!
, ... respectively, where κ is called the

parameter. Thus

P(χ = r) =
κ re−κ

r!
, r = 0,1,2,3, · · · .

In [14], Porwal introduced a power series whose

coefficients are probabilities of Poisson distribution

I (κ ,z) = z+
∞

∑
n=2

κn−1

(n− 1)!
e−κ zn, z ∈ D,

where κ > 0. We note by the familiar ratio test that the
radius of convergence of the above series is infinity.
Lately, using the Hadamard product, Porwal[14] (see
also, [15,16,17] introduced a new linear operator
I κ(z) : A → A defined by

I
κ f = I (κ ,z)∗ f (z) = z+

∞

∑
n=2

κn−1

(n− 1)!
e−κanzn,

= z+
∞

∑
n=2

ψn(κ)anzn, z ∈ D,

where

ψn = ψn(κ) =
κn−1

(n− 1)!
e−κ .

In particular

ψ2 = κe−κand ψ3 =
κ2

2
e−κ (38)

We describe the class G
υ,δ ,q
κ ,µ,λ

(Φ) as below:

G
υ,δ ,q
κ ,µ,λ (Φ) := { f ∈ A and I

κ f ∈ G
υ,δ ,q
µ,λ (Φ)}

where G
υ,δ ,q
µ,λ (Φ) is given by Definition 2. We find the

coefficient estimate for f ∈ G
υ,δ ,q
κ ,µ,λ (Φ), from the

corresponding estimate for functions in the class

G
υ,δ ,q
µ,λ

(Φ). Applying Theorem 2 and 3, for

I κ f = I (κ ,z) ∗ f (z) = z + ψ2a2z2 +ψ3a3z3 + · · · , we
get the following Theorems 5 and 6 after a noticeable
modification of the parameter ν .

Theorem 5.Let µ ≧ 0;λ ≧ 0 and Φ(z) be given by (18). If

f ∈ G
υ,δ ,q
κ ,µ,λ (Φ), then for complex µ , we have

|a3 −νa2
2| =

2B1

ξΘ3κ2e−κ

× max

{

1,

∣

∣

∣

∣

−B2

B1

+
B1Λ

τ2
+

νξ B1Θ3

2τ2Θ 2
2 e−κ

∣

∣

∣

∣

}

where τ,ξ are as assumed in (21) and Λ = 1
2
(µ2 + µ)−

(µ + 3)λ − 1. The result is sharp.

Theorem 6.Let µ ≧ 0;λ ≧ 0 and ν a real number. Further,

let Φ(z) be given in (18). If f ∈ G
υ,δ ,q
κ ,µ,λ (Φ), then

|a3−νa2
2|≦































2B1

ξΘ3κ2e−κ

(

B2
B1

− B1Λ
τ2 − νξ B1Θ3

2τ2Θ 2
2 e−κ

)

, if ν ≦ σ1,

2B1

ξΘ3κ2e−κ , if σ1 ≦ ν ≦ σ2,

2B1

ξΘ3κ2e−κ

(

−B2
B1

+ B1Λ
τ2 + νξ B1Θ3

2τ2Θ 2
2 e−κ

)

, if ν ≧ σ2,

where, for convenience,

σ1 =
2τ2Θ 2

2 e−κ

ξ B1Θ3

(

−1+
B2

B1

− B1Λ

τ2

)

,

σ2 =
2τ2Θ 2

2 e−κ

ξ B1Θ3

(

1+
B2

B1

− B1Λ

τ2

)

Λ = 1
2
(µ2 +µ)− (µ +3)λ −1 and τ,ξ are as assumed in

(21). These results are sharp.

Concluding Remarks

Suitably specializing the parameters µ and λ as stated in
Definitions 3 to 5, in Theorems 2,3 and 4 one can easily
state above result for the function classes defined in
Definitions 3 to 5 related with Bessel Functions. Also ,
further fixing Φ as illustrated below:

1.For (0 < α ≤ 1) and − 1 ≤ B < A ≤ 1, taking the
function Φ as

Φ(z) =

(

1+Az

1+Bz

)α

= 1+α(A−B)z

− α

2
[2B(A−B)+ (1−α)(A−B)2]z2 + · · ·

which gives B1 = α(A − B) and
B2 =−α

2
[2B(A−B)+ (1−α)(A−B)2].

2.If we take α = 1 and −1 ≤ B < A ≤ 1, then we have

Φ(z) =
1+Az

1+Bz
= 1+(A−B)z+B(A−B)z2+ · · ·

(39)
thus we have B1 = A−B and B2 = B(A−B).
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3.By fixing A = 1 and B =−1 we have

Φ(z) =
1+ z

1− z
= 1+ 2z+ 2z2+ · · · (40)

thus we have B1 = 2 and B2 = 2
4.Further for some c ∈ (0,1], taking

Φ(z) =
√

1+ cz = 1+
c

2
z− c2

8
z2 + . . . (41)

then the class is said to be associated with the right
-loop of the Cassinian Ovals [18]. In particular if
c = 1 then the class is associated with right-half of the
lemniscate of Bernoulli [19] is given by

Φ(z) =
√

1+ z = 1+
1

2
z− 1

8
z2 + . . . . (42)

which gives B1 =
1
2

and B2 =− 1
8
.

5.Taking

Φ(z) = z+
√

1+ z2 = 1+ z+
1

2
z2 − 1

8
z4 + . . . . (43)

which gives B1 = 1 and B2 =
1
2
,

then the class is said to be associated with the right
crescent [20].

6.Again by taking

Φ(z) = 1+
4

3
z+

2

3
z2 (44)

which gives B1 =
4
3

and B2 =
2
3
,

then the class is said to be associated with the cardioid
[21].

7.By taking Φ(z) = 1 +
8

π2
z +

16

3π2
z2 where f is a

parabolic starlike function (see [22]) in conic regions,

one can deduce the analogues results of above theorems,
we left the proof as exercise to interested readers.
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