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Abstract: In this paper, numerical solution of the nonlinear Klein-Gordon equation is obtained by using the cubic B-spline Galerkin

method for space discretization and the finite difference method which is of order four for time discretization. Accuracy of the method

is presented by computing the maximum error norm. Robustness of the suggested method is shown by studying some classical test

problems.
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1 Introduction

The Klein-Gordon equation (KGE) which has an
important historic role in the formulation of relativistic
quantum mechanics [1] is of the form:

utt +αuxx +G(u) = f (x, t) (1)

with the following conditions

u(x,0) = f0(x), (2)

ut(x,0) = f1(x), a ≤ x ≤ b, (3)

u(a, t) = g0(t), u(b, t) = g1(t), (4)

ux(a, t) = g2(t), ux(b, t) = g3(t), t ≥ 0 (5)

where G(u) is the nonlinear force. By choosing the
function G(u) as β u+ γuk, k = 2,3, the nonlinear KGE is
given as

utt +αuxx +β u+ γuk = f (x, t) (6)

where β and γ are constants. The Eq. (6) is named as the
quadratic nonlinear KGE for k = 2 and the cubic
nonlinear KGE for k = 3. The KGE is known as the
relativistic version of the Schrödinger equation and
named after Oskar Klein and Walter Gordon [1]. The
KGE arises in various physical events like as the
interaction of solitons in a collisionless plasma, the
motion of rigid pendula attached a stretched wire and
examining the nonlinear waves, etc. So, the numerical

solutions of KGE have been investigated using various
numerical methods such as pseudospectral,
decomposition, finite difference, finite element, He’s
variational iteration, radial basis function approximation,
cubic B-spline collocation, differential quadrature,
meshless, multiquadric Quasi-interpolation, Haar wavelet,
exponential cubic B-spline collocation and Galerkin
methods by many researchers such as Li and Guo [2],
Duncan [3], Kaya and El-Sayed [4], Khalifa and Elgamal
[5], Shakeri and Dehghan [6], Dehghan and Shokri [7],
Rashidinia et al. [8], Bao and Dong [9], Verma et al.[10],
Hussain et al. [11], Sarboland and Aminataei [12], Shira
et al. [13], Ersoy et al. [14], Yang [15], Selvitopi and
Yazici [16].

This paper’s purpose is to present a numerical method
to get the numerical solution of the nonlinear KGE by
applying the Galerkin finite element method based on
cubic B-spline functions for the space discretization of
the KGE and a finite difference method which is of order
four for the time discretization of the KGE. Using the
fourth order finite difference method in time
discretization of the KGE, it is aimed to increase the
accuracy of the proposed numerical method.

The organization of this paper is as follows. First, the
time and space discretizations of the KGE is described in
Section 2. Then, three examples are given to investigate
the efficiency of the proposed method, and a comparison
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with the existed studies is made in Section 3. Finally, the
conclusion is given in Section 4.

2 The Numerical Method

By choosing the term ut(x, t) in the KGE (6) is equal to
v(x, t), the nonlinear partial differential equation (1) can
be rewritten as a system of partial differential equations

ut = v, (7)

vt = −αuxx −β u− γuk+ f (x, t) (8)

with the boundary and initial conditions:

u(a, t) = g0(t), u(b, t) = g1(t),

v(a, t) =
∂g0

∂ t
(t), v(b, t) =

∂g1

∂ t
(t), (9)

ux(a, t) = g2(t), ux(b, t) = g3(t),

vx(a, t) =
∂g2

∂ t
(t), vx(b, t) =

∂g3

∂ t
(t), (10)

u(x,0) = f0(x), v(x,0) =
∂ f0

∂ t
(x). (11)

Consider Ω = [a,b] × [0,T ] be smooth region with the
grid points (xm, tn), where

xm = a+mh, m = 0,1,2, . . . ,N, tn = n∆ t, n = 0,1,2, . . . ,

h and ∆ t are mesh size in the space and time direction
respectively.

2.1 The Finite Difference Method

For the time discretization of the Eqs. (7) and (8) the
following finite difference approximation has been
employed:

un+1 = un +θ1un+1
t +θ2un

t +θ3un+1
tt +θ4un

tt (12)

and

vn+1 = vn +θ1vn+1
t +θ2vn

t +θ3vn+1
tt +θ4vn

tt (13)

where θ1, θ2, θ3 and θ4 are unknown parameters which
will be defined later. By using the Eq. (7) into the Eq. (12),
taking partial derivative with respect to t in the both sides
of the Eq. (7) and substituting the Eq. (8) in related term,
the following form is obtained:

un+1 = un +θ1vn+1 +θ2vn +θ3(−αun+1
xx −β un+1

−γ(un+1)k + f (x, tn+1))

+θ4(−αun
xx −β un − γ(un)k + f (x, tn)). (14)

After required simplifications, Eq. (14) is rewritten as

un+1(1+θ3β +θ3γ(un+1)k−1)+θ3αun+1
xx −θ1vn+1

= un(1−θ4β −θ4γ(un)k−1)−θ4αun
xx +θ2vn

+θ4 f (x, tn)+θ3 f (x, tn+1). (15)

Also, by substituting the Eq. (8) into the Eq. (13), the
following form is obtained:

vn+1 −θ1(−αun+1
xx −β un+1− γ(un+1)k + f (x, tn+1))

−θ3vn+1
tt = vn +θ2(−αun

xx −β un − γ(un)k

+ f (x, tn))+θ4vn
tt (16)

and taking partial derivative with respect to t in the both
sides of Eq. (8), we get

vtt = −α(uxx)t −β ut − γ(ut)
k + ft(x, t)

= −α(ut)xx −β v− γk(uk−1)ut + ft(x, t)

= −αvxx −β v− γk(uk−1)v+ ft(x, t). (17)

By substituting Eq. (17) into Eq. (16), we have

un+1(θ1β +θ1γ(un+1)k−1)+θ1αun+1
xx +θ3αvn+1

xx

+vn+1(1+θ3β +θ3γk(un+1)k−1)

= un(−θ2β −θ2γ(un)k−1)−θ2αun
xx + vn(1−θ4β (18)

−θ4γk(un)k−1)−θ4αvn
xx +θ1 f (x, tn+1)

+θ2 f (x, tn)+θ3 ft(x, tn+1)+θ4 ft(x, tn).

Lemma 1.Suppose u,v, f ∈ C6 (Ω) and θ1 = θ2 =
∆ t
2

and

θ3 =−θ4 =− (∆ t)2

12
. Then, the numerical scheme (15) and

(18) are consistent and fourth order accurate in time for

the norm ‖·‖∞.

Proof.Using the θ1 = θ2 = ∆ t
2

and θ3 = −θ4 = − (∆ t)2

12
in

(15) and (18), the truncation errors E1 of (15) and E2 of
(18) are obtained for k = 2 as

E1 (u,v, f ) =
[

(
αγ

180
vxx(x,τ)−

γ

360
ft(x,τ))u(x,τ)

+(
αγ

90
uxx(x,τ)−

γ

120
f (x,τ)

+
γ2

72
u2(x,τ)+

β 2

720
+

β γ

72
u(x,τ))v(x,τ)

+
αγ

180
ux(x,τ)vx(x,τ)+

αβ

360
vxx(x,τ)

+
α2

720
vxxxx(x,τ)−

β

720
ft(x,τ)

−
α

720
fxxt (x,τ)+

1

720
fttt (x,τ)

]

∆ t5 + . . . ,

c© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 2, 331-339 (2022) / www.naturalspublishing.com/Journals.asp 333

E2 (u,v, f ) =

[

(−
αγ2

45
u2

x(x,τ)−
β 3

720
+

αγ

180
fxx(x,τ)

−
α2γ

120
uxxxx(x,τ)−

γ

360
ftt (x,τ)

+
β γ

45
f (x,τ))u(x,τ)+ (

γ2

36
u(x,τ)

+
β γ

72
)v2(x,τ)−

γ

90
ft(x,τ)v(x,τ)

−
γ

120
f 2(x,τ)+ (−

γ3

72
u2(x,τ)−

β γ2

36
u(x,τ)

+
γ2

45
f (x,τ)−

11β 2γ

720
)u2(x,τ)

+(−
αβ γ

90
ux(x,τ)+

αγ

180
fx(x,τ)

−
α2γ

60
uxxx(x,τ))ux(x,τ)+ (

7αγ

360
f (x,τ)

−
13αβ γ

360
u(x,τ)−

13αγ2

360
u2(x,τ)

−
αβ 2

240
−

7α2γ

360
uxx(x,τ))uxx(x,τ)

−
α2β

240
uxxxx(x,τ)−

α3

720
uxxxxxx(x,τ)

+
αγ

180
v2

x(x,τ)+
αγ

60
v(x,τ)vxx(x,τ)

+
β 2

720
f (x,τ)+

αβ

360
fxx(x,τ)

+
α2

720
fxxxx(x,τ)−

α

720
fxxtt (x,τ)

−
β

720
ftt (x,τ)+

1

45
ftttt (x,τ)

]

∆ t5 + . . .

and for k = 3 as

E1 (u,v, f ) =
[

(−
γ

40
f (x,τ)+

αγ

30
uxx(x,τ))u(x,τ)

+(−
γ

240
ft(x,τ)+

αγ

120
vxx(x,τ))u

2(x,τ)

+(
3γ2

80
u4(x,τ)+

β γ

30
u2(x,τ)

+
αγ

120
u2

x(x,τ)+
β 2

720
)v(x,τ)−

γ

120
v3(x,τ)

+
αβ

360
vxx(x,τ)+

α2

720
vxxxx(x,τ)

+
αγ

60
u(x,τ)ux(x,τ)vx(x,τ)−

β

720
ft(x,τ)

+
1

720
fttt (x,τ)−

αβ

720
fxxt (x,τ)

]

∆ t5 + . . . ,

E2 (u,v, f ) =
[

(−
γ

40
f 2(x,τ)+

αγ

60
fx(x,τ)ux(x,τ)

−
β 3

720
−

α2γ

20
ux(x,τ)uxxx(x,τ)+

αγ

60
v2

x(x,τ)

−
αβ γ

24
u2

x(x,τ))u(x,τ)+ (
αγ

120
fxx(x,τ)

−
α2γ

80
uxxxx(x,τ)+

7β γ

120
f (x,τ)

−
γ

240
ftt (x,τ))u

2(x,τ)+ (−
13αγ2

120
u2

x(x,τ)

−
5β 2γ

144
)u3(x,τ)+

αγ

120
f (x,τ)u2

x(x,τ)

+
γ2

16
f (x,τ)u4(x,τ)−

17β γ2

240
u5(x,τ)

−
3γ3

80
u7(x,τ)+ (

αγ

30
ux(x,τ)vx(x,τ)

−
γ

30
ft (x,τ)u(x,τ)+

αγ

20
u(x,τ)vxx(x,τ))v(x,τ)

+(
7γ2

40
u3(x,τ)+

11β γ

120
u(x,τ)

−
γ

20
f (x,τ))v2(x,τ)+ (−

7α2γ

120
u2

x(x,τ)

+
7αγ

120
v2(x,τ)−

23αγ2

240
u4(x,τ)

+
7αγ

120
f (x,τ)u(x,τ)−

αβ 2

240
−

αβ γ

12
u2(x,τ)

−
7α2γ

120
u(x,τ)uxx(x,τ))uxx(x,τ)

−
α2β

240
uxxxx(x,τ)−

α3

720
uxxxxxx(x,τ)

+
β 2

720
f (x,τ)+

αβ

360
fxx(x,τ)

+
α2

720
fxxxx(x,τ)−

α

720
fxxtt (x,τ)

−
β

720
ftt (x,τ)+

1

45
ftttt (x,τ)

]

∆ t5 + . . . .

where τ ∈ (tn, tn+1). Hence, we have:

‖E1 (u,v, f )‖∞ ≤ ∆ t5 sup
(x,ξ )∈Ω

|ε1 (x,ξ )| and

‖E2 (u,v, f )‖∞ ≤ ∆ t5 sup
(x,ξ )∈Ω

|ε2 (x,ξ )|

where εi (x,ξ ), i= 1,2 denote the coefficients of the ∆ t5 in
Ei (u(x,ξ ) ,v(x,ξ ) , f (x,ξ )). It follows that the proposed
numerical scheme (15) and (18) are consistent and have
order four in time.

Note that by choosing the parameters in Eqs. (12) and
(13) as θ1 = θ2 = ∆ t

2
and θ3 = −θ4 = 0, we have

Crank-Nicolson method which is of order two in time and
by choosing the parameters in Eqs. (12) and (13) as

θ1 = θ2 =
∆ t
2

and θ3 =−θ4 =− (∆ t)2

12
, we have high order
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accurate which is of order four in time. Therefore our
presented method for time disretization is a high order
method.

2.2 The Finite Element Method

For space discretization of the KGE, the Galerkin finite
element method has been applied to the Eqs. (15) and (18)
as

b
∫

a

w(x)[un+1(1+θ3β +θ3γ(uk−1)n+1)+θ3αun+1
xx

−θ1vn+1]dx =
b
∫

a

w(x)[un(1−θ4β −θ4γ(uk−1)n)

−θ4αun
xx +θ2vn +θ4 f (x, tn)+θ3 f (x, tn+1)]dx,

(19)

b
∫

a

w(x)[un+1(θ1β +θ1γ(uk−1)n+1)+θ1αun+1
xx

+θ3αvn+1
xx + vn+1(1+θ3β +θ3γk(uk−1)n+1)]dx

=

b
∫

a

w(x)[un(−θ2β −θ2γ(uk−1)n)−θ2αun
xx (20)

+vn(1−θ4β −θ4γk(uk−1)n)−θ4αvn
xx]dx+

b
∫

a

w(x)[θ1 f (x, tn+1)+θ2 f (x, tn)+θ3 ft (x, tn+1)

+θ4 ft(x, tn)]dx

where w is a weight function.
The approximate solutions UN(x, t) and VN(x, t) are

taken in terms of the cubic B-spline functions Qm as

UN(x, t) =
N+1

∑
m=−1

δm(t)Qm(x),

VN(x, t) =
N+1

∑
m=−1

σm(t)Qm(x)

(21)

where δm and σm, m = −1,0,1, ...,N + 1 are unknowns
that are time dependent parameters to be determined by the
discretized form of Eq. (1) and the cubic B-spline function
for m =−1,0, ...,N + 1 is defined as follows:

Qm(x) =
1

h3



















































(x− xm−2)
3, xm−2 ≤ x < xm−1,

h3 + 3h2(x− xm−1)
+3h(x− xm−1)

2

−3(x− xm−1)
3,

xm−1 ≤ x < xm,

h3 + 3h2(xm+1 − x)
+3h(xm+1 − x)2

−3(xm+1 − x)3,

xm ≤ x < xm+1,

(xm+2 − x)3
, xm+1 ≤ x < xm+2,

0, otherwise
(22)

where the set of cubic B-spline {Q−1,Q0, . . . ,QN+1}
generates a basis over the solution domain [a,b]. The
approximation functions, first and second derivatives of
those over the element [xm,xm+1] are given by using the
cubic B-spline function as

UN(xm, t) = δm−1 + 4δm+ δm+1,

U ′
N(xm, t) = −

3

h
δm−1 +

3

h
δm+1,

U
′′

N(xm) =
6

h2
(δm−1 − 2δm + δm+1),

VN(xm, t) = σm−1 + 4σm+σm+1, (23)

V ′
N(xm, t) = −

3

h
σm−1 +

3

h
σm+1,

V
′′

N(xm) =
6

h2
(σm−1 − 2σm −σm+1).

By choosing the weight function w as cubic B-spline
function, the Eqs. (19) and (20) are rewritten by using the
Eq. (23) as

m+2

∑
j=m−1

{

(1+θ3β )
xm+1
∫

xm

QiQ jdx

+θ3γ
xm+1
∫

xm

Qi

(

m+2

∑
r=m−1

Qrδ
n+1
r

)k−1

Q jdx

+θ3α
xm+1
∫

xm

QiQ
′′

jdx

}

δ n+1
j −

m+2

∑
j=m−1

{

θ1

xm+1
∫

xm

QiQ jdx

}

σn+1
j

−
m+2

∑
j=m−1

{

(1−θ4β
xm+1
∫

xm

QiQ jdx

−θ4γ
xm+1
∫

xm

Qi

(

m+2

∑
r=m−1

Qrδ
n
r

)k−1

Q jdx

−θ4α
xm+1
∫

xm

QiQ
′′

jdx

}

δ n
j −

m+2

∑
j=m−1

{

θ2

xm+1
∫

xm

QiQ jdx

}

σn
j

−
xm+1
∫

xm

Qi(θ4 f (x, tn)+θ3 f (x, tn+1))dx,

(24)

m+2

∑
j=m−1

{

θ1β
xm+1
∫

xm

QiQ jdx

+θ1γ
xm+1
∫

xm

Qi

(

m+2

∑
r=m−1

Qrδ n+1
r

)k−1

Q jdx

+θ1α
xm+1
∫

xm

QiQ
′′

j dx

}

δ n+1
j

+
m+2

∑
j=m−1

{

(1+θ3β )
xm+1
∫

xm

QiQ jdx

+θ3γk
xm+1
∫

xm

Qi

(

m+2

∑
r=m−1

Qrδ n+1
r

)k−1

Q jdx

+θ3α
xm+1
∫

xm

QiQ
′′

j dx

}

σn+1
j

−
m+2

∑
j=m−1

{

−θ2β
xm+1
∫

xm

QiQ jdx

(25)
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−θ2γ
xm+1
∫

xm

Qi

(

m+2

∑
r=m−1

Qrδ
n
r

)k−1

Q jdx

−θ2α
xm+1
∫

xm

QiQ
′′

jdx

}

δ n
j

−
m+2

∑
j=m−1

{

(1−θ4β )
xm+1
∫

xm

QiQ jdx

−θ4γk
xm+1
∫

xm

Qi

(

m+2

∑
r=m−1

Qrδ
n
r

)k−1

Q jdx

−θ4α
xm+1
∫

xm

QiQ
′′

jdx

}

σn
j

−
xm+1
∫

xm

Qi [θ1 f (x, tn+1)+θ2 f (x, tn)

+θ3 ft(x, tn+1)+θ4 ft (x, tn)]dx

where i = m−1,m,m+1,m+2. Denoting the integrals in
(24) and (25) by

Ae
i j =

xm+1
∫

xm

QiQ jdx,

Be
i j(δ

n+1) =

xm+1
∫

xm

Qi

(

m+2

∑
r=m−1

Qrδ n+1
r

)k−1

Q jdx,

Ce
i j =

xm+1
∫

xm

QiQ
′′

j dx,

De
i =

xm+1
∫

xm

Qi(θ4 f (x, tn)+θ3 f (x, tn+1))dx,

Ee
i =

xm+1
∫

xm

Qi[[θ1 f (x, tn+1)+θ2 f (x, tn)

+θ3 ft(x, tn+1)+θ4 ft(x, tn)]dx,

i = m− 1,m,m+ 1,m+ 2;

j = m− 1,m,m+ 1,m+ 2

and collecting the element matrices over all elements
[xm,xm+1], we get the following matrix forms of the (24)
and (25):

[

(1+θ3β )A+θ3γB((δδδ )n+1)+θ3αC
]

(δδδ )n+1

−θ1A(σσσ)n+1 = [(1−θ4β )A−θ4γB((δδδ )n)
−θ4αC] (δδδ )n +θ2A(σσσ)n +D,

(26)

[

θ1β A+θ1γB(δδδ n+1)+θ1αC
]

δδδ n+1

+
[

(1+θ3β )A+θ3γkB(δδδ n+1)+θ3αC
]

σσσn+1

=
[

−θ2β A−θ2γB(δδδ n)−θ2αC
]

δδδ n

+
[

(1−θ4)A−θ4γkB(δδδ n)−θ4αC
]

σσσn +E

(27)

where δδδ n+1 = (δ n+1
−1 , ...,δ n+1

N+1)
T and

σσσn+1 = (σn+1
−1 , ...,σn+1

N+1)
T . The set of equations consists

of 2N + 6 equations with 2N + 6 unknown parameters.
Before starting the iteration procedure, boundary

conditions must be adapted into the system. For this
purpose, we delete first and last equations from the
systems (26) and (27), and eliminate the terms δ−1,σ−1

and δN+1,σN+1 from the remaining systems (26) and (27)
by using boundary conditions (9). So, we obtain a new
matrix system with the dimension (2N + 2)× (2N+ 2).

To start evolution of the vector of initial parameters
(δ 0

−1,σ
0
−1,δ

0
0 ,σ

0
0 , . . . ,δ

0
N−1,σ

0
N−1,δ

0
N ,σ

0
N), it must be

determined by using the boundary (10) and initial (11)

conditions. Once the initial parameters δδδ 0
and σσσ0 are

determined, we can start the iteration of the system to find
the unknown parameters δδδ n

and σσσn at time tn = n∆ t.
Thus the approximate solution UN and VN (19) can be
determined by using these values.

3 Numerical Experiments

In this section, we apply proposed method to four
numerical examples of nonlinear KGE. The accuracy of
our presented method is tested by employing maximum
error norm L∞

L∞ = ‖u−UN‖∞ = max
j

∣

∣u j −U j

∣

∣ . (28)

3.1 First example

Let choose α = −1, β = 0, γ = 1 and k = 2 for the
nonlinear KGE and the space domain [0,1]. The initial
conditions and boundary conditions are given as follows

u(x,0) = 0, ut(x,0) = 0,

u(0, t) = 0, u(1, t) = t3

and f (x, t) = 6xt(x2 − t2)+ x6t6. For these parameters

u(x, t) = x3t3

is an exact solution of the nonlinear KGE. Using the
formulation in (28), Table 1 is prepared for the various
space steps as h = 0.02, h = 0.04, h = 0.05 and the time
step as ∆ t = 0.0001 at various times. In the same table to
compare the solutions, the results of the maximum error
norm L∞ obtained by Dehghan [7], Rashidinia [8] and
Sarboland [12] are included. The results show that the
accuracy of present method is considerable good than the
accuracy of the other methods. The simulation of the
numerical solutions at different times up to t = 5 is shown
in Fig. 1 and the absolute error propagation of the
proposed method is seen in Fig. 2 at time t = 5.

3.2 Second example

Let choose α = −1, β = 0, γ = 1 and k = 2 for the
nonlinear KGE and the space domain [−1,1]. The initial
conditions and boundary conditions are given as follows

u(x,0) = x, ut(x,0) = 0,

u(−1, t) = −cos(t), u(1, t) = cos(t)
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Table 1: The error norms for first example with ∆ t = 0.0001 at

various times.

Method h t = 1 t = 2

present 0.02 3.241×10−14 2.093×10−13

present 0.04 2.753×10−14 3.606×10−13

present 0.05 4.185×10−14 2.344×10−13

[7] 0.02 1.101×10−5 1.649×10−4

[8] 0.04 6.414×10−13 7.451×10−12

[12] 0.05 7.795×10−6 1.230×10−4

t = 3 t = 4

present 0.02 2.321×10−12 3.872×10−12

present 0.04 8.166×10−13 1.397×10−12

present 0.05 1.417×10−12 2.629×10−12

[7] 0.02 5.972×10−4 1.826×10−3

[8] 0.04 1.624×10−11 2.007×10−11

[12] 0.05 5.301×10−4 1.860×10−3

t = 5

present 0.02 5.215×10−12

present 0.04 8.242×10−12

present 0.05 6.949×10−12

[7] 0.02 3.691×10−3

[8] 0.04 2.540×10−11

[12] 0.05 3.519×10−3

U

0

5

50

4 1

100

3 0.8

t

0.6

x

2

150

0.41 0.2
0 0

Fig. 1: Solutions up to t = 5 with ∆ t = 0.0001, h = 0.02.

and f (x, t) =−xcos(t)+ x2 cos2(t). For these parameters

u(x, t) = xcos(t)

is an exact solution of the nonlinear KGE. Maximum
error norm L∞ is presented in the Table 2 for h = 0.2,
h = 0.02 and ∆ t = 0.0001 at various times as
t = 1,3,5,7,10. The values of the maximum error norm
L∞ are compared with the results obtained by [7,12]. We
observe that results obtained by using proposed method
are more accurate than results obtained by the others. By
the Fig. 3, it can be seen the solution profiles at various
times for the proposed numerical method. The absolute
error of the proposed method is given in Fig. 4 at t = 10.
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Fig. 2: Absolute error of the method in t = 5 with ∆ t = 0.0001,

h = 0.02.

Table 2: The error norms for second example with ∆ t = 0.0001

at various times.

Method h t = 1 t = 3

present 0.02 1.234×10−13 1.257×10−13

present 0.2 4.569×10−14 2.037×10−13

[7] 0.02 1.254×10−5 1.555×10−5

[12] 0.2 1.259×10−5 1.542×10−5

t = 5 t = 7

present 0.02 1.387×10−13 2.716×10−13

present 0.2 1.739×10−13 1.693×10−13

[7] 0.02 3.379×10−5 3.775×10−5

[12] 0.2 3.362×10−5 3.741×10−5

t = 10

present 0.02 1.652×10−13

present 0.2 2.094×10−13

[7] 0.02 1.309×10−5

Fig. 3: Solutions up to t = 10 with ∆ t = 0.0001, h = 0.01.

3.3 Third example

The another exact solution of the KGE is of

u(x, t) = B tan(K(x+ ct))
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Fig. 4: Absolute error of the method in t = 10 with ∆ t = 0.0001,

h = 0.01.

where B =
√

β
γ and K =

√

−β

2(α+c2)
. The initial conditions

and boundary conditions are given as follows

u(x,0) = B tan(Kx), ut(x,0) = BcK sec2(Kx),

u(0, t) = B tan(Kct), u(1, t) = B tan(K +Kct)

with f (x, t) = 0, α = −2.5, β = 1, γ = 1.5, k = 3 and the
space domain as [0,1] for this example. The given
problem has been solved by taking h = 0.01, 0.02, 0.05
and ∆ t = 0.001. L∞ errors for two different c values such
that c = 0.5 and c = 0.05 are presented in Tables 3 and 4,
respectively. The results obtained by present method are
compared with the results obtained by [7,8,12] in Tables
3 and 4. It is obvious that for values of c = 0.5 and
c = 0.05, the proposed method is more accurate than the
other methods [7,8,12]. The propagations of the
numerical solutions at various times for values of c = 0.5
and c = 0.05 are shown in Figs. 5 and 6. The simulations
of the absolute errors for c = 0.5 and c = 0.05 are seen in
Figs. 7 and 8.

Table 3: The error norms for third example with ∆ t = 0.001,

c = 0.5.

Method h t = 1 t = 2

present 0.01 1.693×10−11 8.182×10−11

present 0.02 2.585×10−10 1.258×10−9

[7] 0.01 5.996×10−6 2.197×10−5

[8] 0.01 2.694×10−8 8.746×10−8

[12] 0.02 5.213×10−6 2.180×10−5

t = 3 t = 4

present 0.01 8.421×10−10 7.625×10−8

present 0.02 1.266×10−8 1.047×10−6

[7] 0.01 9.089×10−5 8.294×10−4

[8] 0.01 3.090×10−7 1.939×10−6

[12] 0.02 9.011×10−5 8.237×10−4

Table 4: The error norms for third example with ∆ t = 0.001,

c = 0.05.

Method h t = 1 t = 2

present 0.01 4.050×10−12 4.319×10−12

present 0.05 2.323×10−9 2.434×10−9

[7] 0.01 3.649×10−7 3.895×10−7

[8] 0.01 1.198×10−8 2.473×10−8

[12] 0.05 2.178×10−7 3.064×10−7

t = 3 t = 4

present 0.01 5.066×10−12 5.850×10−12

present 0.05 2.849×10−9 3.259×10−9

[7] 0.01 4.213×10−7 4.592×10−7

[8] 0.01 2.895×10−8 1.991×10−8

[12] 0.05 3.700×10−7 3.423×10−7

Fig. 5: Solutions up to t = 4 with ∆ t = 0.001, h = 0.01, c = 0.5.

Fig. 6: Solutions up to t = 4 with ∆ t = 0.001, h = 0.01, c = 0.05.

4 Conclusion

In this paper, we have proposed a high order accurate
algorithm for the numerical solution of the KGE. This
algorithm is obtained by using cubic B-spline functions
with the well known finite element method as Galerkin
method for the space discretization of the KGE and the
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Fig. 7: Absolute error of the method in t = 4 with ∆ t = 0.001,

h = 0.01, c = 0.5.
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Fig. 8: Absolute error of the method in t = 4 with ∆ t = 0.001,

h = 0.01, c = 0.05.

fourth order finite difference method in time for time
discretization of the KGE. To test the achievement of the
proposed method, three examples are examined. By
comparing the maximum errors L∞ obtained by the
proposed method with those of the others (radial basis
function approximation method, cubic B-spline
collocation method and multiquadric quasi-interpolation
method), it has been seen that the accuracy of the
proposed method is high. Consequently, the finite element
method which is of order four used for time discretization
increases the accuracy of the proposed algorithm.
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