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Abstract: This paper deals with the extension of the dynamics modeling the interaction among transformed epithelial cells (TECs),

fibroblasts, myofibroblasts, transformed growth factor (TGF−β ), and epithelial growth factor (EGF), in silico, in a setup mimicking

experiments in a tumor chamber invasion assay. In the sequel of establishing solution continuously depends on the data and existence of

unique solution, we were able to extend the Gronwall’s inequality for linear ordinary differential equations, to the Gronwall’s inequality

for linear, delay ordinary differential equations. The method of upper and lower solutions is utilized to present that the equilibrium

points are globally stable, whereas, equilibrium points are analyzed and the conditions for the existence of Hopf bifurcation are also

established. Since it is not possible to solve the extended dynamics, nor the original dynamics, we derive, analyze, implement a fitted

operator method and present our results. Analysis of the basic properties of the fitted operator method presents that it is consistent,

stable and convergent. Since our numerical results are in agreement with our findings, we thus believe that our findings in this study,

can indeed contribute more toward the design of the drug which can slow and/or confine tumor invasion.

Keywords: Tumor cells’ micro-environment, proliferation, migration, delay partial differential equations, Hopf bifurcation; fitted

operator, stability analysis.

1 Introduction

Since cell types such as epithelial cells, fibroblasts,
myofibroblasts, endothelial cells, and inflammatory cells
are well known to form an integral part of a tumor
micro-environment [1] then, the composition of the
surrounding extra-cellular matrix (ECM) may play an
important role in confining cancer. This can be achieved
by either modulating cell adhesion or blocking Matrix
Metalloproteinase (MMP) [1]. In human Ductal
Carcinoma In Situ (DCIS), it is understood that Matrix
Metalloproteinase (MMP) material have shown that
several classes of MMPs are expressed in periductal
fibroblasts and myofibroblasts, indicating an intense
stromal involvement during early invasion [1,2]. Thus, a
situation which corresponds to the case of a more
aggressive carcinoma, where tumor cells are degrading
the basal membrane and invade into the stroma is
considered. The invasion of transformed epithelial cells
(TECs) into stroma is an important and complex step

toward metastasis [3]. Thus, let Dn,D f ,Dm,DE ,DG,DP

denote constant diffusion coefficients for the density of
transformed epithelial cells, density of fibroblasts (f),
density of myofibroblasts (m), concentration of epidermal
growth factor (EGF), concentration of transformed
growth factor (TGF-β ), and concentration of matrix
metalloproteinase (MMP). Therefore, in an effort to
understand the complex step toward metastasis, Kim and
Friedman in [1] derived the following dynamics

∂ n
∂ t

= ∇ · (Dn∇n)−∇ ·χnn
∇E

√

1+(|∇E|/λE )2

︸ ︷︷ ︸

chemotaxis

−∇ χ1
n Isn

∇ρ
√

1+(|∇ρ|/λρ )2

︸ ︷︷ ︸

haptotaxis






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+a11
E4

k4
E +E4

n

(

1− n

n∗−a12ρIs

)

︸ ︷︷ ︸

proliferation

∈ Ω+, t > 0,

∂ f
∂ t

= ∇ · (D f ∇ f )−a12G f
︸ ︷︷ ︸

f→m

+ a22 f
︸︷︷︸

proliferation

∈ Ω−, t > 0,







∂ m
∂ t

= ∇ · (Dm∇m)−∇ ·
(

χmm
∇G

√

1+(|∇G|/λG)2

)

︸ ︷︷ ︸

chemotaxis

,

+a21G f
︸ ︷︷ ︸

f→m

+ a31m
︸ ︷︷ ︸

proliferation

∈ Ω−, t > 0,

∂ ρ
∂ t

=− a41Pn
︸ ︷︷ ︸

degradation

+(a42 f +a43m)

(

1− ρ

ρ∗

)

︸ ︷︷ ︸

release/reconstruction

∈ S, t > 0,

∂ E
∂ t

= ∇ · (DE ∇E)+ IΩ− (a51 f +a52m)
︸ ︷︷ ︸

production

− a53E
︸︷︷︸

decay

∈ Ω∗, t > 0,

∂ G
∂ t

= ∇ · (DG∇G)+ a61IΩ+
n

︸ ︷︷ ︸

production

− a62G
︸ ︷︷ ︸

decay

∈ Ω∗, t > 0,

∂ P
∂ t

= ∇ · (Dp∇P)+ a71IΩ−m
︸ ︷︷ ︸

production

− a72P
︸︷︷︸

decay

∈ Ω∗, t > 0,







where, Ω denotes the 3-dimensional domain

Ω = {x = (x1,x2,x3);−Li < xi < Li for 1 ≤ i ≤ 3},
and set

Ω+ = Ω ∩{x1 > 0}, Ω− = Ω ∩{x1 < 0}
Ω∗ = Ω+∪Ω−,
Γ+ = ∂Ω+, Γ− = ∂Ω−,

where, the semi-permeable membrane occupies the planar
region

M = {−Li < xi < Li, x1 = 0, for i = 2,3},
the extracellular matrix (ECM) occupies a 3-dimensional
region

S = {−L0 < x1 < L0,x1 6= 0,
−Li < xi < Li, i = 2,3}

where, 0 < L0 < L1 and the characteristic function of a
set A is denoted by IA, so that

IA(x) = 1 if x ∈ A, A(x) = 0 if x /∈ A.

The dependent variables are defined in Table 1
and transmission conditions at the semi-permeable

membrane are

∂E+

∂x1
= ∂E−

∂x1
, − ∂E+

∂x1
+ γ(E+−E−) = 0,M, t > 0,

∂G+

∂x1
= ∂G−

∂x1
, − ∂G+

∂x1
+ γ(G+−G−) = 0,M, t > 0,

∂P+

∂x1
= ∂P−

∂x1
, − ∂P+

∂x1
+ γ(P+−P−) = 0,M, t > 0,







Table 1: Dependent variables for the model in equation
(3-1)

n(x, t) density of transformed epithelial cells (TECs)

f (x, t) density of fibroblasts

m(x, t) density of myofibroblasts

ρ(x, t) concentration of extracellular matrix (ECM)

E(x, t) concentration of epidermal growth factor (EGF)

G(x, t) concentration of transformed growth factor (TGF-β )

P(x, t) concentration of matrix metalloproteinase (MMP)

where,

E(x, t) =







E+(x, t) if x1 > 0,

E−(x, t) if x1 < 0,

G(x, t) =







G+(x, t) if x1 > 0,

G−(x, t) if x1 < 0,

P(x, t) =







P+(x, t) if x1 > 0,

P−(x, t) if x1 < 0.

Here, γ is a positive parameter which depends on the size
and density of the holes in the membrane [4], where, Kim
and Friedman in [1] have assumed that the membrane is
not permeable to cells, thus, no flux boundary conditions

(

Dn∇n− χnn ∇E√
1+(|∇E|/λE)2

− χ1
n ISn

∇ρ√
1+(|∇ρ |/λρ)2

)

·ν
= 0,Γ+, t > 0,

D f ∇ f ·ν = 0, Γ−, t > 0,

(

Dm∇m− χmm ∇G√
1+(|∇G|/λG)2

)

·ν = 0,

Γ−, t > 0,Dρ ∇ρ ·ν = 0,

DE∇E ·ν = 0, DG∇G ·ν = 0,

DP∇P ·ν = 0,∂Ω −{M}, t > 0,







are imposed, where, ν denotes the outward normal vector.
The prescribed one-dimensional space initial conditions
are given as

n0(x) =
1
2

(
1+ tanh

(
− 1

ε (0.8− x)
))

∈ Ω+,
f0(x) = 0,143 1

2

(
1+ tanh

(
− 1

ε (x− 0.2
))

∈ Ω−,
m0(x) = 0.0 ∈ Ω−,ρ0(x) = 1.0 ∈ S,E0(x) = 1.0 ∈ Ω∗,
G0(x) = 1.0 ∈ Ω∗,P0(x) = 0.0 ∈ Ω∗.







(1.1)

Thus, one is of the view that the incorporation of time
τ > 0 required for some transformations and/or

c© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 2, 367-388 (2022) / www.naturalspublishing.com/Journals.asp 369

productions to take place should be incorporated into the
dynamics in equation 3-1. Such transformation are
fibroblasts into myfibroblasts, degradation of the
extra-cellular matric (ECM), production of fibroblasts and
myfibroblasts by the transformed epithelial cells (TEC),
production of transformed epithelial cells by the
transformed growth factor (TGF−β ) and the production
of fibroblasts by the Matrix Metalloproteinase (MMP).
Therefore, the spatial distribution for the dynamics are
due to the role played by the ECM [1,2]. Hence, its
spatial domain should be increased from S to the entire
domain Ω∗. Thus, incorporating the time required, the
ECM spatial distributions into the dynamics for equation
(3-1) and ignoring the vertical variables, then the model
in equation (3-1) becomes

∂ n
∂ t

−Dn∆n =−∇ · χnn ∇E√
1+(|∇E|/λE)2

−∇χ1
n Isn

∇ρ√
1+(|∇ρ |/λρ )2

+ a11nE4

k4
E+E4

(

1− n
n∗−a12ρIs

)

∈ [0,L1],
∂ f
∂ t

−D f ∆ f = (−a12G(x, t − τ)+a22) f (x, t − τ) ∈ [−L1,0),

∂ m
∂ t

−Dm∆m =−∇ ·
(

χmm ∇G√
1+(|∇G|/λG)2

)

+a21G(x, t − τ) f (x, t − τ)+a31m ∈ [−L1,0),
∂ ρ
∂ t

−Dρ ∆ρ =−a41P(x, t − τ)n(x, t − τ)

+(a42 f +a43m)
(

1− ρ
ρ∗

)

∈ [−L1,L1],
∂ E
∂ t

−DE ∆E = IΩ− (a51 f (x, t − τ)+a52m(x, t − τ))
−a53E ∈ [−L1,L1],

∂ G
∂ t

−DG∆G = a61IΩ+
n(x, t − τ)−a62G ∈ [−L1,L1],

∂ P
∂ t

−Dp∆P = a71IΩ−m(x, t − τ)−a72P ∈ [−L1,L1],







(1.2)

for (x, t) ∈ ¯[−L1,L1]× [−τ,0]. The dynamics in equation
(1.2) is a system of discrete delay reaction-diffusion
equations. Delay differential equations (DDEs) are widely
used for analysis and predictions in various areas of life
sciences [5], epidemiology [6], immunology [7],
physiology [8], and neural networks [9,10]. Since
time-delays and/or time-lags, can be related to the
duration of certain hidden processes like the stages of life
cycle, time between infection of a cell and production of
new viruses, duration of the infectious period, immune
period, then introduction of such time-delays in a
differential dynamics significantly increases the
complexity of a dynamic. Therefore, the first aim in this
paper, is to carry out mathematical analysis, which leads
to the investigation of how time delay τ affects the
dynamics in equation (1.2). By applying Poincaré normal
form and the center manifold theorem as in [11], one
finds conditions for the functions and derives formulas
which determine the properties of Hopf bifurcation. More
specifically, the paper presents that equilibrium point
losses its stability and the dynamics exhibit Hopf
bifurcation under certain conditions.The second aim is to
develop a reliable numerical method based on the
qualitative features of the dynamics in equation (1.2).
Thus, below, we highlight some of the recent
developments.

In [12], Hafez and Youssri developed a numerical
scheme to solve the variable-order fractional linear

sub-diffusion and nonlinear reaction-sub-diffusion
equations using the shifted Jacobi collocation method,
whereas, in [13], an overview of numerical problems
encountered when determining the coefficients and rich
variety of techniques proposed to solve these problems
with regard to a series of explicit formulae expressing the
derivatives, integrals and moments of a class of
orthogonal polynomials of any degree and for any order
in terms of the same polynomials are addressed.

Abd-Elhameed and Youssri in [14] proposed a new
numerical solutions for certain coupled system of
fractional differential equations through the employment
of the so-called generalized Fibonacci polynomials. The
polynomials include two parameters in which they
generalize some important well-known polynomials such
as Fibonacci, Pell, Fermat, second kind Chebyshev, and
Dickson polynomials. The proposed numerical algorithm
is essentially built on applying the spectral tau method
together with utilizing a Fejer quadrature formula.

Delay differential equations are one of the most
powerful mathematical modeling tools and they appear in
various applications from life sciences to engineering and
physics. They model dynamical systems, when their
evolution depends on prior times. A large class of
epidemiological models can be formulated as a system of
differential equations, frequently involving spatial
structure and time delays see for example [15,16].

The rest of the paper is structured as follow.
Mathematical analysis of the extended model is presented
in Section 2. A robust numerical scheme based on the
fitted finite difference technique is formulated,
implemented and analysed for convergence in Section 3.
To justify the effectiveness of the proposed scheme, some
numerical results are presented in Section 4 and Section 5
concludes the paper.

2 Mathematical analysis

In this section, well-posedness of the existence of unique
solution, local stability, Hopf Bifurcation and global
stability analysis of the equilibrium points are established.
Let

u = [n, f ,m,ρ ,E,G,P]T

D = [Dn,D f ,Dm,Dρ ,DE ,DG,DP]
T

where T denote a transpose. Then the extended dynamics
in equation (1.2) can be rewritten as

∂u
∂ t

−D∆u = F(u(x, t),∇u(x, t),u(x, t − τ)),

t ∈ [t0 − τ, t0],
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where,

F1(u(x, t),∇u(x, t),u(x, t − τ))

=−∇ ·χnn ∇E√
1+(|∇E|/λE )2

−∇χ1
n Isn

∇ρ√
1+(|∇ρ |/λρ )2

+ a11nE4

k4
E+E4

(

1− n
n∗−a12ρIs

)

∈ [0,L1],

F2(u(x, t),∇u(x, t),u(x, t − τ))
= (−a12G(x, t − τ)+a22)
× f (x, t − τ) ∈ [−L1,0),

F3(u(x, t),∇u(x, t),u(x, t − τ))

=−∇ ·
(

χmm ∇G√
1+(|∇G|/λG)2

)

+a21G(x, t − τ) f (x, t − τ)
+a31m ∈ [L1,0),

F4(u(x, t),∇u(x, t),u(x, t − τ))
=−a41P(x, t − τ)n(x, t − τ)

+(a42 f +a43m)
(

1− ρ
ρ∗

)

∈ [−L1,L1],

F5(u(x, t),∇u(x, t),u(x, t − τ))
= IΩ− (a51 f (x, t − τ)
+a52m(x, t − τ))−a53E ∈ [−L1,L1],

F6(u(x, t),∇u(x, t),u(x, t − τ))
= a61IΩ+

n(x, t − τ)
−a62G ∈ [−L1,L1],

F7(u(x, t),∇u(x, t),u(x, t − τ))
= a71IΩ−m(x, t − τ)
−a72P ∈ [−L1,L1],







with all other terminal conditions remained unchanged, as
given in (3)-(1) through to (1.1).

2.1 Solution continuously depending on the data

Let v(x, t, t − τ),z(x, t, t − τ) ∈ C
2
1[−L1,L1] denote two

solutions for the dynamics in equation (1.2), such that
v(x, t, t − τ) − z(x, t, t − τ) =: u(x, t, t − τ), (where
−τ < t < 0), yields the following results.

Theorem 21Let

∂u(x,t,t−τ)
∂ t

−D∆u(x, t, t − τ) = 0;

x ∈ [−L1,L1], t > 0,
u1(x,0) =

1
2

(
1+ tanh

(
− 1

ε (0.8− x)
))

∈ [0,L1]
u2(x,0) = 0,143 1

2

(
1+ tanh

(
− 1

ε (x− 0.2
))

∈ [−L1,0),
u3(x,0) = 0.0 ∈ [L1,0),
ρ0(x) = 1.0 ∈ [−L1,L1],u4(x,0)

= 1.0 ∈ [−L1,L1],
u5(x,0) = 1.0 ∈ [−L1,0),
u6(x,0)(x) = 0.0 ∈ [−L1,L1].







Then u(x, t, t − τ) is identically zero.

Proof:

Proceeding component-wise for elements of the vector

u(x, t), one obtains,

u(·, t, t − τ)ut(·, t, t − τ) = 1
2
∂tu

2(·, t, t − τ),

u(·, t, t − τ)ut−τ(·, t, t − τ) = 1
2
∂t−τ u2(·, t, t − τ).







Similarly, one also finds

u(·, t, t − τ)uxx(·, t, t − τ) = ∂x(u(·, t, t − τ)ux(·, t, t − τ))
−u2

x(·, t, t − τ),

then in view of Theorem 21

1
2

d
dt

∫ L1
−L1

u2(·, t, t − τ)dx

=
∫ L1
−L1

1
2
∂tu

2(·, t, t − τ)dx

=
∫ L1
−L1

u(·, t, t − τ)ut(·, t, t − τ)dx

= D
∫ L1
−L1

u(·, t)uxx(·, t, t − τ)dx,

= D
∫ L1
−L1

∂x(u(·, t, t − τ)ux(·, t, t − τ))dx

−∫ L1
−L1

u2
x(·, t, t − τ)dx,

= Du(·, t, t − τ)ux(·, t, t − τ)|L1
−L1

−
∫ L1
−L1

u2
x(·, t, t − τ)dx

=−D
∫ L1
−L1

u2
x(·, t, t − τ)dx ≤ 0.

These implies that the function

t →
∫ L1

−L1

u2(·, t, t − τ)dx

is a non-increasing function. Hence

0 ≤
∫ L1
−L1

u2(·, t, t − τ)dx.

≤ ∫ L1
−L1

u2(·,0,0)dx = 0,∀x, t

A similar results can be established that,

1
2

d
d(t−τ)

∫ L1
−L1

u2(·, t, t − τ).

=−D
∫ L1
−L1

u2
x(·, t, t − τ)dx ≤ 0

This proves uniqueness of solution to the system of delay
time-depended non-linear quasi-parabolic partial
differential equations (PPDEs) in equation (1.2).

Corollary 22Let v,z ∈ C2
1[−L1,L1] denote solutions to

the dynamics in equation (1.2) with initial states v0,z0,

such that v0 −z0 =: u0 and Fu,Fv denote the real-valued

functions bounding v and z, respectively. Then

‖v− z‖2 ≤ exp(−ηt)‖v0 − z0‖2

+ϖ

∫ t

0
exp(−η(t − s))‖Fu −Fv‖2ds,

and

‖v− z‖2 ≤ exp(−η(t − τ))‖v0 − z0‖2

+ϖτ

∫ t

t−τ
exp(−η(t − τ − s))‖Fu −Fv‖2ds,

for some −τ < t < 0, and ϖ ,ϖτ ,η ∈ R+.
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In order to prove the Corollary 22, the following are
preliminaries to the proof.

Definition 23Let v,z ∈ C
2
1[−L1,L1] then

(v,z) :=
∫ L1

−L1

v(·, t),z(·, t)dx,

defines an in inner product [17].

Lemma 24If v,z ∈ C2
1[−L1,L1] then

(vxx +σv,z) = σ(v,z)− (vx,zx) = (v,zxx +σz),

where, σ ∈ R.

Proof:

Since

∂x[vxz] = vxxz+ vxzx,

then
(∂x[vx,z]) = (vxx,z)+ (vx,zx),

⇒ (vx,z)|L1
−L1

= (vxx,z)+ (vx,zx),

⇒ (vxx,z) =−(vx,zx).

Similarly,

∂x[vzx] = vzxx + vxzx, (2.3)

then it follows from equation in (2.3) that

(v,zxx) =−(vx,zx). (2.4)

Combining equation in (2.3) with equation in (2.4) yields

(vxx,z) = (v,zxx).

Hence, the results follows. �

Lemma 25Let v ∈C
2
1[−L1,L1], then

‖v‖ := (v,v)
1
2 =

(∫ L1

−L1

v2(·, t)dx

) 1
2

,

defines a norm.

Proof: See [17].

Corollary 26Let v,z ∈ C2
1[−L1,L1] then

|(v,v)| ≤ ‖v‖‖v‖.

Proof:
Let [17]

P2(σ) = ‖v+σz‖2 = ‖v‖2 + 2σ(v,z)+σ2‖z‖2,

denotes a polynomial of degree two. Then P2(σ)≥ 0,∀σ ∈
R. Thus,

△P2(σ) = 4(v,z)2 − 4‖v‖2‖z‖2 ≤ 0,⇒ (v,z)2 ≤ ‖v‖2‖z‖2,

which concludes the proof of Corollary 26.

Proof of Corollary 22. By means of Poincaré inequality
[17], Schwarz inequality in Lemma 25, Corollary 26 and
in view of the prove to Theorem 21,

1
2

d
dt
‖u(·, t, t − τ)‖2 + 1

2
d

d(t−τ)‖u(·, t, t − τ)‖2

+ 2
c
D‖u(·, t)‖2

≤ 2(F (·, t, t − τ),u(·, t, t − τ))
≤ 2‖F‖‖u(·, t, t − τ)‖,

where, c > 0, F := Fu −Fv. Thus,

d
dt
‖u(·, t, t − τ)‖2 +

(
2
c
D− ε

)
‖u(·, t, t − τ)‖2

≤ 1
ε ‖F‖2,

d
d(t−τ)

‖u(·, t, t − τ)‖2 +
(

2
c
D− ε

)
‖u(·, t, t − τ)‖2

≤ 1
ε ‖F‖2,







for some arbitrary sufficiently small ε > 0. Let η = 2
c
D−

ε > 0 and ϖ = 1/ε . Then, equation (2.1) becomes

d
dt
‖u(·, t, t − τ)‖2 +η‖u(·, t, t − τ)‖2

≤ ϖ‖F‖2,

d
d(t−τ)‖u(·, t, t − τ)‖2 +ητ‖u(·, t, t − τ)‖2

≤ ϖτ‖F‖2.







Applying the Gronwall’s inequality [17] to equation in
(2.1) the results follows. �

2.2 Local stability

Let
E := (n∗, f ∗,m∗,ρ∗,E∗,G∗,P∗)

denotes the equilibrium point for the dynamics in
equation (1.2). Then at the equilibrium point E , the
system in equation (1.2) becomes

Dn
dn
dx

− χn
d
dx

(

n
dE
dx√

1+(| dE
dx

|/λE )2

)

−χ1
n Is

d
dx

(

dn
dx

dρ
dx√

1+(| dρ
dx

|/λρ )2

)

+ a11nE4

k4
E+E4

(

1− n
n∗−a12ρIs

)

= 0 ∈ [0,L1],

D f
d f
dx

+(−a12G(x)+ a22) f (x)
= 0 ∈ [−L1,0),







Dm
dm
dx

− χm
d
dx

(

m
dG
dx√

1+(| dG
dx

|/λG)2

)

+a21G(x) f (x)+ a31m

= 0 ∈ [−L1,0),

Dρ
dρ
dx

− a41P(x)n(x)

+(a42 f + a43m)
(

1− ρ
ρ∗

)

= 0 ∈ [−L1,L1],






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DE
dE
dx

+ IΩ−(a51 f (x)
+a52m(x))− a53E = 0
∈ [−L1,L1],

DG
dG
dx

+ a61IΩ+n(x)− a62G

= 0 ∈ [−L1,L1],
DP

dP
dx

+ a71IΩ−m(x)− a72P

= 0 ∈ [−L1,L1].







Neglecting, the spacial distributions, one obtains
G∗ = a22/a12 ∈ [−L1,0], n∗ = a62a22/a61a12 ∈ [0,L1],
and f ∗ = 0 on [−L1,0]. This yields, m∗ = E∗ = P∗ = 0,
which implies that equation (2.2) reduces to solving

dρ(x)

dx
=
∫ L1

−L1

√

1+

∣
∣
∣
∣

dρ

λρ dx

∣
∣
∣
∣

2

dx.

Hence, ρ∗ = L1

√

1+(L1)2 + ln

(
L1+

√
1+L2

1√
1+L2

1−L1

) 1
2

, such that
√

1+L2
1 > L1. Thus, the following results.

Theorem 27The equilibrium point for system in equation

(1.2) is given by

E =
(

a62a22
a61a12

,0,0,L1

√

1+(L1)2

+ ln

(
L1+

√
1+L2

1√
1+L2

1−L1

) 1
2

,0, a22
a12

,0

)

.

To investigate the linearized stability of the system (1.2),
we let

(n, f ,m,ρ ,E,G,P) =
(n̄+ n∗, f̄ + f ∗, m̄+m∗, ρ̄ +ρ∗, Ē +E∗, Ḡ+G∗, P̄+P∗).

Substituting into (1.2), and retaining only the linear terms
in n, f ,m,ρ ,E,G,P, one finds

∂ n̄
∂ t

−Dn
∂
∂ x

(
∂
∂ x

n̄
)

= 0, in ∈ [0,L1], t > 0,

∂ f̄
∂ t

−D f
∂
∂ x

(
∂
∂ x

f̄
)

= a22 f̄ (x, t − τ) ∈ [−L1,0], t > 0,

∂ m̄
∂ t

−Dm
∂
∂ x

(
∂
∂ x

m̄
)

= a31m̄(x, t) ∈ [−L1,0], t > 0,

∂ ρ̄
∂ t

−Dρ
∂
∂ x

(
∂
∂ x

ρ̄
)

= a42 f̄ (x, t)+a43m̄(x, t) ∈ [−S,S], t > 0,

∂ Ē
∂ t

−DE
∂
∂ x

(
∂
∂ x

Ē
)

=−a53Ē(x, t) ∈ [−L1,L1], t > 0,

∂ Ḡ
∂ t

−DG
∂
∂ x

(
∂
∂ x

Ḡ
)

= a61n̄(x, t − τ)+a62Ḡ(x, t)

+ a62a22

a61a12
− a62a22

a12
∈ [−L1,L1], t > 0,

∂ P̄
∂ t

−DP
∂
∂ x

(
∂
∂ x

P̄
)

= a71IΩ−m̄(x, t − τ)

−a72P̄(x, t) ∈ [−L1,L1],







on (x, t) ∈ ¯[−L1,L1]× [−τ,0], where, the characteristic
equation is

(λ −Dn)(λ −D f − a22e−λ t)(λ −Dm − a31)(λ −Dρ)

(λ −DE + a53)(λ −DG − a62)(λ −DP + a72) = 0.

Hence, the following results.

Theorem 28The dynamics in equation (1.2) are

asymptotically stable if λ < Dn,λ < D f + a22e−λ t , λ <
Dm + a31, λ < DE − a53, λ < DG + a62, λ < DP − a72.

2.3 Hopf Bifurcation analysis

When τ 6= 0, we assume that λ = iω for ω > 0 and i =√
−1. In view of the eigenvalues, we have

iω −D f − a22 exp(iωτ) = iω −D f

−a22(cos(ωτ)+ isin(ωτ)) = 0.

Separating real and imaginary parts we have

ω + a22 sin(ωτ) = 0 and −D f − a22 cos(ωτ) = 0, (2.5)

which yields

τi =
1

ω0

cos−1

(
D f

a22

+ 2iπ

)

, i = 0,1,2,3, . . . .

Squaring on both sides of equations in (2.5), we find

ω2 + 2a22ω sin(ωτ)+ a2
22 sin2(ωτ) = 0,

D2
f + 2D f a22 cos(ωτ)+ a2

22 cos2(ωτ) = 0. (2.6)

Adding the two equations in equation (2.6) one finds

ω2 +D2
f + 2(D f cos(ωτ)+ω sin(ωτ))a22 + a2

22 = 0,

which simplifies to

ω2 +D2
f − 2(D2

f +ω2)+ a2
22 = 0,

⇒−ω2 −D2
f + a2

22 = 0,⇒ ω0 =±
√

a2
22 −D2

f .

Choosing τ0 = min{τi}, we need to show that

R

(
dλ

dτ

)
∣
∣
∣
∣
∣
τ=τ0

6= 0.

From the eigenvalues we have

R

(
dλ
dτ

)

= R

(
d(D f +a22(cos(ωτ)+isin(ωτ))

dτ

)

=−a22ω sin(ω0τ0),

where ω0τ0 6= 0. By summarizing the above analysis, we
arrive at the following theorem.

Theorem 29The equilibrium

E =
(

a62a22
a61a12

,0,0,L1

√

1+(L1)2

+ ln

(
L1+

√
1+L2

1√
1+L2

1
−L1

) 1
2

,0, a22
a12

,0

)

,

of the system (1.2) is asymptotically stable for τ ∈ [0,τ0)
and it undergoes Hopf bifurcation at τ = τ0.
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2.4 Global stability analysis

In this section, one establishes that the equilibrium

E =
(

a62a22
a61a12

,0,0,L1

√

1+(L1)2

+ ln

(

L1+
√

1+L2
1√

1+L2
1−L1

) 1
2

,0, a22
a12

,0

)

,

is globally asymptotically stable with the method of upper
and lower solution [18,19].

Let ϑE = E4

k4
E+E4 . Then denoting the reaction terms in

equation (1.2) by h j(n, f ,m,ρ ,E,G,P) for
j = 1,2,3,4,5,6,7, one has

h1 = a11nϑE

(

1− n
n∗−a12ρIs

)

∈ Ω+,

h2 = (−a12G(x, t − τ)+ a22) f (x, t − τ) ∈ [−L1,0],
h3 = a21G(x, t − τ) f (x, t − τ)+ a31m ∈ [−L1,0],
h4 =−a41P(x, t − τ)n(x, t − τ)

+(a42 f + a43m)
(

1− ρ
ρ∗

)

∈ [−L1,L1],

h5 = IΩ−(a51 f (x, t − τ)+ a52m(x, t − τ))
−a53E ∈ [−L1,L1],

h6 = a61IΩ+n(x, t − τ)
−a62G ∈ [−L1,L1],

h7 = a71IΩ−m(x, t − τ)
−a72P ∈ [−L1,L1].







(2.7)
Let S ⊂R5

+ such that S = {u ∈R7
+ : u ≤ 0 ≤ ū} and K j be

any positive constant satisfying

K ≥ max{Kn,K f ,Km,Kρ ,KE ,KG,KP,}

≥ max
{−∂h j

∂u j
: u = (n, f ,m,ρ ,E,G,P) ∈ S

}

,

for j = 1,2,3,4,5,6,7. Then the following results
hold.

Lemma 210Let

∂n
∂ t

−∇ · (Dn∇n)+∇ · χnn ∇E√
1+(|∇E|/λE)2

+∇χ1
n Isn

∇ρ√
1+(|∇ρ |/λρ)2

≤ Kn ∈ [0,L1],

∂ f
∂ t

−∇ · (D f ∇ f )≤ K f ∈ [−L1,0],

∂m
∂ t

−∇ · (Dm∇m)+∇ ·
(

χmm ∇G√
1+(|∇G|/λG)2

)

≤ Km ∈ [−L1.0],
∂ρ
∂ t

−∇ · (Dρ∇ρ)≤ Kρ ,∈ [−L1,L1],
∂E
∂ t

−∇ · (DE∇E)≤ KE ∈ [−L1,L1],
∂G
∂ t

−∇ · (DG∇G)≤ KG ∈ [−L1,L1],
∂P
∂ t

−∇ · (Dp∇P)≤ KP ∈ [−L1,L1].







Then

limt→∞ n(x, t) = Kn, limt→∞ f (x, t)
= K f , limt→∞ m(x, t) = Km, limt→∞ ρ(x, t) = Kρ ,

limt→∞ E(x, t) = KE , limt→∞ G(x, t)
= KG, limt→∞ P(x, t) = KP.

Theorem 211If a12ρIs < n∗, then this implies that the

equilibrium (n∗ − a12ρIs,0,0,0,
a22
a12

) is globally

asymptotically stable.

Proof: From the maximum principle of parabolic
equations, it is known that for any initial value

(n0(t,x), f0(t,x),m0(t,x),ρ0(t,x),
E0(t,x),G0(t,x),P0(t,x))> (0,0,0,0,0)

the corresponding non-negative solution

(n(t,x), f (t,x),m(t,x),ρ(t,x),E(t,x),G(t,x),P(t,x),)

is strictly positive for t > 0 . Since a12ρIs < n∗, then choose
ε0 ∈ (0,1). According to Lemma (210) and the comparison
principle of parabolic equations, there exists t1 > t0 > 0
such that, for any t > t1,

n(x, t)≤ Kn + ε0 := n̄(x, t) ∈ [0,L1],
f (x, t) ≤ K f + ε0 := f̄ (x, t) ∈ [−L1,0],
m(x, t)≤ Km + ε0 := m̄(x, t) ∈ [−L1,0],
ρ(x, t)≤ Kρ + ε0 := ρ̄(x, t) ∈ [−L1,L1],
E(x, t)≤ KE + ε0 := Ē(x, t) ∈ [−L1,L1],
G(x, t)≤ KG + ε0 := Ḡ(x, t) ∈ [−L1,L1],
P(x, t)≤ KP + ε0 := P̄(x, t) ∈ [−L1,L1],







(2.8)

and

n(x, t)≥ Kn − ε0 := n(x, t) ∈ [0,L1],
f (x, t) ≥ K f − ε0 := f (x, t) ∈ [−L1,0],
m(x, t)≥ Km − ε0 := m(x, t) ∈ [−L1,0],
ρ(x, t)≥ Kρ − ε0 := ρ(x, t) ∈ [−L1,L1],
E(x, t)≥ KE − ε0 := E(x, t) ∈ [−L1,L1],
G(x, t)≥ KG − ε0 := G(x, t) ∈ [−L1,L1],
P(x, t)≥ KP − ε0 := P(x, t) ∈ [−L1,L1],







(2.9)

Thus, for t > t0, it is possible to obtain

n(x, t)≤ n(x, t)≤ n̄(x, t) ∈ [0,L1],
f (x, t)≤ f (x, t)≤ f̄ (x, t) ∈ [−L1,0],0,

m(x, t)≤ m(x, t)≤ m̄(x, t) ∈ [−L1,0],
ρ(x, t)≤ ρ(x, t)≤ ρ̄(x, t) ∈ [−L1,L1],

E(x, t)≤ E(x, t)≤ Ē(x, t) ∈ [−L1,L1],
G(x, t)≤ G(x, t)≤ Ḡ(x, t) ∈ [−L1,L1],
P(x, t)≤ P(x, t)≤ P̄(x, t) ∈ [−L1,L1].

Since h j(n, f ,m,ρ ,E,G,P) in equation (2.7) is a C1

function of n, f ,m,ρ ,E,G,P, where h1 is quasi-monotone
non-decreasing in f ,m,ρ ,E,G,P, h2 is quasi-monotone
non-increasing in n,m,ρ ,E,G,P, h3 is quasi-monotone
non-decreasing in n, f ,ρ ,E,G,P, h4 is mixed
quasi-monotone non-increasing in n, f ,m,ρ ,E,G,P, h5 is
quasi-monotone non-decreasing in
n, f ,m,ρ ,G,P, h6 is quasi-monotone non-decreasing in
n, f ,m,ρ ,G,P and h7 is quasi-monotone non-decreasing
in n, f ,m,ρ ,E,G, then by the method of upper and lower
solutions the system in (1.2) possesses a unique global
non-negative solution n, f ,m,ρ ,E,G, [18]. Thus,

n, n̄, f , f̄ ,m, m̄,ρ , ρ̄,E, Ē,G, Ḡ,P, P̄,
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satisfy

a11n̄ϑ̄E

(

1− n̄
n∗−a12ρIs

)

≥ 0

≥ a11nϑ E

(

1− n
n∗−a12ρIs

)

∈ [0,L1],

(−a12G+a22) f̄ ≥ 0 ≥ (−a12Ḡ+a22) f ∈ [−L1,0],
a21Ḡ f̄ +a31m̄ ≥ 0 ≥ a21G f +a31m ∈ [−L1,0],

−a41Pn+(a42 f +a43m)
(

1− ρ̄
ρ∗

)

≥ 0

≥−a41P̄n̄

+(a42 f̄ +a43m̄)
(

1− ρ

ρ∗

)

∈ [−L1,L1],







I[−L1 ,0](a51 f̄ +a52m̄)−a53Ē ≥ 0

≥ I[−L1,0](a51 f +a52m)

−a53E ∈ [−L1,L1],
a61IΩ+

n̄−a62Ḡ ≥ 0 ≥ a61I[0,L1]n

−a62G ∈ [−L1,L1],
a71I[−L1,0]m̄−a72P̄ ≥ 0

≥ a71I[−L1,0]m−a72P ∈ [−L1,L1].







Therefore,

(n̄, f̄ , m̄, ρ̄, Ē, Ḡ, P̄), and (n, f ,m,ρ ,E,G,P),

are a pair of coupled upper and lower solutions for system
(1.2),[20], respectively. Thus, for any

(n, f ,m,ρ ,E,G,P)≤ (n1, f 1,m1,ρ1,E1,G1,P1)

and

(n2, f 2,m2,ρ2,E2,G2,P2)≤ (n̄, f̄ , m̄, ρ̄ , Ē, Ḡ, P̄)

we have

∣
∣
∣a11n1(ϑE )1

(

1− n1

n∗−a12ρIs

)

−a11n2(ϑE)2

(

1− n2

n∗−a12ρIs

)∣
∣
∣

≤ K(|E1 −E2|+ |n1 −n2|) ∈ [0,L1],

|(−a12G1 +a22) f1 − (−a12G2 +a22) f2)|
≤ K(|G1 −G2|+ | f1 − f2|) ∈ [−L1,0],







v

|a21G1 f1 +a31m1 − (a21G2 f2 +a31m2)|
≤ K(|G1 −G2|+ | f1 − f2|) ∈ [−L1,0],

∣
∣
∣−a41P1n1 +(a42 f1 +a43m1)

(

1− ρ1

ρ∗

)

−(−a41P1n1 +(a42 f1 +a43m1)
(

1− ρ1

ρ∗

)

)
∣
∣
∣

≤ K(|n1 −n2|+ | f1 − f2|+ |m1 −m2|
+|ρ1 −ρ2|+ |P1 −P2|)
∈ [−L1,L1],







∣
∣
∣I[−L1,0](a51 f1 +a52m1)−a53E1

−(I[−L1 ,0](a51 f2 +a52m2)−a53E2)
∣
∣
∣

≤ K(| f1 − f2|+ |m1 −m2|+ |E1 −E2|)
∈ [−L1,L1],

∣
∣
∣a61I[0,L1]n1 −a62G1

−(a61I[0,L1]n2 −a62G2)
∣
∣
∣

≤ K(|n1 −n2|+ |G1 −G2|) ∈ [−L1,L1],

∣
∣
∣a71I[−L1,0]m1 −a72P1

−(a71I[−L1,0]m2 −a72P2)
∣
∣
∣

≤ K(|m1 −m2|+ |P1 −P2|) ∈ [−L1,L1].







∣
∣
∣a71I[−L1,0]m1 −a72P1

−(a71I[−L1,0]m2 −a72P2)
∣
∣
∣

≤ K(|m1 −m2|+ |P1 −P2|) ∈ [−L1,L1].







Defining two iteration sequences (n̄, f̄ , m̄, ρ̄ , Ē, Ḡ, P̄) and
(n, f ,m,ρ,E,G,P) for i ≥ 1,

n̄(i) = n̄(i−1)+(a11n̄(i−1)(ϑ̄E)
(i−1)

×
(

1− n̄(i−1)

n∗−a12ρIs

)

)/K ∈ [0,L1],

f̄ (i) = f̄ (i−1)

+(−a12G(i−1)+a22) f̄ (i−1))/K ∈ [−L1,0],

m̄(i) = m̄(i−1)

+(a21Ḡ(i−1) f̄ (i−1)+a31m̄(i−1))/K ∈ Ω−,
ρ̄(i) = ρ̄(i−1)+(−a41P(i−1)n(i−1)+(a42 f (i−1)+a43m(i−1))

×
(

1− ρ̄ (i−1)

ρ∗

)

)/K ∈ [−L1,L1],

Ē(i) = Ē(i−1)+(I[−L1 ,0](a51 f̄ (i−1)+a52m̄(i−1))

−a53Ē(i−1))/K ∈ [−L1,L1],

Ḡ(i) = Ḡ(i−1)+(a61I[0,L1]n̄
(i−1)

−a62Ḡ(i−1))/K ∈ [−L1,L1],

P̄(i) = P̄(i−1)+(a71I[−L1 ,0]m̄
(i−1)−a72P̄(i−1))/K ∈ [−L1,L1],

n(i) = n(i−1)+(a11n(i−1)ϑ
(i−1)
E

(

1− n(i−1)

n∗−a12ρIs

)

)/K ∈ [0,L1],

f (i) = f (i−1)+((−a12Ḡ+a22) f )/K ∈ [−L1,0],

m(i) = m(i−1)+(a21G(i−1) f (i−1)+a31m(i−1))/K ∈ [−L1,0],

ρ̄(i) = ρ̄(i−1)+(−a41P̄(i−1)n̄(i−1)+(a42 f̄ (i−1)+a43m̄(i−1))

×
(

1− ρ(i−1)

ρ∗

)

)/K ∈ [−L1,L1],

E(i) = E(i−1)+(I[−L1 ,0](a51 f (i−1)+a52m(i−1))

−a53E(i−1))/K ∈ [−L1,L1],

G(i) = G(i−1)+(a61I[0,L1]n
(i−1)−a62G(i−1))/K ∈ [−L1,L1],

P̄(i) = P̄(i−1)+(a71I[−L1 ,0]m
(i−1)−a72P(i−1))/K ∈ [−L1,L1],







where,

(n̄(0), f̄
(0)
, m̄(0), ρ̄(0), Ē

(0)
, Ḡ

(0)
) = (n̄, f̄ , m̄, Ē, Ḡ, P̄)

and
(n(0), f (0),m(0),ρ(0),E(0),G(0),P(0))

= (n, f ,m,ρ ,E,G,P).

c© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 2, 367-388 (2022) / www.naturalspublishing.com/Journals.asp 375

Thus, for i ≥ 1,

(n, f ,m,ρ,E,G,P)≤ (n(i), f (i),m(i),ρ (i),E(i),G(i),P(i))

≤ (n(i+1), f (i+1),m(i+1),ρ(i+1),E(i+1),G(i+1),P(i+1))

≤ (n̄(i+1), f̄
(i+1)

, m̄(i+1), ρ̄ (i+1), Ē
(i+1)

, Ḡ
(i+1)

P̄(i+1))

≤ (n̄(i), f̄
(i)
, m̄(i), ρ̄ (i), Ē

(i)
, Ḡ

(i)
, P̄

(i)
)

≤ (n̄, f̄ , m̄, ρ̄ , Ē, Ḡ, P̄),

and thus, there exist

(ñ(0), f̃
(0)
, m̃(0), ρ̃ (0), Ẽ

(0)
, G̃

(0)
, P̃

(0)
)> (0,0,0,0,0)

and

(n̂(0), f̂
(0)
, m̂(0), , ρ̂ (0), Ê

(0)
, Ĝ

(0)
, P̂

(0)
)> (0,0,0,0,0)

such that
limi→∞ n̄ = ñ,
limi→∞ f̄ = f̃ ,
limi→∞ m̄ = m̃,
limi→∞ ρ̄ = ρ̃ ,
limi→∞ Ē = Ẽ,
limi→∞ Ḡ = G̃,
limi→∞ P̄ = P̃

and
limi→∞ n = n̂, limi→∞ f = f̂ ,
limi→∞ m = m̂, limi→∞ ρ = ρ̂,

limi→∞ E = Ê, limi→∞ G = Ĝ,
limi→∞ P = P̂,

and

a11ñϑ̃E

(

1− ñ
n∗−a12ρIs

)

= 0

a11n̂ϑ̂E

(

1− n̂
n∗−a12ρIs

)

= 0 ∈ [0,L1],

(−a12Ĝ+ a22) f̃ = 0,
(−a12G̃+ a22) f̂ = 0 ∈ [−L1,0],
a21G̃ f̄ + a31m̃ = 0,
a21Ĝ f̂ + a31m̂ = 0 ∈ [−L1,0],

−a41P̂n̂+(a42 f̂ + a43m̂)
(

1− ρ̃
ρ∗

)

= 0

−a41P̃ñ+(a42 f̃ + a43m̃)
(

1− ρ̂
ρ∗

)

= 0 ∈ [−L1,L1],

I[−L1,0](a51 f̃ + a52m̃)− a53Ẽ = 0,

I[−L1,0](a51 f̂ + a52m̂)− a53Ê = 0 ∈ [−L1,L1],

a61I[0,L1]ñ− a62G̃ = 0,

a61I[0,L1]n̂− a62Ĝ = 0 ∈ [−L1,L1],
a71I[−L1,0]m̃− a72P̃ = 0,
a71I[−L1,0]m̃− a72P̃ ∈ [−L1,L1],







Since,

E =
(

a62a22
a61a12

,0,0,L1

√

1+(L1)2

+ ln

(

L1+
√

1+L2
1√

1+L2
1−L1

) 1
2

,0, a22
a12

,0

)

,

is the unique semi-positive constant equilibrium of system
(1.2), it must hold for

(ñ, f̃ , m̃, ρ̃ , Ẽ, G̃, P̃) = (n̂, f̂ , m̂, ρ̂ , Ê, Ĝ, P̂)

= (n∗− a12ρIs,0,0,0,
a22
a12

).

Thus, by [18,19], the solution
(n(x, t), f (x, t),m(x, t),ρ(x, t),E(x, t),G(x, t),P(x, t)) of
system (1.2) satisfies

limt→∞ n(x, t) = n∗, limt→∞ f (x, t) = f ∗,
limt→∞ m(x, t) = m∗, limt→∞ ρ(x, t) = ρ∗

limt→∞ E(x, t) = E∗,
limt→∞ G(x, t) = G∗ limt→∞ P(x, t) = P∗,

which concludes the prove. �

3 Derivation and analysis of the numerical

method

The derivation of the fitted numerical method for solving
the system in equation (1.2) is as follows. We determine
an approximation to the derivatives for the functions

n(t,x), f (x, t),m(x, t),ρ(x, t),E(x, t),G(x, t),P(x, t),

with respect to the spatial variable x.
Let Sx be a positive integer. Discretize the interval

[−L/2,L/2] through the points

−L/2 = x0 < x1 < x2 < · · ·< xs−1 < xs

< xs+1 · · ·< xSx−2 < xSx−1 < xSx = L/2,

where, the step-size ∆x = x j+1 − x j = 1/Sx,
j = 0,1, . . . ,Sx. Let

N j(t),F j(t),M j(t),R j(t),E j(t),G j(t),P j(t),

denote the numerical approximations for
n(t,x), f (x, t),m(x, t),ρ(x, t),E(x, t),G(x, t),P(x, t). Then
the spatial derivatives in the system in equation (1.2) are
approximated as follows

∂
∂x

(

Dn
∂n
∂x

− χnn
∂ E
∂ x√

1+( ∂ E
∂ x

/λE )2

−χ1
n Isn

∂ ρ
∂ x√

1+( ∂ ρ
∂ x

/λρ )2

)

(ti,x j)

≈ Dn
N j+1−2N j+N j−1

φ 2
n

−χn(D
−
x N j)

(D−
x E j)

√

1+

(
D−

x E j
λE

)2

−χnN j
D+

x (D−
x E j)

(

1+

(
D−

x E j
λE

)2
)3/2 ,

−χn(D
−
x N j)

(D−
x R j)

√

1+

(
D−

x R j
λρ

)2

−χ1
n IsN j

D+
x (D−

x R j)
(

1+

(
D−

x R j
λρ

)2
)3/2 ,






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∂
∂x

(

D f
∂ f
∂x

)

(ti,x j)≈ D f
F j+1−2F j+F j−1

φ 2
f

,

∂
∂x

(

Dm
∂m
∂x

− χmm
∂ G
∂ x√

1+( ∂ G
∂ x

/λG)2

)

(ti,x j)

≈ Dm
M j+1−2M j+M j−1

φ 2
m

−χm(D
−
x M j)

(D−
x G j)

√

1+

(
D−

x G j
λG

)2

−χmM j
D+

x (D−
x G j)

(

1+

(
D−

x G j
λG

)2
)3/2 ,







∂
∂x

(

Dρ
∂ρ
∂x

)

(ti,x j)≈ Dρ
R j+1−2R j+R j−1

(∆ t)2 ,

∂
∂x

(

DE
∂E
∂x

)

(ti,x j)≈ DE
E j+1−2E j+E j−1

φ 2
E

,

∂
∂x

(

DG
∂G
∂x

)

(ti,x j)≈ DG
G j+1−2G j+G j−1

φ 2
G

,







where,

D+(·) j :=
(·) j+1 − (·) j

∆x
, D−(·) j :=

(·) j − (·) j−1

∆x
,

and the denominator functions

φ2
n := Dn∆x

χn

[

exp( χn∆x

Dn
)− 1

]

,

φ2
f := 4

ρ2
f

sin
(

ρ f ∆x

2

)2

, , ρ f :=
√

a22
D f

,

φ2
m := Dm∆x

χm

[

exp( χm∆x
Dm

)− 1
]

,

φ2
E := 4

ρ2
e

sinh
(

ρe∆x

2

)2

, ρe :=
√

a53
De

,

φ2
G := 4

ρ2
g

sinh
(

ρg∆x

2

)2

, ρg :=
√

a62
Dg

,

φ2
P := 4

ρ2
p

sinh
(

ρp∆x

2

)2

, ρp :=
√

a72
Dp

.

Let St be a positive integer such that ∆ t = 1/St where 0 <
t < St . Then discretizing the time interval [0,T ], through
the points

0 = t0 < t1 < · · ·< tSt = T,

ti+1 − ti = ∆ t, i = 0,1, . . . ,(tSt − 1).

We approximate the time derivative at ti by

∂n
∂ t
(x j, ti)≈

N
i+1

j+1 −N i
j

∆ t
, ∂ f

∂ t
(x j, ti)

≈ F
i+1
j+1−F i

j

ψ f
, ∂m

∂ t
(x j , ti)≈

M
i+1
j+1−M i

j

∆ t
,







∂ρ
∂ t
(x j, ti)≈

R
i+1
j+1−Ri

j

∆ t
, ∂E

∂ t
(x j, ti)

≈ E
i+1
j+1−E i

j

ψE
, ∂G

∂ t
(x j, ti)≈

G
i+1
j+1−G i

j

ψG
,

∂P
∂ t
(x j, ti)≈

P
i+1
j+1−P i

j

ψP
,







where,

ψ f = ψw(∆ t) = (1− exp(−a22∆ t))/a22,
ψE = (1− exp(−a53∆ t))/a43,

ψG = (1− exp(−a62∆ t))/a62,
ψP = (1− exp(−a72∆ t))/a72,

where, one can see that

φn → ∆x,φ f → ∆x,ψ f → ∆ t,
φm → ∆x,φE → ∆x,ψE → ∆ t,

φG → ∆x,ψG → ∆ t,
φP → ∆x,ψP → ∆ t

(∆ t,∆x)→ (0,0).

The denominator functions in equations (3) and (3) are
used explicitly to remove the inherent stiffness in the
central finite derivatives parts and can be derived by using
the theory of nonstandard finite difference methods, see,
e.g., [21,22,23] and references therein. Combining the
equation (3) for the spatial derivatives with equation (3)
for time derivatives, we obtain

N
i+1

j −N i
j

∆ t
−Dn

N
i+1

j+1 −2N
i+1

j +N
i+1

j−1

φ 2
n

}

=−χn(D
−
x ni

j)
(D−

x E i
j )

√

1+

(
D−

x E i
j

λE

)2







−χnN
i

j

D+
x (D

−
x E i

j )
(

1+

(
D−

x E i
j

λE

)2
)3/2 −χ1

n IsN
i

j

D+
x (D

−
x R i

j)
(

1+

(
D−

x Ri
j

λρ

)2
)3/2

+
a11(E

4)i
j

k4
E+(E 4)i

jN
i

j

(1− N i
j

n∗−a12ρIs
), x ∈ [xs,L/2],







F
i+1
j −F i

j

ψ f
−D f

F
i+1
j+1−2F

i+1
j +F

i+1
j−1

φ 2
f

=−a21(HG)
i
j(H f )

i
j

+a22(H f )
i
j, x ∈ [− L

2 ,xs],

M
i+1
j −M i

j

∆ t
−Dm

M
i+1
j+1−2M

i+1
j +M

i+1
j−1

φ 2
m

=−χm(D
−
x M i

j)
(D−

x G i
j )

√

1+

(
D−

x G i
j

λG

)2

−χmM i
j

D+
x (D

−
x G i

j )
(

1+

(
D−

x G i
j

λG

)2
)3/2

+a21(HG)
i
j(H f )

i
j +a31M

i
j,

x ∈ [− L
2 ,xs],







R
i+1
j −R i

j

∆ t
−Dρ

R
i+1
j+1−2R

i+1
j +R

i+1
j−1

φ 2
ρ

=−a41(Hp)
i
j(Hn)

i
j

+(a42F
i
j +a43M

i
j)(1−

R i
j

ρ∗
),x ∈ [− L

2 ,
L
2 ],

E
i+1
j −E i

j

ψE
−DE

E
i+1
j+1−2E

i+1
j +E

i+1
j−1

φ 2
E

= IΩ−a51(H f )
i
j +a52(Hm)

i
j

−a53E
i
j , x ∈ [− L

2 ,
L
2 ],






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G
i+1
j −G i

j

ψG
−DG

G
i+1
j+1−2G

i+1
j +G

i+1
j−1

φ 2
G

= IΩ+
a61(Hn)

i
j −a62G

i
j ,

x ∈ [− L
2 ,

L
2 ],

P
i+1
j −P i

j

ψP
−DP

P
i+1
j+1−2P

i+1
j +P

i+1
j−1

φ 2
P

= IΩ−a71(Hm)
i
j −a72P

i
j,

x ∈ [− L
2 ,

L
2 ],







with the terminal conditions

N i
xs−1 = N i

xs+1 −2∆xχnN
i

xs







E i
xs+1−E i

xs−1

2∆x

√

1+

(
E i

xs+1
−E i

xs−1
2∆xλE

)2







−2∆xχ1
n N i

xs







R i
xs+1−R i

xs−1

2∆x

√

1+

(
Ri

xs+1
−Ri

xs−1
2∆xλρ

)2






,

F i
−L
2
+1

= F i
−L
2
−1

, M i
−L
2
−1

= M i
−L
2
+1

−2∆xχmM i
−L
2










G i
−L
2

+1
−G i

−L
2

−1

2∆x

√
√
√
√
√1+





G i
−L
2

+1
−G i

−L
2

−1

2∆xλG





2










,







R i

− L
2
+1

= R i

− L
2
−1
,E i

−L
2

−1
= (E −)i

−L
2

+1
(1+2∆xγ),

G i
−L
2

−1
= (G−)i

−L
2

+1
(1+2∆xγ),P i

−L
2

−1
= (P−)i

−L
2

+1
(1+2∆xγ),

N 0
x j

= 1
2

(
1+ tanh

(
− 1

ε (0.8− x j)
))

, F 0
x j

= 0.143 1
2

(
1+ tanh

(
− 1

ε (x−0.2
))

,
R0

x j
= 1.0, M 0

x j
= 0.00, E 0

x j
= G 0

x j
= P0

x j
= 1.00,







where, the no-flux boundary conditions are discretised by
means of the central finite difference [24],
j =−L/2,2, . . . ,L/2− 1, i = 0,1, . . . ,T − 1 and

(Hn)
i
j ≈ N(ti − τ,x j), (H f )

i
j

≈ F(ti − τ,x j), (3.10)

(HG)
i
j ≈ G(ti − τ,x j),

(Hm)
i
j ≈ M(ti − τ,x j),

(HP)
i
j ≈ P(ti − τ,x j), (3.11)

are denoting the history functions corresponding to
n, f ,m,G,P. The system in equation (3) can further be

simplified as

−Dn

φ 2
n
N

i+1
j−1

+
(

1
∆ t

+ 2Dn

φ 2
n

)

N
i+1

j − Dn

φ 2
n
N

i+1
j+1

=−χn(D
−
x ni

j)
(D−

x E i
j )

√

1+

(
D−

x E i
j

λE

)2

−χnN
i

j

D+
x (D

−
x E i

j )
(

1+

(
D−

x E i
j

λE

)2
)3/2

−χ1
n IsN

i
j

D+
x (D

−
x R i

j)
(

1+

(
D−

x Ri
j

λρ

)2
)3/2

+a11
(E 4)i

j

k4
E+(E 4)i

j

N i
j (1−

N i
j

n∗−a12ρIs
)+

N i
j

∆ t
,







−D f

φ 2
f

F
i+1
j−1 +

(

1
ψ f

+
2D f

φ 2
f

)

F
i+1
j − D f

φ 2
f

F
i+1
j+1

=−a21(HG)
i
j(H f )

i
j +a22(H f )

i
j +

F i
j

ψ f
,

−Dm

φ 2
m

M
i+1
j−1 +

(
1

∆ t
+ 2Dm

φ 2
m

)

M
i+1
j − Dm

φ 2
m

M
i+1
j+1

=−χm(D
−
x M i

j)
(D−

x G i
j )

√

1+

(
D−

x G i
j

λG

)2

−χmM i
j

D+
x (D

−
x G i

j )
(

1+

(
D−

x G i
j

λG

)2
)3/2

+a21(HG)
i
j(H f )

i
j +a31M

i
j +

M i
j

∆ t ,







− Dρ

(∆x)2 R
i+1
j−1 +

(
1

(∆ t)
+

2Dρ

(∆x)2

)

R
i+1
j − Dρ

(∆x)2 R
i+1
j+1

=−a41(HP)
i
j(Hn)

i
j +(a42F

i
j

+a43M
i
j)(1− R

ρ∗
)+

R i
j

(∆ t)
,

−DE

φ 2
E

E
i+1
j−1 +

(
1

ψE
+ 2DE

φ 2
E

)

E
i+1
j − DE

φ 2
E

E
i+1
j+1

= IΩ−(a51(H f )
i
j +a52(Hm)

i
j)−a62E

i
j +

E i
j

ψE
,







−DG

φ 2
G

G
i+1
j−1 +

(
1

ψG
+ 2DG

φ 2
G

)

G
i+1
j − DG

φ 2
G

G
i+1
j+1

= a61IΩ+
(Hn)

i
j −a62G

i
j +

G i
j

ψG
,

−DP

φ 2
P

P
i+1
j−1 +

(
1

ψP
+ 2DP

φ 2
P

)

P
i+1
j − DP

φ 2
P

P
i+1
j+1

= a71IΩ− (Hm)
i
j −a72P

i
j +

P i
j

ψP
,







which can be written as a tridiagonal system given by

AnN
i+1

j

=−χn(D
−
x ni

j)
(D−

x E i
j )

√

1+

(
D−

x E i
j

λE

)2
−χnN

i
j

D+
x (D

−
x E i

j )
(

1+

(
D−

x E i
j

λE

)2
)3/2

−χ1
n IsN

i
j

D+
x (D

−
x R i

j)
(

1+

(
D−

x Ri
j

λρ

)2
)3/2

+a11
(E 4)i

j

k4
E+(E 4)i

j

N i
j (1−

N i
j

n∗−a12ρIs
)+

N i
j

∆ t
,






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A f F
i+1
j =−a21(HG)

i
j(H f )

i
j +a22(H f )

i
j +

F i
j

ψ f
,

AmM
i+1
j =−χm(D

−
x M i

j)
(D−

x G i
j )

√

1+

(
D−

x G i
j

λG

)2

−χmM i
j

D+
x (D

−
x G i

j )
(

1+

(
D−

x G i
j

λG

)2
)3/2

+a21(HG)
i
j(H f )

i
j +a31M

i
j +

M i
j

∆ t
,







AρR
i+1
j =−a41(HP)

i
j(Hn)

i
j +(a42F

i
j +a43M

i
j)

×(1− R
ρ∗
)+

R i
j

(∆ t)
,

AEE
i+1
j = IΩ− (a51(H f )

i
j +a52(Hm)

i
j)

−a62E
i
j +

E i
j

ψE
,







AGG
i+1
j = a61IΩ+

(Hn)
i
j −a62G

i
j

+
G i

j

ψG
,APP

i+1
j

= a71IΩ−(Hm)
i
j −a72P

i
j +

P i
j

ψP
,







where,

An =
(

−Dn

φ 2
n
, 1

∆ t
+ 2Dn

φ 2
n
,−Dn

φ 2
n

)

,

A f =

(

−D f

φ 2
f

, 1
ψ f

+
2D f

φ 2
f

,−D f

φ 2
f

)

,

Am =
(

−Dm

φ 2
m
, 1

∆ t +
2Dm

φ 2
m
,−Dm

φ 2
m

)

,

Aρ =
(

− Dρ

(∆x)2 ,
1

∆ t
+

2Dρ

(∆x)2 ,− Dρ

(∆x)2

)

,







AE =
(

−DE

φ 2
E

, 1
ψE

+ 2DE

φ 2
E

,−DE

φ 2
E

)

,AG =
(

−DG

φ 2
G

, 1
ψG

+ 2DG

φ 2
G

,−DG

φ 2
G

)

AP =
(

−DP

φ 2
P

, 1
ψP

+ 2DP

φ 2
P

,−DP

φ 2
P

)

.







On the interval [0,τ], the delayed arguments tn − τ belong to

[−τ,0], and therefore, the delayed variables in equation (3) are

evaluated directly from the history functions

n0(t,x), f 0(t,x),m0(t,x),G0(t,x),P0(t,x),

as

(Hn)
i
j ≈ n0(ti − τ,x j), (H f )

i
j ≈ f 0(ti − τ,x j),

(Hm)
i
j ≈ m0(ti − τ,x j),

(HG)
i
j ≈ G0(ti − τ,x j),

(HP)
i
j ≈ P0(ti − τ,x j), (3.12)

and equation (3) becomes

AnN
i+1

j =−χn(D
−
x ni

j)
(D−

x E i
j )

√

1+

(
D−

x E i
j

λE

)2

−χnN
i

j

D+
x (D

−
x E i

j )
(

1+

(
D−

x E i
j

λE

)2
)3/2

−χ1
n IsN

i
j

D+
x (D

−
x R i

j)
(

1+

(
D−

x Ri
j

λρ

)2
)3/2

+a11
(E 4)i

j

k4
E+(E 4)i

j

N i
j (1−

N i
j

n∗−a12ρIs
)+

N i
j

∆ t
,







A f F
i+1
j =−a21G0(ti − τ,x j) f 0(ti − τ,x j)

+a22 f 0(ti − τ,x j)+
F i

j

ψ f
,

AmM
i+1
j =−χm(D

−
x M i

j)
(D−

x G i
j )

√

1+

(
D−

x G i
j

λG

)2

−χmM i
j

D+
x (D

−
x G i

j )
(

1+

(
D−

x G i
j

λG

)2
)3/2

+a21G0(ti − τ,x j) f 0(ti − τ,x j)

+a31M
i
j +

M i
j

∆ t ,







AρR
i+1
j =−a41P0(ti − τ,x j)n

0(ti − τ,x j)

+(a42F
i
j +a43M

i
j)(1− R

ρ∗
)+

R i
j

(∆ t) ,

AEE
i+1
j = IΩ− (a51 f 0(ti − τ,x j)

+a52m0(ti − τ,x j))−a62E i
j +

E i
j

ψE
,

AGG
i+1
j = a61IΩ+

n0(ti − τ,x j)−a62G
i
j +

G i
j

ψG
,

APP
i+1
j = a71IΩ−m0(ti − τ,x j)−a72P

i
j +

P i
j

ψP
.







Let s denotes the largest integer such that τs ≤ τ . Then using the

system in equation (3), one can compute

N i
j ,F

i
j,M

i
j ,R

i
j,E

i
j ,G

i
, jP i

j, for 1 ≤ i ≤ s. Up to this stage, one

interpolates the data

(t0,N
0

j ), (t1,N
1

j ), . . . ,(ts,N
s

j ), (t0,F
0
j ), (t1,F

1
j ), . . . ,(ts,F

s
j ),

(t0,M
0
j ), (t1,M

1
j ), . . . ,(ts,M

s
j ), (t0,R

0
j ), (t1,R

1
j ), . . . ,(ts,R

s
j),

(t0,E
0
j ), (t1,E

1
j ), . . . ,(ts,E

s
j ), (t0,G

0
j ), (t1,G

1
j ), . . . ,(ts,G

s
j ),

(t0,P
0
j ), (t1,P

1
j ), . . . ,(ts,P

s
j),

using an interpolating cubic Hermite spline ϕ j(t) ([24]). Then

N
i

j = ϕn(ti,x j), F
i
j = ϕ f (ti,x j), M

i
j

= ϕm(ti,x j), R
i
j = ϕρ (ti,x j), E

i
j = ϕE(ti,x j),

G
i
j = ϕG(ti,x j), P

i
j = ϕP(ti,x j),

for all i = 0,1, . . . ,s and j =−L/2,2, . . . ,L/2−1.

For i = s+1,s+2, . . . ,T −1, when we move from level i to

level i+1 we extend the definitions of the cubic Hermite spline

ϕ j(t) to the point

(ti +∆ t,(Hn)
i
j, ti +∆ t,(H f )

i
j, ti +∆ t,(Hm)

i
j, ti

+∆ t,(HG)
i
j), ti +∆ t,(HP)

i
j).
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Then, the history terms (Hn)
i
j,(H f )

i
j,(Hm)

i
j,(HG)

i
j,(HP)

i
j

can be approximated by the functions (ϕn) j(ti − τ),(ϕ f ) j(ti −
τ),(ϕm) j(ti − τ),(ϕG) j(ti − τ),(ϕP) j(ti − τ) for i ≥ s. This

implies that,

(Hn)
i
j ≈ (ϕn) j(ti − τ), (H f )

i
j ≈ (ϕ f ) j(ti − τ),

(Hm)
i
j ≈ (ϕm) j(ti − τ),

(HG)
i
j ≈ (ϕG) j(ti − τ),

(HP)
i
j ≈ (ϕP) j(ti − τ), (3.13)

and equation (3) becomes

AnN
i+1

j =−χn(D
−
x ni

j)
(D−

x E i
j )

√

1+

(
D−

x E i
j

λE

)2

−χnN
i

j

D+
x (D

−
x E i

j )
(

1+

(
D−

x E i
j

λE

)2
)3/2

−χ1
n IsN

i
j

D+
x (D

−
x R i

j)
(

1+

(
D−

x Ri
j

λρ

)2
)3/2

+a11
(E 4)i

j

k4
E+(E 4)i

j

N i
j (1−

N i
j

n∗−a12ρIs
)+

N i
j

∆ t
,

A f F
i+1
j =−a21(ϕG) j(ti − τ)(ϕ f ) j(ti − τ)

+a22(ϕ f ) j(ti − τ)+
F i

j

ψ f
,

AmM
i+1
j =−χm(D

−
x M i

j)
(D−

x G i
j )

√

1+

(
D−

x G i
j

λG

)2

−χmM i
j

D+
x (D

−
x G i

j )
(

1+

(
D−

x G i
j

λG

)2
)3/2

+a21(ϕG) j(ti − τ)(ϕ f ) j(ti − τ)

+a31M
i
j +

M i
j

∆ t
,

AρR
i+1
j =−a41(ϕP) j(ti − τ)(ϕn) j(ti − τ)

+(a42F
i
j +a43M

i
j)(1− R

ρ∗
)+

R i
j

(∆ t) ,

AEE
i+1
j = IΩ−(a51(ϕ f ) j(ti − τ)

+a52(ϕm) j(ti − τ))−a62E i
j +

E i
j

ψE
,

AGG
i+1
j = a61IΩ+

(ϕn) j(ti − τ)−a62G i
j +

G i
j

ψG
,

APP
i+1
j = a71IΩ− (ϕm) j(ti − τ)−a72P i

j +
P i

j

ψP
,







where,

ϕn(ti − τ) = [(Hn)
i
1,(Hn)

i
2 . . . ,(Hn)

i
L
2
−1

]′, ϕ f (ti − τ)

= [(H f )
i
−L
2

,(H f )
i
−L
2
+1

. . . ,(H f )
i
x0−1]

′,

ϕm(ti − τ) = [(Hm)
i
−L
2

,(Hm)
i
−L
2
+1

. . . ,(Hm)
i
x0−1]

′,

ϕG(ti − τ) = [G i
−L
2

,G i
−L
2
+1

. . . ,G i
L
2
−1

]′,

ϕP(ti − τ) = [(HP)
i
−L
2

,(HP)
i
−L
2
+1

. . . ,(HP)
i
L
2
−1

]′.

The FOFDM can be rewriting as a system of equations

AnN = Fn,A f F = Ff ,AmM = Fm,
AρR = Fρ ,AEE = FE ,AGG = FG,
APP = FP.







Let the functions

n(x, t), f (x, t),m(x, t),E(x, t),G(x, t),P(x, t),

and their partial derivatives with respect to both t and x be smooth

such that they satisfy

∣
∣
∣
∣

∂ i+ jn(t,x)

∂ t ix j

∣
∣
∣
∣
≤ ϒn,

∣
∣
∣
∣

∂ i+ j f (t,x)

∂ t ix j

∣
∣
∣
∣
≤ϒf ,

∣
∣
∣
∣

∂ i+ jm(t,x)

∂ t ix j

∣
∣
∣
∣
≤ ϒm,

∣
∣
∣
∣

∂ i+ jE(t,x)

∂ t ix j

∣
∣
∣
∣
≤ϒE ,

∣
∣
∣
∣

∂ i+ jG(t,x)

∂ t ix j

∣
∣
∣
∣
≤ ϒG,

∣
∣
∣
∣

∂ i+ jP(t,x)

∂ t ix j

∣
∣
∣
∣
≤ϒP, (3.14)

∀i, j ≥ 0, (3.15)

where,

ϒn,ϒf ,ϒm, ,ϒE ,ϒG,ϒP,

are constant that are independent of the time and space step-sizes.

Then in view of the FOFDM one can see that the truncation errors

ςn,ς f ,ςm,ςρ ,ςE ,ςG,ςP, are given by

(ςn)
i
j = (Ann)i

j − (Fn)
i
j = (An(n−N ))i

j,

(ς f )
i
j = (A f f )i

j − (Ff )
i
j = (A f ( f −F ))i

j,

(ςm)
i
j = (Amm)i

j − (Fm)
i
j = (Am(m−M ))i

j,

(ςρ )
i
j = (Aρ ρ)i

j − (Fρ)
i
j = (Aρ (ρ −R))i

j,

(ςE)
i
j = (AE E)i

j − (FE)
i
j = (AE(E −E ))i

j,

(ςG)
i
j = (AGGn)i

j − (FG)
i
j = (AG(G−G ))i

j,

(ςP)
i
j = (APP)i

j − (FP)
i
j = (AP(P−P))i

j.







Therefore,

maxi, j |ni
j −N i

j | ≤ ||A−1
n ||maxi, j |(ςn)

i
j|,

maxi, j | f i
j −F i

j| ≤ ||A−1
f
||maxi, j |(ς f )

i
j|,

maxi, j |mi
j −M i

j | ≤ ||A−1
m ||maxi, j |(ςm)

i
j|,

maxi, j |ρ i
j −R i

j| ≤ ||A−1
ρ ||maxi, j |(ςρ)

i
j|,

maxi, j |E i
j −E i

j | ≤ ||A−1
E ||maxi, j |(ςE)

i
j|,

maxi, j |Gi
j −G i

j | ≤ ||A−1
G

||maxi, j |(ςG)
i
j|,

maxi, j |Pi
j −P i

j| ≤ ||A−1
P ||maxi, j |(ςP)

i
j|,







where,

(ςn)
i
j ≤

(∆ t)
2 |ntt(ξ )|−Dn

(∆x)2

12 |nxxxx(ζ )|, x ∈ [xs,L/2],

(ς f )
i
j ≤

(∆ t)
2 | ftt(ξ )|−D f

(∆x)2

12 | fxxxx(ζ )|, x ∈ [− L
2 ,xs],

(ςm)
i
j ≤

(∆ t)
2 |mtt(ξ )|−Dm

(∆x)2

12 |mxxxx(ζ )|, x ∈ [− L
2 ,xs],

(ςρ )
i
j ≤

(∆ t)
2 |ρtt(ξ )|−Dρ

(∆x)2

12 |ρxxxx(ζ )|, x ∈ [− L−x∗
2 , L−x∗

2 ],

(ςE)
i
j ≤

(∆ t)
2 |Ett(ξ )|−DE

(∆x)2

12 |Exxxx(ζ )|, x ∈ [− L
2 ,

L
2 ],

(ςG)
i
j ≤

(∆ t)
2 |Gtt(ξ )|−DG

(∆x)2

12 |Gxxxx(ζ )|,x ∈ [− L
2 ,

L
2 ],

(ςP)
i
j ≤

(∆ t)
2 |Ptt(ξ )|−DP

(∆x)2

12 |Pxxxx(ζ )|,x ∈ [− L
2 ,

L
2 ],






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for ti−1 ≤ ξ ≤ ti+1 and x j−1 ≤ ζ ≤ x j+1. In view of inequalities

in (3.14) we see that the inequalities in (3) is equivalent to

(ςn)
i
j ≤
(
(∆ t)

2 −Dn
(∆x)2

12

)

ϒn, x ∈ [xs,L/2],

(ς f )
i
j ≤
(
(∆ t)

2 −D f
(∆x)2

12

)

ϒf , x ∈ [− L
2 ,xs],

(ςm)
i
j ≤
(
(∆ t)

2 −Dm
(∆x)2

12

)

ϒm, x ∈ [− L
2 ,xs],

(ςρ)
i
j ≤
(
(∆ t)

2 −Dρ
(∆x)2

12

)

ϒρ , x ∈ [− L−x∗
2 , L−x∗

2 ],

(ςE)
i
j ≤
(
(∆ t)

2 −DE
(∆x)2

12

)

ϒE , x ∈ [− L
2 ,

L
2 ],

(ςG)
i
j ≤
(
(∆ t)

2 −DG
(∆x)2

12

)

ϒG,x ∈ [− L
2 ,

L
2 ],

(ςP)
i
j ≤
(
(∆ t)

2 −DP
(∆x)2

12

)

ϒP,x ∈ [− L
2 ,

L
2 ],







for ti−1 ≤ ξ ≤ ti+1 and x j−1 ≤ ζ ≤ x j+1. Moreover, by a result

in [25], we have

||A−1
n || ≤ Ξn, ||A−1

f || ≤ Ξ f ,

||A−1
m || ≤ Ξm, ||A−1

ρ || ≤ Ξρ ,

||A−1
E || ≤ ΞE ,

||A−1
G || ≤ ΞG, ||A−1

P || ≤ ΞP. (3.16)

Using (3) and (3.16) in (3), we obtain the following results.

Theorem 31Let

Fn(x, t),Ff (x, t),Fm(x, t),Fρ(x, t),FE(x, t),FG(x, t),FP(x, t),

be sufficiently smooth functions so that

n(x, t), f (x, t),m(x, t),ρ(x, t),E(x, t),G(x, t),P(x, t) ∈
C∞([−L,L] × [0,T ]). Let (N i

j ,F
i
j,M

i
j ,R

i
j,E

i
j ,G

i
j ,P

i
j,),

j = 1,2, . . .L, i = 1,2, . . .T be the approximate solutions

obtained using the FOFDM with N 0
j = n0

j ,F
0
j = f 0

j ,M
0
j =

m0
j ,R

0
j = ρ0

j ,E
0
j = E0

j ,G
0
j = G0

j ,P
0
j = P0

j ,. Then there exists

Ξn,Ξ f ,Ξm,Ξρ ,ΞE ,ΞG,ΞP independent of the step sizes ∆ t and

∆x such that

maxi, j |ni
j −N i

j | ≤ Ξn[
(∆ t)

2 −Dn
(∆x)2

12 ]ϒn,

maxi, j | f i
j −F i

j| ≤ Ξ f [
(∆ t)

2 −D f
(∆x)2

12 (ζ )]ϒf ,

maxi, j |mi
j −M i

j | ≤ Ξm[
(∆ t)

2 −Dm
(∆x)2

12 ]ϒm,

maxi, j |ρ i
j −R i

j| ≤ Ξρ [
(∆ t)

2 −Dρ
(∆x)2

12 ]ϒρ ,

maxi, j |E i
j −E i

j | ≤ ΞE [
(∆ t)

2 −DE
(∆x)2

12 ]ϒE ,

maxi, j |Gi
j −G i

j | ≤ ΞG[
(∆ t)

2 −DG
(∆x)2

12 ]ϒG,

maxi, j |Pi
j −P i

j| ≤ ΞP[
(∆ t)

2 −DP
(∆x)2

12 ]ϒP.







(3.17)

4 Numerical results and discussions

Setting Sx = St = 50, times t = 5 and t = 20 and using the

parameter values in Table 2, for L = 5 and T = 1, the numerical

results without a delay term for the dynamics in equation (1.2)

are presented in Figures 1-4,5-7,8-11,12-14 whereas in Figures

15- 18,22-25,26-28 we present the numerical results with a

delay term. Thus, for the dynamics with a delay term, the results

are presented for times t = 5;20 and delay term τ = 5;15 in

Figures 15,19 and Figures 22, 26, respectively. In Figures 1 and

5, the density of the transformed epithelia cells are steadily

rising to their steady state within their compartment. Similar

phenomena is also observed on the behaviour of the density of

fibroblasts, whereas, for the density of the myfobroblasts, a

slight growth of the density of the cells is noted, which suddenly

increases near the end of their prescribed compartment. This is

due to the transformation of the fibroblasts cells into

myfibroblasts cells. For the concentration of the extracellular

matrix, a very small growth of the concentration which is being

degraded by the density of the transformed epithelia cells and its

secretion is notable, whereas the behaviour of fibroblasts give

rise to the behaviour of the density of the concentration of

epidermal growth factor, which they secretes. The density of the

transformed fibroblasts cells are influenced by the behaviour of

the concentration of the matrix metalloproteinase to certain

extend, which once more enhanced by the concentration of the

epidermal growth factor molecules. Another interesting

phenomena is seen on the behaviour of the concentration of the

transformed growth factor molecules, which is attributed by the

density of the transformed epithelial cells. These phenomena are

exactly the same as in Figures 15 and 19.

Figures 8 and 12 present similar results as we see in Figures

1 and 5, except that the behaviour of the concentration of matrix

metalloproteinase has increased quite a great deal. Interestingly,

the sinusoidal behaviour for the density of transformed

epithelial cells at an initial stage is notable, just before the

density rises to its steady state. The effects of the delay term in

the behaviour of the concentration of the transformed growth

factor is notable, whereas the degradation of the extracellular

matrix, behaviours of the concentration of epidermal growth

factor and matrix metalloproteinase are presented in a manner,

which one can deduce a relationship between the concentration

of epidermal growth factor with that of the concentration of

matrix metalloproteinase.

Table 2: Parameter values used for the invasion essay
model [1]

Dn = 3.6×10−4 D f = 6.12×10−5

De = 5.98×10−1 Dg = 3.6×10−1

λE = λG = λρ ρ⋆ = a12 = 1.00 a11 = 0.69

kE = 3.32 κ = 2.88×103

a62 = 2.89×10−2 a71 = 3732

a43 = 0.518 n⋆ = 2.88×103

a31 = 4.53×10−3 r f = 100.0

χm = 3.96×10−6 a52 = 2.89×10−2

Dm = 6.12×10−4 Dρ = 5.12×10−4

Dp = 3.6×10−1 χn = 3.6×10−8

a22 = 1.58×10−2 a51 = 2.03×10−1

B = 5.00 a53 = 2.89×10−2

a72 = 0.259 a41 = 3732

ε = 0.1 a21 = 2.61×10−2

γ = 0.1 χ1
n = 1.8×10−4

a61 = 2.03×10−1 a42 = 0.259
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Fig. 1: Numerical solution of the system in (1.2) without
delay at time (t) = 5: (a) Behaviour of Transformed
Epithelial cells (TECs)
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Fig. 2: Numerical solution of the system in (1.2) without
delay at time (t) = 5: (b)Behaviour of Fibroblasts cells

5 Conclusion

In this paper, we extended the model modeling the interaction

between transformed epithelial cells (TECs), fibroblasts,

myofibroblasts, transformed growth factor (TGF−β ), and

epithelial growth factor (EGF), in silico, in a setup which

mimics experiments in a tumor chamber invasion assay, where a

semi-permeable membrane, (which allows EGF, TGF−β and

Matrix Metalloproteinase (MMP) to cross it) coated by

extra-cellular matrix (ECM) is placed between two chambers,

one containing TECs and another containing fibroblasts and

myofibroblasts. Our focus was to incorporate some of the

crucial transformations ought to take take place during the

interaction of the experiment proposed in [1]. The incorporation

of some transformations, led the original model to be

transformed to a system of non-linear delay parabolic partial

differential equations. The establishment for existence of
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Fig. 3: Numerical solution of the system in (1.2) without
delay at time (t) = 5: (c) Behaviour of Myfibroblasts cells
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Fig. 4: Numerical solution of the system in (1.2) without
delay at time (t) = 5: (d) Behaviour of the concentration of
Extracellular Matrix (ECM)
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Fig. 5: Numerical solution of the system in (1.2) without
delay at time (t) = 5:(a)Behaviour of the concentration of
Epidermal Growth Factor molecules (EGF)
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Fig. 6: Numerical solution of the system in (1.2) without
delay at time (t) = 5:(b)Behaviour of the concentration of
Transformed Growth Factor molecules (TGF-β )
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Fig. 7: Numerical solution of the system in (1.2) without
delay at time (t) = 5: (c) Behaviour of the concentration of
Matrix MetalloProteinase (MMP)
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Fig. 8: Numerical solution of the system in (1.2) without
delay at time (t) = 20: (a) Behaviour of Transformed
Epithelial cells (TECs)
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Fig. 9: Numerical solution of the system in (1.2) without
delay at time (t) = 20: (b)Behaviour of Fibroblasts cells
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Fig. 10: Numerical solution of the system in (1.2) without
delay at time (t) = 20: (c) Behaviour of Myfibroblasts cells
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Fig. 11: Numerical solution of the system in (1.2) without
delay at time (t) = 20:(d) Behaviour of the concentration
of Extracellular Matrix (ECM)
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Fig. 12: Numerical solution of the system in (1.2) without
delay at time (t) = 20: (a) Behaviour of the concentration
of Epidermal Growth Factor molecules (EGF)
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Fig. 13: Numerical solution of the system in (1.2) without
delay at time (t) = 20: (b) Behaviour of the concentration
of Transformed Growth Factor molecules (TGF-β )
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Fig. 14: Numerical solution of the system in (1.2) without
delay at time (t) = 20: (c) Behaviour of the concentration
of Matrix MetalloProteinase (MMP)
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Fig. 15: Numerical solution of the system in (1.2)
with delay τ = 5 and at time (t) = 5:(a) Behaviour of
Transformed Epithelial cells (TECs)
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Fig. 16: Numerical solution of the system in (1.2) with
delay τ = 5 and at time (t) = 5: (b)Behaviour of Fibroblasts
cells
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Fig. 17: Numerical solution of the system in (1.2) with
delay τ = 5 and at time (t) = 5: (c) Behaviour of
Myfibroblasts cells
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Fig. 18: Numerical solution of the system in (1.2) with
delay τ = 5 and at time (t) = 5:(d)Behaviour of the
concentration of Extracellular Matrix (ECM)
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Fig. 19: Numerical solution of the system in (1.2) with
delay τ = 5 and at time (t) = 5: (a) Behaviour of
the concentration of Epidermal Growth Factor molecules
(EGF)
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Fig. 20: Numerical solution of the system in (1.2) with
delay τ = 5 and at time (t) = 5: (b) Behaviour of the
concentration of Transformed Growth Factor molecules
(TGF-β )
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Fig. 21: Numerical solution of the system in (1.2) with
delay τ = 5 and at time (t) = 5: (c) Behaviour of the
concentration of Matrix MetalloProteinase (MMP)
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Fig. 22: Numerical solution of the system in (1.2) with
delay τ = 15 and at time (t) = 20:(a)Behaviour of
Transformed Epithelial cells (TECs)
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Fig. 23: Numerical solution of the system in (1.2) with
delay τ = 15 and at time (t) = 20: (b) Behaviour of
Fibroblasts cells
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Fig. 24: Numerical solution of the system in (1.2) with
delay τ = 15 and at time (t) = 20: (c)Behaviour of
Myfibroblasts cells

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-300

-250

-200

-150

-100

-50

0

50

R
h
o

Fig. 25: Numerical solution of the system in (1.2) with
delay τ = 15 and at time (t) = 20: (d) Behaviour of the
concentration of Extracellular Matrix (ECM)
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Fig. 26: Numerical solution of the system in (1.2) with
delay τ = 15 and at time (t) = 20: (a)Behaviour of
the concentration of Epidermal Growth Factor molecules
(EGF)
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Fig. 27: Numerical solution of the system in (1.2) with
delay τ = 15 and at time (t) = 20: (b)Behaviour of the
concentration of Transformed Growth Factor molecules
(TGF-β )
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Fig. 28: Numerical solution of the system in (1.2) with
delay τ = 15 and at time (t) = 20: (c) Behaviour of the
concentration of Matrix MetalloProteinase (MMP)

uniqueness of solution led us to the extension of Gronwall’s

inequality for linear delay differential equations. We have also

reported on the analysis for the resulting system of non-linear

delay parabolic partial differential equations, established the

global asymptotically for the equilibrium point. Consequently,

we were able to derive the a fitted operator finite difference

method (FOFDM) for solving the modified system in equation

(1.2). Our main findings are more vivid that the delay factor can

be observed after some time of the delay term and enable us to

see the sensitivity of the density of transformed epithelial cells.

Thus, our finding are indeed essential for the design of the drug

which can slow and/or confine tumor invasion, particularly

when the analysis present that the Hopf bifurcation affects the

entire experiment through the density of fibrolasts. Our future

research is to extend our results to the higher dimensional space

and make use of the recent developments reported in [26,27,28,

29,30,31].
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