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Abstract: Orthogonal Double Cover (ODC) is a set G of 2n subgraphs of a complete bipartite graph Kn,n of a graph G such that each

edge in graph Kn,n appears once in both subgraphs of set G , and all subgraphs are isomorphic to graph G. we aim to construct two

graph squares by a new engineering method that uses two induced starter functions to find the ODC of Kn,n. we also compose ODC

from small to obtain a larger ODC. Starting from ODC F of Kq,q by qK2 we replace each point with n new points and each edge with

the ODC of Kn,n to obtain the ODC of Kqn,qn by Some disjoint caterpillar unions, where q,n ∈ Z
+.
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1 Interdiction

In this paper, we will use of the usual notation:

Nomenclature

Km,n
The complete bipartite graph with

partition sets of sizes m and n.
D∪F The disjoint union of D and F.
D∪∗ F The joint union of D and F in one vertex.

K1,n ≡ Sn The star on n+1 vertices and n edges.

sG s disjoint copies of G.
Pm+1 The path with m+1 vertices and m edges.

Cr(n1,n2, . . . ,nr)

The caterpillar (tree) obtained from the

path Pr = x1x2 · · ·xr by joining

vertex xi to ni new vertices;

i = {1,2, . . . ,r}

The vertices of a complete bipartite graph Kn,n are
marked by elements of Zn × Z2, where
Zn = {0,1,2, ...,n− 1} is an additive group of Order n,
such that {xr,yr} /∈ E(Kn,n) for x,y ∈ Zn and fixed r ∈ Z2.
It will be later shown that these groups can be used to
construct an ODC of Kn,n. If there is no risk of confusion
write (x,y) ≡ xy instead of {x0,y1} for edges between
vertices x0,y1. For construction, we need the order of the
elements of Zn.

Let G = {G0, ...,Gn−1, F0,F1, ...,Fn−1} be the set of
2n subgraphs (called pages) of Kn,n. G is called an
Orthogonal Double Cover (ODC) of Kn,n if:

(i)Every edge of Kn,n is exactly on one page of
{G0, ...,Gn−1} and exactly on one page of
{F0,F1, ...,Fn−1}.

(ii)For i, j ∈ {0,1,2, ...,n− 1} and i 6= j :

|E(Gi)∩E(G j)|= |E(Fi)∩E(Fj)|= 0

and

|E(Gi)∩E(Fj)|= 1.

If all edges in G are isomorphic to a graph G, then G is
called the ODC by G. Obviously, G must have exactly n

edges. The original purpose of obtaining ODC stems from
the question posed by Demetrovics et al. [6] on minimal
databases, and a question raised by Hering and Rosenfeld
[3] on the organization of statistical testing programs. The
ODC by G has been considered for several graph families:
short cycles [1], clique graphs [2], trees [5], small graphs
[8]. A survey on this topic can be found in [4].

El-Shanawany et al. [8] presents a basic definitions that
usually relies on half-starter vectors.

Below, we give a formal basic definitions of Kn,n

subgraph induced by a function on the additive group Zn.

Definition 1.Let G f be a subgraph of Kn,n induced by the

function f : Zn → Zn. Then G f is called f−starter if

E(G f ) = {( f (i), f (i)+ i) : i ∈ Zn}. (1)
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Definition 2.Let G be a f−starter subgraph of Kn,n, and

let x, i ∈ Zn. Then the graph G f + x with E(G f + x) =
{( f (i) + x, f (i) + i + x) : ( f (i), f (i) + i) ∈ E(G f )} is

called the (x, f )−translate of G f .

Definition 3.If G is a f− starter subgraph of Kn,n, then the

union of all translates of G f forms an edge decomposition

of Kn,n i.e. E(Kn,n) = ∪x∈Zn
E(G f + x).

In the following, we give the formal basic definitions
of a G-square over additive group Zn.

Definition 4.Let G be a subgraph of Kn,n. A square matrix

M of order n is called an G-square if every element in Zn

occurs exactly n times, and the graphs Gi, i ∈ Zn with

E(Gi) = {(x,y) : M(x,y) = i;x,y ∈ Zn}, (2)

are isomorphic to a subgraph G.

Definition 5.Two square M0, M1 of order n are said to be

orthogonal if for any order pair (a,b), there is exactly one

positive (x,y) for M0(x,y) = a, and M1(x,y) = b.

That is, the two graph squares have the property that,
when superimposed, every ordered pair occurs exactly
once.

For a subgraph G f of Kn,n with n edges, the subgraph
Gg induced by the function g with E(Gg) = {y0x1 : x0y1 ∈
E(G f )} is called symmetric subgraph of G f .

Definition 6.Caterpillar graph is a tree with central path

and the ended vertices with degree 1.

We will give an example that will illustrate the above
definitions.

Example 1.Let G f ≃ C6(0,0,0,0,0,2) be a caterpillar
subgraph of K7,7 such that f−starter subgraph G f

induced by the function f : Z7 → Z7 defined as follows

f (i) =







0 ; i = 0,2
4 ; i = 5,6
2 ; i = 1,3,4

.; i ∈ Z7

Note that, every edge in the subgraph G f formed from
equation 1 as follows, E(G f ) = {( f (0), f (0) +
0),( f (1), f (1) + 1),( f (2), f (2) + 2),( f (3), f (3) +
3),( f (4), f (4) + 4),( f (5), f (5) + 5),( f (6), f (6) + 6)} =
{(0,0),(2,3),(0,2),(2,5),(2,6),(4,2),(4,3)} . as shown
in Figure 1, then (x, f )− translates is form an edge
decomposition as shown in Figure 2, where x ∈ Z7 which
is associated with the C6(0,0,0,0,2)-square as follows by
using the equation 2

M =












0 5 0 5 5 3 3
4 1 6 1 6 6 4
5 5 2 0 2 0 0
1 6 6 3 1 3 1
2 2 0 0 4 2 4
5 3 3 1 1 5 3
4 6 4 4 2 2 6












, MT =












0 4 5 1 2 5 4
5 1 5 6 2 3 6
0 6 2 6 0 3 4
5 1 0 3 0 1 4
5 6 2 1 4 1 2
3 6 0 3 2 5 2
3 4 0 1 4 3 6












.

00 10 20 30 40 50 60

01 11 21 31 41 51 61

Fig. 1: The subgraph G f ≃ C6(0,0,0,0,0,2) induced by the f -

starter w.r.t Z7.

2 Main result

In this particular section we are especially interested by
making extensions of the small ingredient ODCs of Kn,n

in the theorem 4 by using the Latin squares to get larger
ODCs of Kqn,qn.

Theorem 1.(see [7])There exists ODC of Kn,n by G if and

only if there exist two orthogonal G-squares of order n.

Theorem 2.(see [9]) Let n be a positive integer and let
f and g be starter functions of a subgraphs G f and Gg

of Kn,n, where g(i) = f (i) + i, i ∈ Zn,then there exist two
orthogonal squares M f and Mg of order n defined as

(M f (a,b),M
T
f (a,b)) = (a− f (b−a),b− f (a−b)); where a,b ∈ Zn. (3)

Theorem 3.(see [7]) Assume that there exist symmetric

starters ODCs Gl of Kn,n by Gl for l = 0,1, ....,m − 1.

Furthermore, assume that there exists an ODC of Km,m by

mK2, which is generated by a symmetric starter. Then

there exists a symmetric (G0 ∪G1 ∪ ....∪Gm−1)−square

of an ODC of Kmn,mn.

Theorem 4.(see [10]) Let n and m be integers such that

2 ≤ m ≤ 10 and m ≤ n. Then there is an ODC of Kn,n by

Pm+1 ∪
∗ Sn−m.

Theorem 5.Let q ≥ 3 be a prime number, and n,m be

integers such that 5 ≤ m ≤ 10 and m ≤ n. Then there is an

ODC of Kqn,qn by qCm+1(0, . . . ,0
︸ ︷︷ ︸

m-times

,n−m).

Proof.To prove that theorem we need to have two ODCs.
The first one, we got it from the Latin square (see [7])
when there exist ODC of Kq,q by qK2 with qK2-square
defined as follows

L0(i, j) = [i+ j], and L1(i, j) = [2i+ j]

where q is a prime number and i, j ∈ Zq. The second ODC

we get it from theorem 3 which it prove the existence of
an ODC of Kn,n by Cm+1(0, . . . ,0

︸ ︷︷ ︸

m-times

,n−m) where n,m are
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Fig. 2: Edge decomposition of the subgraph G f ≃
C6(0,0,0,0,0,2) of K7,7.

positive integers such that m ≤ n; and according to the
theorem 1 and the theorem 2 the ODC of Kn,n has
Cm+1(0, . . . ,0

︸ ︷︷ ︸

m-times

,n−m)-square defined as equation 3.

Now, we can make the combination of the two ODCs

of Kn,n and Kq,q according to the theorem 3 and we
getting two qCm+1(0, . . . ,0

︸ ︷︷ ︸

m-times

,n−m)-squares of order qn by

superimposing the matrices M f with L0 and MT
f with L1

as follows

S(r, t) = [n(i+ j)+ a− f1(b− a)], and (4)

S∗(r, t) = [n(2i+ j)+ b− f1(a− b)].

where the elements r, t ∈ Zqn defined as follows

r = ni+ a, and t = n j+ b.

It is easily to verify that the order pair (S(r, t),S∗(r, t)) is
orthogonal and form an ODC of Kqn,qn. Then we will
prove that the pages obtained from each entry y in Zqn is
isomorphic to qCm+1(0, . . . ,0

︸ ︷︷ ︸

m-times

,n − m) such that

S(r, t) = y = n(i+ j)+ x where x ∈ Zn, i, j ∈ Zp. Also, a
similar argument can be applied to the pages in S∗(r, t).

1.At m= 5, their exist an ODC of Kn,n by C6(0, . . . ,0
︸ ︷︷ ︸

5-times

,n−

5) ≡ P6 ∪
∗ Sn−5 defined with the starter function f1 as

follows

f1(i) =







0 ; i = 0,2
4 ; i = 2,n− 2
2 ; otherwise

.; i ∈ Zn

with C6(0, . . . ,0
︸ ︷︷ ︸

5-times

,n − 5)-square (M f1(a,b),M
∗
f1
(a,b))

defined as equation as follows

M f1(a,b) = a− f1(b− a), M∗
f1
(a,b) = b− f1(a− b).

In that ODC the pages obtained from each entry
x ∈ Zn such that M f1(a,b) = x is isomorphic to
C6(0,0,0,0,0,n− 5). Also, a similar argument can be
applied to the pages in M∗

f1
(a,b), so from the

definition of the caterpillar we know that
C6(0, . . . ,0

︸ ︷︷ ︸

5-times

,n− 5) is consist of two part the first one is

a path P6 of length 5 with the 6 vertices as:
(x)1,(x)0,(2 + x)1,(4 + x)0,(3 + x)1,(2 + x)0, and the
second part is the star as: {(2+ x)0,(α + x)1}; such
that 5 ≤ α ≤ n− 1.
So, the ODC of Kqn,qn is isomorphic to
q(C6(0, . . . ,0

︸ ︷︷ ︸

5-times

,n−6)) because the page y is isomorphic

to q paths of length 5 with 6 vertices as follows:
(x+ n j)1,(x+ ni)0,(2+ x+ n j)1,(4+ x+ ni)0,(3+ x+
n j)1,(2+ x+ ni)0, and isomorphic to q stars of length
n− 5 as follows: {(2+ x+ ni)0,(α + x+ n j)1}; such
that n j+ 5 ≤ α ≤ n(1+ j)− 1.
Hence there exist an ODC of Kqn,qn by q(P6 ∪Sn−5)≡
qC6(0, . . . ,0

︸ ︷︷ ︸

5-times

,n− 5).

2.At m= 6, their exist an ODC of Kn,n by C7(0, . . . ,0
︸ ︷︷ ︸

6-times

,n−

6) ≡ P7 ∪
∗ Sn−6 defined with the starter function f2 as
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follows

f2(i) =







2 ; i = 0
n− 1 ; i = 1,n− 1

0 ; i = 2,n− 2
n− i− 1 ; otherwise

.; i ∈ Zn

where the pages obtained from each entry x ∈ Zn such
that M f2(a,b) = x is isomorphic to C7(0, . . . ,0

︸ ︷︷ ︸

6-times

,n− 6)

as follows: (x)1,(n−1+x)0,(n−2+x)1,(x)0,(2+x)1,
(2+ x)0,(n− 1+ x)1, (n− 1+ x)1,(α + x)0 where 3 ≤
α ≤ n− 4.
Then the pages y is isomorphic to
C7(0, . . . ,0

︸ ︷︷ ︸

6-times

,n − 6) with the following vertices

(n j + x)1, (n(1 + i) − 1 + x)0,(n(1 + j) − 2 + x)1,
(ni+ x)0,(2+n j+ x)1,(ni+2+ x)0,(n(1+ i)−1+ x)0

and (n(1 + j) − 1 + x)1,(α + ni + x)0 where
ni+ 3 ≤ α ≤ n(1+ i)− 4.

3.At m= 7, their exist an ODC of Kn,n by C8(0, . . . ,0
︸ ︷︷ ︸

7-times

,n−

7) ≡ P8 ∪
∗ Sn−7 defined with the starter function f3 as

follows

f3(i) =







0 ; i = 0,3
1 ; i = 1,n− 1
6 ; i = n− 3,n− 2
2 ; otherwise

.; i ∈ Zn

where the pages obtained from each entry x ∈ Zn such
that M f3(a,b) = x is isomorphic to C8(0, . . . ,0

︸ ︷︷ ︸

7-times

,n− 7)

as follows: (2+x)1,(1+x)0,(x)1,(x)0,(3+x)1, (n−3+
x)0,(4+ x)1,(2+ x)0, and (2+ x)0,(α + x)1 where 6 ≤
α ≤ n− 2.
Then the pages y is isomorphic to
C8(0, . . . ,0

︸ ︷︷ ︸

7-times

,n − 7) with the following vertices

(2 + n j + x)1,(1 + ni + x)0,(n j + x)1,(ni + x)0,(3 +
n j + x)1,(n(1 + j) − 3 + x)0,
(4 + n j + x)1,(2 + ni + x)0 and
(2 + ni + x)0,(α + n j + x)1 where
n j+ 6 ≤ α ≤ n(1+ j)− 2.

4.At m= 8, their exist an ODC of Kn,n by C9(0, . . . ,0
︸ ︷︷ ︸

8-times

,n−

8) ≡ P9 ∪
∗ Sn−8 defined with the starter function f4 as

follows

f4(i) =







0 ; i = 0,2
4 ; i = 1,n− 2
3 ; i = 3,n− 3
6 ; i = n− 1
2 ; otherwise

.; i ∈ Zn

where the pages obtained from each entry x ∈ Zn such
that M f4(a,b) = x is isomorphic to C9(0, . . . ,0

︸ ︷︷ ︸

8-times

,n− 8)

as follows:
(n − 4 + x)0,(5 + x)1,(4 + x)0,(2 + x)1,(x)0,(x)1,
(3 + x)0,(n − 4 + x)1,(2 + x)0 and (2 + x)0,(α + x)1

where 7 ≤ α ≤ n− 2.
Then the pages y is isomorphic to
C9(0, . . . ,0

︸ ︷︷ ︸

8-times

,n − 8) with the following vertices

(n(i + 1)− 4 + x)0,(n j + 5 + x)1,(ni + 4 + x)0,(n j +
2 + x)1,(ni + x)0,(n j + x)1,
(ni + 3 + x)0,(n( j + 1)− 4 + x)1, (ni + 2 + x)0 and
(ni + 2 + x)0,(n j + α + x)1 where
n j+ 7 ≤ α ≤ n(1+ j)− 2.

5.At m = 9, their exist an ODC of Kn,n by
C10(0, . . . ,0

︸ ︷︷ ︸

9-times

,n − 9) ≡ P10 ∪
∗ Sn−9 defined with the

starter function f5 as follows

f5(i) =







0 ; i = 0,4
1 ; i = 1,n− 1
4 ; i = 2,n− 2
8 ; i = n− 4,n− 3
2 ; otherwise

.; i ∈ Zn

where the pages obtained from each entry x ∈ Zn such
that M f5(a,b) = x is isomorphic to C10(0, . . . ,0

︸ ︷︷ ︸

9-times

,n− 9)

as follows:
(n − 5 + x)1,(4 + x)0,(2 + x)1,(1 + x)0,(x)1,(x)0,
(4 + x)1,(n − 3 + x)0,(5 + x)1,(2 + x)0, and
(2+ x)0,(α + x)1 where 7 ≤ α ≤ n− 3.
Then the pages y is isomorphic to
C10(0, . . . ,0

︸ ︷︷ ︸

9-times

,n − 8) with the following vertices

(n( j+ 1)− 5x)1,(ni+ 4+ x)0,(n j+ 2+ x)1,(ni+ 1+
x)0,(n j + x)1, (ni + x)0,(n j + 4 + x)1,
(n(i + 1) − 3 + x)0,(n j + 5 + x)1,(ni + 2 + x)0 and
(ni + 2 + x)0,(n j + α + x)1 where
n j+ 7 ≤ α ≤ n(1+ j)− 3.

6.At m = 10, their exist an ODC of Kn,n by

C11(0, . . . ,0
︸ ︷︷ ︸

10-times

,n − 10) ≡ P11 ∪
2 Sn−10 defined with the

starter function f6 as follows

f6(i) =







0 ; i = 0,4
1 ; i = 1,n− 1
4 ; i = 2
5 ; i = 3,n− 3
8 ; i = n− 4,n− 2
3 ; otherwise

.; i ∈ Zn

where the pages obtained from each entry x ∈ Zn such
that M f5(a,b) = x is isomorphic to C11(0, . . . ,0

︸ ︷︷ ︸

10-times

,n−10)

as follows: (4+ x)0,(6+ x)1,(n−4+ x)0,(4+ x)1,(x)0,
(x)1,(1+ x)0,(2 + x)1,(5 + x)0,(n− 4+ x)1, (3+ x)0,
and (3+ x)0,(α + x)1 where 9 ≤ α ≤ n− 1.
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Then the pages y is isomorphic to
C11(0, . . . ,0

︸ ︷︷ ︸

10-times

,n − 10) with the following vertices

(ni + 4 + x)0,(n j + 6 + x)1,(n(1 + i)− 4 + x)0,(n j +
4 + x)1,(ni + x)0,(n j + x)1, (ni + 1 + x)0,(n j + 2 +
x)1,(ni+ 5+ x)0,(n(1+ j)− 4+ x)1,(ni+ 3+ x)0, and
(ni + 3 + x)0,(n j + α + x)1 where
n j+ 9 ≤ α ≤ n(1+ j)− 1.

As mentioned in the above theorem there exist ODC

of Kqn,qn by qCm+1(0, . . . ,0
︸ ︷︷ ︸

m-times

,n−m) and we proved it in six

cases. So, we will give examples for each of these previous
cases where q = 3 every time as follows.

For m = 5, n = 7, and in case 1 described by the
example 1, then the combination has two squares of order
21 from equation 4 as follows

S f1
=






































0 5 0 5 5 3 3 7 12 7 12 12 10 10 14 19 14 19 19 17 17

4 1 6 1 6 6 4 11 8 13 8 13 13 11 18 15 20 15 20 20 18

5 5 2 0 2 0 0 12 12 9 7 9 7 7 19 19 16 14 16 14 14

1 6 6 3 1 3 1 8 13 13 10 8 10 8 15 20 20 17 15 17 15

2 2 0 0 4 2 4 9 9 7 7 11 9 11 16 16 14 14 18 16 18

5 3 3 1 1 5 3 12 10 10 8 8 12 10 19 17 17 15 15 19 17

4 6 4 4 2 2 6 11 13 11 11 9 9 13 18 20 18 18 16 16 20

7 12 7 12 12 10 10 14 19 14 19 19 17 17 0 5 0 5 5 3 3

11 8 13 8 13 13 11 18 15 20 15 20 20 18 4 1 6 1 6 6 4

12 12 9 7 9 7 7 19 19 16 14 16 14 14 5 5 2 0 2 0 0

8 13 13 10 8 10 8 15 20 20 17 15 17 15 1 6 6 3 1 3 1

9 9 7 7 11 9 11 16 16 14 14 18 16 18 2 2 0 0 4 2 4

12 10 10 8 8 12 10 19 17 17 15 15 19 17 5 3 3 1 1 5 3

11 13 11 11 9 9 13 18 20 18 18 16 16 20 4 6 4 4 2 2 6

14 19 14 19 19 17 17 0 5 0 5 5 3 3 7 12 7 12 12 10 10

18 15 20 15 20 20 18 4 1 6 1 6 6 4 11 8 13 8 13 13 11

19 19 16 14 16 14 14 5 5 2 0 2 0 0 12 12 9 7 9 7 7

15 20 20 17 15 17 15 1 6 6 3 1 3 1 8 13 13 10 8 10 8

16 16 14 14 18 16 18 2 2 0 0 4 2 4 9 9 7 7 11 9 11

19 17 17 15 15 19 17 5 3 3 1 1 5 3 12 10 10 8 8 12 10

18 20 18 18 16 16 20 4 6 4 4 2 2 6 11 13 11 11 9 9 13






































S∗f1
=






































0 5 0 5 5 3 3 7 12 7 12 12 10 10 14 19 14 19 19 17 17

4 1 6 1 6 6 4 11 8 13 8 13 13 11 18 15 20 15 20 20 18

5 5 2 0 2 0 0 12 12 9 7 9 7 7 19 19 16 14 16 14 14

1 6 6 3 1 3 1 8 13 13 10 8 10 8 15 20 20 17 15 17 15

2 2 0 0 4 2 4 9 9 7 7 11 9 11 16 16 14 14 18 16 18

5 3 3 1 1 5 3 12 10 10 8 8 12 10 19 17 17 15 15 19 17

4 6 4 4 2 2 6 11 13 11 11 9 9 13 18 20 18 18 16 16 20

7 12 7 12 12 10 10 14 19 14 19 19 17 17 0 5 0 5 5 3 3

11 8 13 8 13 13 11 18 15 20 15 20 20 18 4 1 6 1 6 6 4

12 12 9 7 9 7 7 19 19 16 14 16 14 14 5 5 2 0 2 0 0

8 13 13 10 8 10 8 15 20 20 17 15 17 15 1 6 6 3 1 3 1

9 9 7 7 11 9 11 16 16 14 14 18 16 18 2 2 0 0 4 2 4

12 10 10 8 8 12 10 19 17 17 15 15 19 17 5 3 3 1 1 5 3

11 13 11 11 9 9 13 18 20 18 18 16 16 20 4 6 4 4 2 2 6

14 19 14 19 19 17 17 0 5 0 5 5 3 3 7 12 7 12 12 10 10

18 15 20 15 20 20 18 4 1 6 1 6 6 4 11 8 13 8 13 13 11

19 19 16 14 16 14 14 5 5 2 0 2 0 0 12 12 9 7 9 7 7

15 20 20 17 15 17 15 1 6 6 3 1 3 1 8 13 13 10 8 10 8

16 16 14 14 18 16 18 2 2 0 0 4 2 4 9 9 7 7 11 9 11

19 17 17 15 15 19 17 5 3 3 1 1 5 3 12 10 10 8 8 12 10

18 20 18 18 16 16 20 4 6 4 4 2 2 6 11 13 11 11 9 9 13






































For m = 6, n = 8 there exist two orthogonal
C7(0, . . . ,0

︸ ︷︷ ︸

7 times

,2)-squares of order 8 in case 2 defined as

follows

M f2 =














6 1 0 4 5 6 0 1
2 7 2 1 5 6 7 1
2 3 0 3 2 6 7 0
1 3 4 1 4 3 7 0
1 2 4 5 2 5 4 0
1 2 3 5 6 3 6 5
6 2 3 4 6 7 4 7
0 7 3 4 5 7 0 5














,MT
f2
=














6 2 2 1 1 1 6 0
1 7 3 3 2 2 2 7
0 2 0 4 4 3 3 3
4 1 3 1 5 5 4 4
5 5 2 4 2 6 6 5
6 6 6 3 5 3 7 7
0 7 7 7 4 6 4 0
1 1 0 0 0 5 7 5














.

then the combination has two squares of order 24 from
equation 4.

For m = 7, n = 9 there exist two orthogonal
C8(0, . . . ,0

︸ ︷︷ ︸

7 times

,2)-squares of order 9 in case 3 defined as

follows

M f3 =
















0 8 7 0 7 7 3 3 8
0 1 0 8 1 8 8 4 4
5 1 2 1 0 2 0 0 5
6 6 2 3 2 1 3 1 1
2 7 7 3 4 3 2 4 2
3 3 8 8 4 5 4 3 5
6 4 4 0 0 5 6 5 4
5 7 5 5 1 1 6 7 6
7 6 8 6 6 2 2 7 8
















,MT
f3
=
















0 0 5 6 2 3 6 5 7
8 1 1 6 7 3 4 7 6
7 0 2 2 7 8 4 5 8
0 8 1 3 3 8 0 5 6
7 1 0 2 4 4 0 1 6
7 8 2 1 3 5 5 1 2
3 8 0 3 2 4 6 6 2
3 4 0 1 4 3 5 7 7
8 4 5 1 2 5 4 6 8
















.

then the combination has two squares of order 27 from
equation 4.

For m = 8, n = 10 there exist two orthogonal
C9(0, . . . ,0

︸ ︷︷ ︸

7 times

,2)-squares of order 10 in case 4 defined as

follows

M f4 =

















0 6 0 7 8 8 8 7 6 4
5 1 7 1 8 9 9 9 8 7
8 6 2 8 2 9 0 0 0 9
0 9 7 3 9 3 0 1 1 1
2 1 0 8 4 0 4 1 2 2
3 3 2 1 9 5 1 5 2 3
4 4 4 3 2 0 6 2 6 3
4 5 5 5 4 3 1 7 3 7
8 5 6 6 6 5 4 2 8 4
5 9 6 7 7 7 6 5 3 9

















,MT
f4
=

















0 5 8 0 2 3 4 4 8 5
6 1 6 9 1 3 4 5 5 9
0 7 2 7 0 2 4 5 6 6
7 1 8 3 8 1 3 5 6 7
8 8 2 9 4 9 2 4 6 7
8 9 9 3 0 5 0 3 5 7
8 9 0 0 4 1 6 1 4 6
7 9 0 1 1 5 2 7 2 5
6 8 0 1 2 2 6 3 8 3
4 7 9 1 2 3 3 7 4 9

















.

then the combination has two squares of order 30 from
equation 4.

For m = 9, n = 11 there exist two orthogonal
C10(0, . . . ,0

︸ ︷︷ ︸

8 times

,2)-squares of order 11 in case 5 defined as
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follows

M f5 =



















0 10 7 9 0 9 9 3 3 7 10
0 1 0 8 10 1 10 10 4 4 8
9 1 2 1 9 0 2 0 0 5 5
6 10 2 3 2 10 1 3 1 1 6
7 7 0 3 4 3 0 2 4 2 2
3 8 8 1 4 5 4 1 3 5 3
4 4 9 9 2 5 6 5 2 4 6
7 5 5 10 10 3 6 7 6 3 5
6 8 6 6 0 0 4 7 8 7 4
5 7 9 7 7 1 1 5 8 9 8
9 6 8 10 8 8 2 2 6 9 10



















,

MT
f5
=



















0 0 9 6 7 3 4 7 6 5 9
10 1 1 10 7 8 4 5 8 7 6
7 0 2 2 0 8 9 5 6 9 8
9 8 1 3 3 1 9 10 6 7 10
0 10 9 2 4 4 2 10 0 7 8
9 1 0 10 3 5 5 3 0 1 8
9 10 2 1 0 4 6 6 4 1 2
3 10 0 3 2 1 5 7 7 5 2
3 4 0 1 4 3 2 6 8 8 6
7 4 5 1 2 5 4 3 7 9 9

10 8 5 6 2 3 6 5 4 8 10



















.

then the combination has two squares of order 33 from
equation 4.

For m = 10, n = 12 there exist two orthogonal
C11(0, . . . ,0

︸ ︷︷ ︸

9 times

,2)-squares of order 12 in case 6 defined as

follows

M f6 =





















0 11 8 7 0 9 9 9 4 7 4 11
0 1 0 9 8 1 10 10 10 5 8 5
6 1 2 1 10 9 2 11 11 11 6 9

10 7 2 3 2 11 10 3 0 0 0 7
8 11 8 3 4 3 0 11 4 1 1 1
2 9 0 9 4 5 4 1 0 5 2 2
3 3 10 1 10 5 6 5 2 1 6 3
4 4 4 11 2 11 6 7 6 3 2 7
8 5 5 5 0 3 0 7 8 7 4 3
4 9 6 6 6 1 4 1 8 9 8 5
6 5 10 7 7 7 2 5 2 9 10 9

10 7 6 11 8 8 8 3 6 3 10 11





















,

MT
f6
=





















0 0 6 10 8 2 3 4 8 4 6 10
11 1 1 7 11 9 3 4 5 9 5 7
8 0 2 2 8 0 10 4 5 6 10 6
7 9 1 3 3 9 1 11 5 6 7 11
0 8 10 2 4 4 10 2 0 6 7 8
9 1 9 11 3 5 5 11 3 1 7 8
9 10 2 10 0 4 6 6 0 4 2 8
9 10 11 3 11 1 5 7 7 1 5 3
4 10 11 0 4 0 2 6 8 8 2 6
7 5 11 0 1 5 1 3 7 9 9 3
4 8 6 0 1 2 6 2 4 8 10 10

11 5 9 7 1 2 3 7 3 5 9 11





















.

then the combination has two squares of order 36 from
equation 4.

3 Conclusion

In this paper, we got a larger ODC of Kqn,qn by making
combination of two ODCs first one is a caterpillar of Kn,n

and the second one is the one factorization ODC of Latin
squares of Kq,q and we proved six cases of ODC of Kqn,qn

by qCm+1(0, . . . ,0
︸ ︷︷ ︸

m-times

,n−m); where 5 ≤ m ≤ 10.
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[4] H.-D. O. F. Gronau, M. Grüttmüller, S. Hartmann, U. Leck,

and V. Leck, “On orthogonal double covers of graphs”,

Designs, Codes and Cryptography, vol. 27, no. 1− 2, pp.

49−91, 2002.
[5] H.-D. O. F. Gronau, R. C. Mullin, and A. Rosa, “Orthogonal

double covers of complete graphs by trees”, Graphs and

Combinatorics, vol. 13, no. 3, pp. 251−262, 1997.
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”Orthogonal Double Covers of Kn,n by small graphs”,

Discrete Appl. Math. 138 , pp. 47−63, (2004).
[9] R. El-Shanawany, E. El-Kholy, T. Homoda and Z. Bakr,

“On Orthogonal Certain Disjoint Union of Cycles and Stars

Squares”, submitted.

[10] R. A. El-Shanawany, M. Higazy and R. Scapellato, ”A note

on orthogonal double covers of complete bipartite graphs

by a special class of six caterpillars”, AKCE J. Graphs.

Combin., 7, No. 1, pp. 1−4, (2010).

c© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 6, 953-959 (2022) / www.naturalspublishing.com/Journals.asp 959

Rmadan El-Shanawany
was born in Shebin El-Kom,
Menoufia, Egypt in 1962.
Professor at faculty of
electronic engineering
Menoufia University, Shebin
El- Kom, Egypt. He received
the B.S. and M.S. degrees
in pure mathematics from
faculty of science, Menoufia

University. Ph.D. degree at discrete Mathematics at
Rostock university Germany. In addition to over 30 years
of teaching and academic experiences. His research
interest includes graph theory, orthogonal double cover
(ODC).

Entesar El-Kholy
was born in Cairo,
Egypt. Professor of pure
mathematics department
of mathematics, Faculty
of Science, Tanta University.
He received the B.S. and M.S.
degrees in pure mathematics
from faculty of science,
Ain-Shams University. Ph.D.

degree at Geometric topology at Southampton University.
Her research interest includes graph theory.

Taha Hamoda was
born in El- Gharbiya, Egypt.
Lecturer of Pure Mathematics
department of Mathematics,
Faculty of Science, Tanta
University. He received the
B.S. and M.S. degrees in pure
mathematics from faculty
of science, Tanta University.
Ph.D. degree at Geometric
topology from faculty of

science, Tanta University.

Zinab Bakr was
born in Tanta, El- Gharbiya,
Egypt. Demonstrator
of Pure Mathematics
department of Mathematics,
Faculty of Science, Tanta
University at 2016. she
received the B.S. in pure
mathematics from faculty
of science, Tanta University.

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Interdiction
	Main result
	Conclusion

