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Abstract: We will bring up a new generalization ϕm−convex function for the convex function. We give some basic properties for this

notion. Furthermore, we set down proofs of Hermite-Hadamard type and Hermite-Hadamard-Fejér type integral inequalities for this

notion.

Keywords: Convex function, ϕ−convex function, m−convex function, ϕm−convex function, Hermite-Hadamard type inequalities and

Hermite-Hadamard-Fejér type integral inequalities.

1 Introduction

Throughout the paper, we will use the symbol “κ” for
convex function (and its generalizations). Let
ϕ : R×R→ R be a function of two real variables unless
we shall specify otherwise.

In the present section, we give some basic definitions
and inequalities, which already exist in the literature, we
use them through the paper. In Section 2, we investigate
four forms of already defined ϕ−convex function [6]. By
using one of the four forms and m−convex function [6],
we introduce our new notion ϕm−convex function, which
is a generalization of convex, φ−convex and m−convex
function. Let’s see later. The remaining sections are clear
by their title.

The following definition [1, 2], is the base of the
literature:
κ : A ⊂ R→R is known as convex function if,

κ(ru+(1− r)v)≤ rκ(u)+ (1− r)κ(v) (1)

for every u,v ∈ A and r ∈ [0,1].
An inequality [3, 4], which is very basic and

fundamental for the literature:
If κ : A ⊂ R → R is convex function and p,q ∈ A with
p < q. Then

κ

(

p+ q

2

)

≤
1

q− p

∫ q

p
κ(u)du ≤

κ(p)+κ(q)

2
(2)

is called Hermite-Hadamard inequality.
Another inequality [5], which is the generalization of

above inequality (2) was derived in the year 1905 by
Leopold Fejér, as the following:
If κ : [p,q] ⊂ R → R is a convex function, and

χ : [p,q] → R is symmetric about
p+q

2
, integrable and

non-negative. Then

κ

(

p+ q

2

)

∫ q

p
χ(u)du ≤

1

q− p

∫ q

p
κ(u)χ(u)du ≤

κ(p)+κ(q)

2

∫ q

p
χ(u)du (3)

is known as Hermite-Hadamard-Fejér inequality.
G. Toader [6] , generalize the convex function as

m−convex function, in the year 1984, as the following:
κ : [0,q)⊂ R→ R, q > 0 be an m−convex function if,

κ(ru+m(1− r)v)≤ rκ(u)+m(1− r)κ(v) (4)

holds for every u,v ∈ [0,q) and r,m ∈ [0,1].
M. Eshaghi Gordji, M. Rostamian Delavar, M. De La

Sen [7], generalize convex function as ϕ−convex function,
in the year 2016, as the following:
let A ⊆ R and ϕ : R×R → R be a function of two real
variables then, a function κ : A → R is called ϕ−convex
if,

κ(ru+(1− r)v)≤ κ(v)+ rϕ
(

κ(u),κ(v)
)

(5)
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for every u,v ∈ A and r ∈ [0,1]. Note that η−convex
function [10] and ϕ−convex function [8] are the same
notions. So we can also termed ϕm−convex function as
ηm−convex function.

2 Basic definitions.

In this section, we investigate different forms of
ϕ−convex function. One of these forms is required for
our new generalization. We make some important remarks
and examples for our new notion ϕm−convex function.

Now we give the following four forms of ϕ−convex
function, or it can be defined in the following four different
ways.

Definition 1.Let A⊆R, then a function κ : A→R is called

ϕ−convex if,

κ(ru+(1− r)v)≤ rκ(u)+ (1− r)ϕ
(

κ(u),κ(v)
)

(6)

κ(ru+(1− r)v)≤ (1− r)κ(v)+ rϕ
(

κ(u),κ(v)
)

(7)

κ(ru+(1− r)v)≤ κ(v)+ rϕ
(

κ(u),κ(v)
)

(8)

κ(ru+(1− r)v)≤ κ(u)+ (1− r)ϕ
(

κ(u),κ(v)
)

(9)

for every r ∈ [0,1] and for every u,v∈A. Above inequality

(8) is defined in [7].

The above definitions will become classical convex
functions if we take:
ϕ(u,v) = v in (6)
ϕ(u,v) = u in (7)
ϕ(u,v) = u− v in (8)
ϕ(u,v) = v− u in (9).

Remark.All four definitions are similar to each other. Let’s
see. If we set ϕ(u,v) = η(u,v)+κ(u) in the inequality (6),
we get inequality (9) and if we set ϕ(u,v) = η(u,v)+κ(v)
in inequality (7), we get inequality (8), where η(u,v) is
another function of two real variables.

Definition 2.If we take equalities in place of inequalities in

Definition 1, we get ϕ−affine functions, for all r,u,v ∈R.

Clearly, we can also get classical affine functions.

We give one example to illustrate the ϕ−convex
function (6).

Example 1.Let κ(u) = u2 which is convex. If
ϕ(u,v) = 2v+ u, then κ is ϕ− convex.

Solution.

κ(ru+(1− r)v)

= (ru+(1− r)v)2

= r2u2 +(1− r)2v2 + r(1− r)2uv

≤ ru2 +(1− r)v2+(1− r)(u2+ v2)

= ru2 +(1− r)(u2+ 2v2)

= rκ(u)+ (1− r)ϕ
(

κ(u),κ(v)
)

which shows κ is ϕ−convex.
Now we give different forms of the ϕ−quasi convex

function.

Definition 3.Let A⊆R, then a function κ : A→R is called

ϕ−quasi convex if,

κ(ru+(1− r)v)≤ max
{

κ(u),ϕ
(

κ(u),κ(v)
)}

(10)

κ(ru+(1− r)v)≤ max
{

κ(v),ϕ
(

κ(u),κ(v)
)}

(11)

κ(ru+(1− r)v)≤ max

{

κ(v),κ(v)+ϕ
(

κ(u),κ(v)
)}

(12)

κ(ru+(1− r)v)≤ max
{

κ(u),κ(u)+ϕ
(

κ(u),κ(v)
)}

(13)

for every r ∈ [0,1] and for every u,v ∈ A.

The above definitions will become classical quasi convex
function if we take:
ϕ(u,v) = v in (10)
ϕ(u,v) = u in (11)
ϕ(u,v) = u− v in (12)
ϕ(u,v) = v− u in (13).

Definition 4.If we reverse the inequalities in Definition 1

and Definition 3 then we get ϕ−concave and ϕ−quasi
concave functions.

Through the rest of this paper, let
[0,q] = I ⊂ R,q > 0, [0,+∞) = J ⊂ R and m,r ∈ [0,1],
unless we specify otherwise.

Now we come to our main concern and construct the
ϕm−convex function.

Definition 5.κ : I → R is ϕm−convex function with

respect to non-negative ϕ if,

κ(ru+m(1− r)v)≤

rκ(u)+m(1− r)ϕ
(

κ(u),κ(v)
)

(14)

for every u,v ∈ I and for every r ∈ (0,1).

We are denoting the set of all ϕm−convex functions as
a class Cϕm(q).

If we choose ϕ(u,v) = v , we come to m−convexity
(4).

If we choose m = 1, we come to ϕ−convexity (6)
(actually ϕ−convexity [8]) for the interval I.

Definition 6.If we reverse the inequality in Definition 5,

then we get ϕm−concave function.

We give one example to illustrate our ϕm−convex
function.

Example 2.let κ(u)= u2 which is convex. If ϕ(u,v)= 2v+
u then, κ is ϕm− convex.
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Solution.

κ(ru+m(1− r)v)

= (ru+m(1− r)v)2

= r2u2 +m2(1− r)2v2 + rm(1− r)2uv

≤ ru2 +m(1− r)v2+m(1− r)(u2+ v2)

= ru2 +m(1− r)(u2+ 2v2)

= rκ(u)+m(1− r)ϕ
(

κ(u),κ(v)
)

.

Which shows κ is ϕm− convex.

3 Some properties for ϕm-convex function

In the present section, we shall give some basic properties
for our notion of the ϕm− convex function. We first give
various conditions for the function ϕ . We use these
concepts often in our results.

Definition 7.We say that ϕ is,

(i)additive if, ϕ(u1,v1)+ϕ(u2,v2) = ϕ(u1 + u2,v1 + v2)
for all u1,u2,v1,v2 ∈ R.

(ii)non-negatively homogeneous if, ϕ(β u,β v) = β ϕ(u,v)
for all u,v ∈R and β ≥ 0.

(iii)non-negatively linear if, it satisfies conditions (ii) and

(i).

The following is a trivial fact of calculus for the function
of two variables:

Let limit of un and vn exists in R and f : R2 → R
2 is

continuous, then

lim
n→∞

f (un,vn) = f ( lim
n→∞

un, lim
n→∞

vn).

The incoming results and corresponding proofs are
mostly inspired by [7, 8].

Proposition 1.Consider κ ,χ : I → R be two ϕm−convex

functions and ϕ is additive, then κ + χ : I → R will be

ϕm−convex function.

Proof.

(κ + χ)(ru+m(1− r)v)

=
[

κ(ru+m(1− r)v)]+ [χ(ru+m(1− r)v)
]

≤
[

rκ(u)+m(1− r)ϕ
(

κ(u),κ(v)
)]

+
[

rχ(u)+m(1− r)ϕ
(

χ(u),χ(v)
)]

= r
[

κ(u)+ χ(u)
]

+

m(1− r)
[

ϕ
(

κ(u),κ(v)
)

+ϕ
(

χ(u),χ(v)
)]

= r
[

(κ + χ)(u)
]

+

m(1− r)
[

ϕ
(

κ(u)+ χ(u),κ(v)+ χ(v)
)]

= r
[

(κ + χ)(u)
]

+

m(1− r)
[

ϕ
(

(κ + χ)(u),(κ + χ)(v)
)]

.

Hence the result.

Proposition 2.The function β κ : I → R is ϕm−convex for

any β ≥ 0, if κ : I → R be ϕm−convex function and ϕ is

non negatively homogeneous function.

Proof.

(β κ)(ru+m(1− r)v)

= β
[

κ(ru+m(1− r)v)
]

≤ β
[

rκ(u)+m(1− r)ϕ
(

κ(u),κ(v)
)]

= r(β κ)(u)+m(1− r)β ϕ
(

κ(u),κ(v)
)

= r(β κ)(u)+m(1− r)ϕ
(

(β κ)(u),(β κ)(v)
)

.

Hence the result.

Theorem 1.The function κ = ∑n
i=1 βiκi : I → R is

ϕm−convex for βi ≥ 0, i = 1,2, ...,n if

κi : I → R, i = 1,2, ...,n be ϕm−convex functions, such

that ϕ is non-negatively linear.

Proof.

(
n

∑
i=1

βiκi)(ru+m(1− r)v)

=
n

∑
i=1

[βi {κi(ru+m(1− r)v)}]

≤
n

∑
i=1

[

βi

(

rκi(u)+m(1− r)ϕ
(

κi(u),κi(v)
))]

= r
n

∑
i=1

βiκi(u)+m(1− r)
n

∑
i=1

βiϕ
(

κi(u),κi(v)
)

= r
n

∑
i=1

βiκi(u)+m(1− r)ϕ
( n

∑
i=1

βiκi(u),
n

∑
i=1

βiκi(v)
)

.
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Hence the result.

Proposition 3.The function κ := maxn
i=1 κi is ϕm−convex

function if, κi : J → R, i = 1,2, ...,n are all ϕm−convex

functions.

Proof.

κi(ru+m(1− r)v)

≤ rκi(u)+m(1− r)ϕ(κi(u),κi(v))

≤ r
n

max
i=1

κi(u)+m(1− r)ϕ
(

n
max
i=1

κi(u),
n

max
i=1

κi(v)
)

,

= rκ(u)+m(1− r)ϕ
(

κ(u),κ(v)
)

.

Hence the result.

Proposition 4.Let κn : J →R be a sequence of ϕm−convex

functions, ϕ is continuous and for all n ≥ N ∈N,κn(u)→
κ(u), (on J), then κ is ϕm−convex function.

Proof.Each κn is ϕm−convex function implies, for all
u, v ∈ J

κn(ru+m(1− r)v)≤ rκn(u)

+m(1− r)ϕ
(

κn(u),κn(v)
)

lim
n→∞

κn(ru+m(1− r)v)≤ r lim
n→∞

κn(u)

+m(1− r) lim
n→∞

ϕ
(

κn(u),κn(v)
)

κ(ru+m(1− r)v)≤ rκ(u)

+m(1− r)ϕ
(

κ(u),κ(v)
)

.

Hence the result.

Proposition 5.The function χoκ will be ϕm−convex if, κ :
I → R be m−convex function and χ : A ⊆ κ(I) → R be

non decreasing ϕm−convex function.

Proof.

κ(ru+m(1− r)v)≤ rκ(u)+m(1− r)κ(v)

χ
[

κ(ru+m(1− r)v)
]

≤ χ
[

rκ(u)

+m(1− r)κ(v)
]

(

χoκ
)(

ru+m(1− r)v
)

≤ rχ
[

κ(u)
]

+m(1− r)ϕ
(

χ
[

κ(u)
]

,χ
[

κ(v)
]

)

(

χoκ
)(

ru+m(1− r)v
)

≤ r
(

χoκ
)

(u)

+m(1− r)ϕ
(

(χoκ)(u),(χoκ)(v)
)

.

Hence the result.

4 Hermite-Hadamard type inequalities.

The incoming theorems follow ideas from [7–9]. The
following theorem gives boundedness of ϕm−convex
function and will be used in Theorem 4.

Theorem 2.The function κ will be bounded on [p,q] ⊆ I

for p,q∈ I with p< q if, κ : I →R be ϕm−convex function,

such that ϕ is bounded from above on κ(I)×κ(I).

Proof.Firstly,
As every u ∈ [p,q] can be represented as u = rp+(1− r)q
for r ∈ [0,1], then

κ(rp+(1− r)q)

≤ rκ(p)+m(1− r)ϕ

(

κ(p),κ
( q

m

)

)

≤ κ(p)+Mϕ

Which is upper bound for κ and Mϕ is upper bound for
function ϕ .
Secondly, Let

p+ q

2
− r = u ∈ [p,q], then

κ
( p+ q

2

)

= κ
( p+ q

4
+

r

2
+

p+ q

4
−

r

2

)

= κ
(1

2

[ p+ q

2
− r
]

+
1

2

[ p+ q

2
+ r
])

≤
1

2
κ
( p+ q

2
− r
)

+
(m

2

)

ϕ

(

κ
( p+ q

2
− r
)

,κ

( p+q
2

+ r

m

)

)

≤
1

2
κ
( p+ q

2
− r
)

+
(m

2

)

Mϕ

κ
( p+ q

2

)

−
(m

2

)

Mϕ ≤
1

2
κ
( p+ q

2
− r
)

2κ
( p+ q

2

)

−mMϕ ≤ κ(u),

which is lower bound for κ and Mϕ is upper bound for
function ϕ .
Hence κ is bounded on [p,q]⊆ I.

Now we are going to establish Hermite-Hadamard type
inequalities.

Theorem 3.If κ ∈ L1[p,q] and κ : I → R be ϕm−convex

function, such that ϕ is bounded from above on κ(I)×
κ(I). For p,q ∈ I with p < q, then we have

1

q− p

∫ q

p
κ(u)du ≤ min

{

κ(p)

∫ 1

0
r dr+mϕ

(

κ(p),κ
( q

m

)

)

∫ 1

0
(1− r)dr ,

κ(q)
∫ 1

0
r dr +mϕ

(

κ(q),κ
( p

m

)

)

∫ 1

0
(1− r)dr

}

.

(15)
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Proof.Since κ is ϕm−convex, we have

κ(ru+m(1− r)v)≤ rκ(u)+m(1− r)ϕ
(

κ(u),κ(v)
)

, which gives:

κ(rp+(1− r)q)≤ rκ(p)+m(1− r)ϕ

(

κ(p),κ
( q

m

)

)

and

κ(rq+(1− r)p)≤ rκ(q)+m(1− r)ϕ

(

κ(q),κ
( p

m

)

)

integrating on [0,1], we have

∫ 1

0
κ(rp+(1− r)q)dr

≤ κ(p)

∫ 1

0
r dr+mϕ

(

κ(p),κ
( q

m

)

)

∫ 1

0
(1− r)dr

and
∫ 1

0
κ(rq+(1− r)p)dr

≤ κ(q)
∫ 1

0
r dr+mϕ

(

κ(q),κ
( p

m

)

)

∫ 1

0
(1− r)dr

this implies,

1

q− p

∫ q

p
κ(u)du ≤

κ(p)

∫ 1

0
r dr+mϕ

(

κ(p),κ
( q

m

)

)

∫ 1

0
(1− r)dr.

(16)

and

1

q− p

∫ q

p
κ(u)du ≤

κ(q)
∫ 1

0
r dr+mϕ

(

κ(q),κ
( p

m

)

)

∫ 1

0
(1− r)dr.

(17)

However,

∫ 1

0
κ(rp+(1− r)q)dr =

∫ 1

0
κ(rq+(1− r)p)dr

=
1

q− p

∫ q

p
κ(u)du

Hence we get Inequality (15).

Hermite-Hadamard type inequality for m−convex
function in [9] will be obtain after putting ϕ(u,v) = v in
above Theorem 3.

Theorem 4.If κ ∈ L1[p,q] and κ : I → R be ϕm−convex

function, such that ϕ is bounded from above on κ(I)×
κ(I). For p,q ∈ I with p < q, then we have

2κ
( p+ q

2

)

−mMϕ ≤
1

q− p

∫ q

p
κ(u)du ≤

κ(p)+κ(q)

2

∫ 1

0
r dr+

m

2
Mϕ

∫ 1

0
(1− r)dr

, where Mϕ is upper bound for function ϕ .

Proof.Firstly,
κ is bounded by Theorem 2.
Secondly,
Adding inequalities (16) and (17) we get,

1

q− p

∫ q

p
κ(u)du ≤

κ(p)+κ(q)

2

∫ 1

0
r dr+

m

2

[

ϕ

(

κ(p),κ
( q

m

)

)

+φ

(

κ(q),κ
( p

m

)

)

]

∫ 1

0
(1− r)dr

≤
κ(p)+κ(q)

2

∫ 1

0
r dr+

m

2
Mϕ

∫ 1

0
(1− r)dr

, where Mϕ is upper bound for the function ϕ .
Thirdly,

For p, q ∈ I we know
p+ q

2
∈ I

κ
( p+ q

2

)

= κ
(rp+(1− r)q+(1− r)p+ rq

2

)

= κ
(1

2
(rp+(1− r)q)+

m

2

(1− r)p+ rq

m

)

≤
1

2
κ
(

rp+(1− r)q
)

+
(m

2

)

ϕ

(

κ
(

rp+(1− r)q
)

,κ
((1− r)p+ rq

m

)

)

≤
1

2
κ(rp+(1− r)q)+

(m

2

)

Mϕ

Where Mφ is upper bound for function ϕ .
On integrating in the interval (0,1) we get,

κ
( p+ q

2

)

≤
1

2(q− p)

∫ q

p
κ(u)du+

(m

2

)

Mϕ

2κ
( p+ q

2

)

−mMϕ ≤
1

q− p

∫ q

p
κ(u)du.

Hermite-Hadamard type inequality for the ϕ−convex
function [7] defined on interval I will be obtain after
putting m = 1 in Theorem 4 and we obtain classical
Hermite-Hadamard Inequality (2) after putting m = 1,
ϕ(u,v) = v, in Theorem 4.
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5 Hermite-Hadamard-Fejér type inequalities.

Now, we prove Hermite-Hadamard-Fejér type inequalities,
an inspiration from [8].

Theorem 5.For p,q ∈ [p,q] with p < q and with

κ ∈ L1([p,q]). Suppose κ : [p,q] ⊂ J → J be ϕm−convex

function, and χ : [p,q] → R is non-negative, integrable

and symmetric about
p+q

2
, then we have

∫ q

p
κ(u)χ(u)du

≤
κ(p)+κ(q)

2

∫ q

p

( q− u

q− p

)

χ(u)du

+
m

2

[

ϕ

(

κ(q),κ
( p

m

)

)

+ϕ

(

κ(p),κ
( q

m

)

)

]

∫ q

p

(u− p

q− p

)

χ(u)du.

Proof.Since χ is integrable and symmetric about
p+q

2
and

κ and χ are real non-negative functions, then we get

∫ q

p
κ(u)χ(u)du =

1

2

[

∫ q

p
κ(u)χ(u)du

+

∫ q

p
κ(p+ q− u)χ(p+ q−u)du

]

=
1

2

∫ q

p

[

κ(u)+κ(p+ q− u)
]

χ(u)du

=
1

2

∫ q

p

[

κ

(

p
(q− u

q− p

)

+ q
(u− p

q− p

)

)

+κ

(

p
(u− p

q− p

)

+ q
(q− u

q− p

)

)]

χ(u)du

≤
1

2

∫ q

p

[

( q− u

q− p

)

κ(p)+m

(u− p

q− p

)

ϕ

(

κ(p),κ
( q

m

)

)

+m
(u− p

q− p

)

ϕ

(

κ(q),κ
( p

m

)

)

+
(q− u

q− p

)

κ(q)

]

χ(u)du

=
κ(p)+κ(q)

2

∫ q

p

(q− u

q− p

)

χ(u)du+
m

2

[

ϕ

(

κ(p),κ
( q

m

)

)

+ϕ

(

κ(q),κ
( p

m

)

)]

∫ q

p

(u− p

q− p

)

χ(u)du.

Hence we get our require result.

Hermite-Hadamard-Fejér type inequality for
m−convex function [6], will be obtain after putting
ϕ(u,v) = v. i.e;

∫ q

p
κ(u)χ(u)du ≤

κ(p)+κ(q)

2

∫ q

p

( q− u

q− p

)

χ(u)du

+
m

2

[

κ
( p

m

)

+κ
( q

m

)

]

∫ q

p

(u− p

q− p

)

χ(u)du.

Corollary 1.With the same conditions of above Theorem 5

and if χ(u) = 1, we have

1

q− p

∫ q

p
κ(u)du

≤
1

2

(

κ(p)+κ(q)
)

+m

[

ϕ

(

κ(q),κ
( p

m

)

)

+ϕ

(

κ(p),κ
( q

m

)

)]

.

Proof.Putting χ(u) = 1 in Theorem 5, we get

∫ q

p
κ(u)du

≤
κ(p)+κ(q)

2

∫ q

p

( q− u

q− p

)

du

+
m

2

[

ϕ

(

κ(q),κ
( p

m

)

)

+ϕ

(

κ(p),κ
( q

m

)

)

]

∫ q

p

(u− p

q− p

)

du.

then from Jensen Inequality,

1

q− p

∫ q

p
κ(u)du

≤
κ(p)+κ(q)

2

1

q− p

∫ q

p

( q− u

q− p

)

du

+
m

2

[

ϕ

(

κ(q),κ
( p

m

)

)

+ϕ

(

κ(p),κ
( q

m

)

)

]

1

q− p

∫ q

p

(u− p

q− p

)

du

=
κ(p)+κ(q)

2
+

m

2

[

ϕ

(

κ(q),κ
( p

m

)

)

+ϕ

(

κ(p),κ
( q

m

)

)

]

=
κ(p)+κ(q)

2
+

m

2

[

ϕ

(

κ(q),κ
( p

m

)

)

+ϕ

(

κ(p),κ
( q

m

)

)

]

,

which is right side of Hermite-Hadamard type inequality
Theorem 4.

Theorem 6.For p,q ∈ [p,q] with p < q, κ ∈ L1

(

[c,d]
)

,

where c = min
{

p
m
, p
}

, d = max
{

q,
q
m

}

. Suppose

κ : [p,q] ⊂ J → J be ϕm−convex function and

χ : [p,q] → R is non-negative, integrable and symmetric
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about
p+q

2
. Then we get

κ
( p+ q

2

)

∫ q

p
χ(u)du

≤
(1

2

)

∫ q

p
κ(u)χ(u)du

+m
(1

2

)

∫ q

p
ϕ

(

κ(p+ q− u),κ
( u

m

)

)

χ(u)du.

Proof.We have,

κ
( p+ q

2

)

∫ q

p
χ(u)du

=

∫ q

p
κ
( p+ q− u+ u

2

)

χ(u)du

≤

∫ q

p

[

(1

2

)

κ(p+ q− u)

+
(m

2

)

ϕ

(

κ(p+ q− u),κ
( u

m

)

)]

χ(u)du

=
(1

2

)

∫ q

p
κ(p+ q− u)χ(u)du

+
(m

2

)

∫ q

p
ϕ

(

κ(p+ q− u),κ
( u

m

)

)

χ(u)du

=
(1

2

)

∫ q

p
κ(p+ q− u)χ(p+ q−u)du

+
(m

2

)

∫ q

p
ϕ

(

κ(p+ q− u),κ
( u

m

)

)

χ(u)du

=
(1

2

)

∫ q

p
κ(u)χ(u)du+

(m

2

)

∫ q

p
ϕ

(

κ(p+ q− u),κ
( u

m

)

)

χ(u)du.

Hermite-Hadamard-Fejér type inequality for
m−convex function [6] will be obtain after putting
ϕ(u,v) = v, i.e:

κ
( p+ q

2

)

∫ q

p
χ(u)du

≤
1

2

∫ q

p
κ(u)χ(u)du

+
m

2

∫ q

p
κ
( u

m

)

χ(u)du.

We may expect that the notions and results which, we
have used in this paper may inspire and encourage the
interested readers to derive and explore some new notions
and results, in various fields of mathematics and other
sciences.

References

[1] R.T. Rockafellar, Convex Analysis, Princeton University

Press, Princeton, 3-32, (1970).

[2] I. Ekeland and R. Temam, Convex Analysis and Variational

Problems, North- Holland Publishing, Amsterdam, 3-34,

(1976).

[3] J. Hadamard, Etude sur les propriétés des fonctions entiéres et
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