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Abstract: This research aimed to show the validity following Francisco L.Hernandez, César Ruiz and Mauro Sanchiz [1],
of the necessary and sufficient conditions on subsets of variable exponent spaces LP)(€) in order to be weakly compact.
Useful criteria are given extending Ando results for Orlicz spaces. This research aimed to show that all separable variable
exponent spaces are weakly Banach-Saks. Also, L-weakly compact and weakly compact inclusions between variable

exponent spaces are studied.
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1 Introduction

The Riesz-Kolmogorov compactness theorem in L;,.-
spaces (0 < € < o) has been extended to the variable
exponent Lebesgue spaces LPC)(Q) (or Nakano spaces) by
Gorka and Macios [2], Gorka and Bandaliyev [3] and Dong
et al. [4].

They give useful versions of the theorem according with
the underlying measure space considered (Q,u) (fi
Euclidean spaces, metric measure spaces or locally compact
groups). [4] study the compactness of Riemann-Liouville
fractional integral operators in the variable exponent
LPO(Q) setting. The variable exponent Lebesgue spaces
LPO)(Q) (and their corresponding Sobolev spaces) are being
used successfully in several areas of harmonic analysis and
related differential equations and applications (cf. [5-7]).

Variable exponent Lebesgue spaces belong to the general
class of non-symmetric Musielak-Orlicz spaces [8, 9] .
Francisco L.Hernandez, César Ruiz and Mauro Sanchiz [1]
are describing the weakly compact sets in non-reflexive
variable exponent spaces LP()(Q). We follow and show an
application on [1] this topic has been widely studied for
symmetric (or rearrangement invariant) function spaces.
Recall the classical Dunford and Pettis result for L,((Q)
describing the relative weakly compact subsets as the equi-
integrable sets. For Orlicz spaces L¥(Q)) with the A,-
condition, useful weak compactness criteria were given by
Ando in [10] (see [1l] chapter 4). Later on, many
extensions have been given for general symmetric function
spaces (see f.i. [12] and references within) and also for the
vectorial case of Orlicz-Bochner spaces in [13].

They extend And6 weak compactness characterizations in
Orlicz spaces to the variable exponent LPO)(Q) setting.
Also, equi-integrable subsets in LP)(Q) spaces are studied,
obtaining a De la Vallée Poussin type theorem [14] in

LPO(Q) spaces. Recall that De la Vallée Poussin's classical
result characterizes equiintegrable sets in L, () by their
boundness in certain Orlicz spaces. As an application, [1]
obtain criteria for when the inclusions between two variable
exponent spaces LPOTO(Q) c LPO(Q) are weakly
compact or L-weakly compact operators (this means that
the unit ball B, p¢)+ey is equi-integrable in L”(')(Q)). It
turns out that, even for "closed" exponent functions p(-)
and p(-) +€(-) (ie. ess inf(e(:)) =0), the inclusion
LPOTEO(Q) € LPO(Q) can be L-weakly compact.

The obtained weak compactness criteria are used later to
study the weak Banach-Saks property in LPO)(Q) spaces
(i.e. when every weakly convergent sequence in LPO)(Q)
contain a subsequence which is Cesaro convergent).

We point out that no extra conditions on the regularity of
the exponent functions (like the log-Holder continuous
conditions) will be assumed along the paper.

We give in section 3 a characterization for LPO)(Q)-equi-
integrable subsets obtaining a De la Vallée Poussin type
result in LPO)(Q) spaces (Theorem 3.2). In section 4, we
obtain the Ando type criteria for a subset S of LPO)(Q) with
pt < oo and u((1+€)71{1}) = 0 to be relatively weakly
compact (Theorem 4.3), namely

f D IAFEm) Py = 0.

In particular, weakly convergent sequences in LP®)(Q)-
spaces are characterized (see Propositions 4.5 and 4.6). In
section 5, we apply previous results to study the weak
Banach-Saks property in LPO) (Q)

llmsup
A-0 fes

spaces, showing that all separable LPO)(Q) spaces are
weakly Banack-Saks (Theorem 5.1). In the last section 6 ,
we obtain another Andd type characterization of weak
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compactness of a set S in a LPO(Q) space in terms of the
existence of a Musielak-Orlicz function W(t™o,x?)
increasing uniformly more rapidly than x2P(t™) guch that S
is bounded in the Musielak-Orlicz space LY (Q) (see [1]).

2 Preliminaries

Throughout the paper (Q,Z, 1) is a finite separable non-
atomic measurable space and Ly () is the space of all real
measurable function classes. Given a u-measurable
function (1+4€):Q —>[1,0), the Variable Exponent
Lebesgue space (or Nakano space) LPO)(Q) is defined by
the set of all measurable scalar function classes f € Ly ()

such that the modular p, ., (ﬁ) is finite for some € > 0,
where

Poy(F): = fz | (Em) PV du(e™e) < oo.

The associated Luxemburg norm is defined as

, f
Il f llpcy: = inf {6 > O:pp(,)(1—+6) < 1},

With the usual pointwise order, (LPO(Q),lI-ll,y) is a
Banach lattice.

We write 1+ 2e:= essinf Y, {p(t™):t™ € Q} and
p*:=esssup N, {p(t™):t™ € Q}. Equally, pm, and
Pamowill denote the essential supremum and infimum of

the function p(-) over a measurable subset A™o c (). The
conjugate function p*(+) of p(-) is defined by the equation
1

— m
sy T oramoy — 1 almost everywhere t™0 € . Thus, the

topological dual of the space LP)(Q), for p* < oo, is the
variable exponent space LP O (Q).

A LPO(Q) space is separable if and only if p* < o or,
equivalently, if and only if LP®)(Q) contains no isomorphic
copy of €. In the sequel, only separable variable exponent
Lebesgue spaces LPO)(Q) will be considered. An space
LPO(Q) is reflexive if and only if 1 < p~ < p* < 0. This
is also equivalent to LPO)(Q) being uniformly convex ([15]
Theorem 3.3).

Notice that, for p* < oo, |l f ll,,=1

modular p,,(f) =1. Also, every

LPO(Q) satisfies lim,,_, e, ||fn||p(_) =0
lim,,_,c, pp ) () = 0 ([6])- By B, p(-) we denote the closed
unit ball of LPO(Q). The essential range of the exponent
function p(-) is defined as

if and only if the
sequence (f;,) €
if and only if

Ryy:i={p+e€[1,00): Ve>0u((1+e) " (p,p+26)
> 0}.

It is a closed subset of [1, ) and it is compact when p(+) is

essentially bounded. The values p~and p*are always in the

set R,,(y. It holds for p* < oo that a LPO(Q) space has a

lattice isomorphic copy of ,,,. if and only if p + € € R,

([16] Theorem 3.5). Indeed, for every p + € € Ry, there
exists a suitable sequence of disjoint measurable subsets
(A7) such that the normalized sequence

mo
)(Ak

()

is equivalent to the canonical basis of £, .. Even more, we

mo, _
9 =

can choose suitable sets (A;(n") in order to get that the
orthogonal projection
—du(s) -
u(4ge)Po

P(f) = ; ; L;"O AT

is bounded ([16] Proposition 4.4).

f(s) Xago

Variable exponent spaces are a special class of Musielak-
Orlicz spaces. Recall that an Orlicz function ¢: [0, ) =
[0, o0] is a convex increasing function that satisfies ¢ (0) =
0, lim,z_y+@(x?) =0 and lim,2_,@(x%) = 0. We say
that a function ®: Q X [0, 00) — [0, 0] is a Musielak-Orlicz
function if ®(t™,-) is an Orlicz function for every t™° € Q
and t™o — ®(t™0,x2) is measurable for every x? = 0.
Given a Musielak-Orlicz function ®(t™o,x?), the
MusielakOrlicz space L®(€) is defined by the set of all
measurable

3 LPO) Equi-Integrability

Recall that, given a Banach function space E((), a
bounded subset S € E((Q) is equi-integrable if

> suplfamoll, =
res

mo

lim
u(A™0)-0

As in classical L;,. spaces, equi-integrability plays an
important role in the study of LPO)(Q) spaces. Let us
mention, for example, Riesz-Kolmogorov compactness
type theorems in LP()(Q) spaces (see [4] Theorem 2.1, [2]).

The classical De la Vallée Poussin's result ([14])
characterizes the equi-integrable subsets in L; () by their
boundedness in some suitable Orlicz space L?(Q) (cf. [11]
Theorem 1.2). Here we will present an extension of this
result to LPO)(Q) spaces. First, we give an equivalent
statement of LP()-equi-integrability (see [1]):

Proposition 3.1. Let LPO(Q) with p* <o and S c
LPO(Q) bounded. Then S is equi-integrable if and only if

lim sup f > 1P dn
{If|>x2} Mo

=0. @Y
Proof. Suppose that S is equi-integrable. Let us show that

hm sup ||fX{|f|>x2} ” 0,

x—>oo
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which is equivalent to (1) since p* < oo. Let supyes |l
fllpy< C <oo. Define the sets (Amﬂ)]’ﬁz:= {t™o €
Q:|f(t™0)| > x2}. By the hypothesis, we just need to show

that  limyz_ o, Supes Yom, H((A™0)% ) =0, but this
follows from ||Zm0 f)((Amo)?z |1 SYm, 1+
o)) || FX gmay|  (etI5]Coroltary 2.48), as

10!

mo\x2 1
supz ,u((A °)f )Ssupz =
fes _ fes _ X

x_12 (1+u@) ||f)(x;cz

fX(AmO)?z

< sup

€S
f p—

C
<= (1+ p().

Conversely, given & > 0, there exists x2 > 1 such that

SUPfes (| Xm, fX SE. Then, for
r()

measurable subset A™o with Y, (u(AmO))er <5z we

%2’

every

(amoy¥”

have

“fx mon(amoys?
supz Ifxamoll,, < sup amonamoyell
TES e res ||fXAmUn{|f|sxz}||p(‘)
“f Xamp| T\ e e
< sup p() <—+-—=
fes 2 2

m o\ ()

Theorem 3.2. [1] Let LPO(Q) with p* < . A bounded
subset S © LPO(Q) is equi-integrable if and only if there

o3

exists an Orlicz function ¢ with lim2_,, —5= = o such
X

that

scalar functions on () such that pg (ﬁ) is finite for some
€ = 0, where pg (+) is the modular defined by

pa(f) = f Do, IF(Em)DA(E™) < .
Q

mo

he associated Luxemburg norm is defined as

II f llp:=inf {eZO:pcp(lie)sl}.

With the usual pointwise order, (L®(Q), lIllg) is a Banach
lattice. In the special cases of (i) ®(t™0, x2) = x2PE™) we
get LP(Q) = LPO(Q); (ii) P(t™0,x?) = ¢(x?) for every
t™o € Q we get the Orlicz space L? ().

See [5, 6, 17] for other definitions and basic facts regarding
variable exponent spaces, Musielak-Orlicz spaces and
Banach lattices.

sup I @(f) llp)y< .
fes

Proof. Assume S is equi-integrable. Using the above
equivalence, consider a sequence (x2) such that

1
Sup ||fX{|f|>xn}||p() ﬁ

and x2,, > 2x2 for each natural n. Define the function

D0 = i (2 = D).

for x2 = 0. Clearly, ¢ is an increasing convex function

o3
xZ

with ¢(0) = 0. Moreover, lim,2_,, = oo, Indeed, for

x? € [x2,x2%,,) we have
n n
p(x?) = Z (x? —x2), = nx? — Z xE = nx? —2x2,
k=1 k=1

2 2
hence % >n-— Zz—’; >n — 2. Finally, for each f €S,

we have

w?

(o] ® 1
() lpey< Z I xgpsanl < Z n" 6
n=1 n=1

Conversely, let us assume supses | 9(f) ll)= C < .
Given € > 0, by hypothesis there exists x2 > 0 such that,
for all x? > x2, we have x% < %(p(xz). Then, for every f €
S, we have

&
< E||<p(f))({|f|>x§}"p(
() o< e

and so the previous proposition ends the proof.

||fX{|f|>x§}||p()

£su
- C fe?

Note that the above result can be reformulated saying that a
bounded subset S ¢ LPO(Q) is equi-integrable if and only
if S is norm bounded in the Musielak-Orlicz space L (),
where ®(t™0,x2) = ((x2))PE™) and ¢ is a certain

(x)

Orlicz function with lim,z2_,,, 2= = co. In Section 6 we

will extend this statement to the famlly of relative weakly
compact subsets in LP)((1).

If we consider now a pair of exponent functions p(-) < p(-
) + €(+), we have the continuous inclusion LPO+€0(Q)
LPO(Q). The inclusion LPO+€O (Q) c LPO(Q) is said to be
L-weakly compact when the unit ball B, p()+ey is an equi-
integrable set in LPC)(Q). L-weakly compact inclusions for
symmetric function spaces have been studied in [18]. For
variable exponent spaces, taking the set S as the unit ball
B p()+e(» in the above theorem we get the following (see

[L]):

roposition 3.3. Let p() <p()+e€() be exponent
functions. The inclusion LPO*€O(Q) c LPO(Q) is L-
weakly compact if and only if there exists an Orlicz

. . o (x?) _
function ¢ with llmszwx—Z— o such that
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LPO+O(Q) € LP(Q) where & is the Musielak-Orlicz
function ®d(t™o, x2) = (¢ (x2))PE™),

We give now an easy sufficient condition to use for when
the inclusion LPO*€0(Q) ¢ LPO(Q) is L-weakly compact
(see [1]).

Proposition 3.4. Let p(-) <p(-) +e€(-) be exponent

functions. If ess inf(e(x?)) =& > 0, then the inclusion
LPO*TEO(Q) € LPO(Q) is L-weakly compact.

Proof. It is enough to show that

lim Z Poy(f Xamo) = 0.

u(a™ 0)—’0||f||p()+5()51

p(x )+e(x )
p(x?%)

function with conjugate function r*(x?) =

Let us denote by r(x?) = =1 the exponent

p(x )+e(x ) for
€(x?)

+

x2 € Q. It holds that (r*)* < pTJre < o0, Using Holder's

inequality ([5] Theorem 2.26, Remark 2.27), we have

Py (f Xamo) = fz |f|p(tm0))(,4m0dli
Q

mo

< 4||fp(-) ”r(-) ")(Amo "r*(A)'

Now, as

IJ) mo mo p+e
peoy (f7) = f DO <y £
Qom

<1,

we have Ilfp(')” ¢y S 1. Hence, since [lll+(y is order

continuous, we conclude that

lim Z )
u(A™ 0)_)0||f"p()+e()<1 PO

- u(A*lnr&oz Hxamollyy =0
mo

The above condition ess inf(e(x?)) = § > 0 is far from be
necessary for the L weak compactness of the inclusion
LPO*TEO(Q) c LPO(Q). Here we give a weaker condition
(see also [19] and [1]):

Proposition 3.5. Let p(-) <p(-) +€(-) be exponent
functions in Q=1[0,1] with p*+e<o and €()
decreasing. Suppose that

(i) lim,z_,, (1 — x2)¢®* = 0, and

2
(ii) There exists a sequence (x2) defined by x2 = x‘n_21+1

forn > 1,and 0 < x§ < 1 satisfying that

= Xn+1 __eno)
D ) e O < o
Xy n+1 xn

n=0

Then, the inclusion LPO*€0)[0,1] € LPO[0,1] is L-weakly
compact.

Proof. Let £ > 0 and n, € N such that

i 1 X2, e(t™0)
Z 2 Zf (%24 — x2)p(eT0)+e™0) g ¢mo
Xn+1 ~ Xn Jx2
- ®
<= *
3
and
e(x?) e(x?H_l) c

(x121+1 - xrzl)p(XZ)JrE(Xz) <@1- x121+1) Mo< 3

(%)
for every x% € [x2,x2,,),n =nyand M = p* + €.
Let 1+€e= E(xrzlo) > 0. Take an arbitrary function f €

M
1+e+1

B, py+ey and any measurable set E with u(E) < ( )
We define the two sets

E,: {x €[0,x2) NE: |f(x2)|<( )L},EZ:

{x €[0,x2) NE: |f(x2)|>< )}

M

+1
This way, using that f € By, and u(E) < ( )He ,
we get that

D IfPETdemo

f[o,x nE Mo
E4 Mo
E; ™Mo

M
6 1+e m, m m,
<(3) ne+ j IR G RCRITE
E.

m
2 0

& E & &
<£ p(m0)+e(tmo) £ —dtme < —+ =<
=6 j Z If1 =st6"3

E;

2

On the other hand,

f DU edemo

o mg
= Xt m
=2, Z 1P ygdemo

n=ng
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=D | D e garme
n=ng Ena mg

f DU dem,
E

n,2 my,
where
Bnii=E[ ] 1% € 88,230 £ ()
1
< T
(x24y = X))
and

E,,:=E ﬂ x?2

>

€ [x7, xp41): |f ()]

1

1
2 D(x2)+e(x2)
(cEr = xR

Then, using (*), we have

Z f Z LfPEOdemo <

n=ng n

Xhi1 1 o
2 Z G de
x

2 g Q.
o (kg — X

Ms

1
E
&

Ms

X+l 1 €(t™0) £
2 Xn+1 — Xn 3
n mo

1
E
&

and, using (*x) and f € B, p()+e0),

X1
5 [ <3 73
n=ngEnz2 n=ng J,z

X1 (em0)
Z |f|p(t”’0)+6(tmﬂ)(x 1 — X2) PO g o
n=ng

|f|r(t"'°)+f(t"‘“) Ifl —€(t™0) ggmo

x?.

X1
£
p(e0)+ee™0) £ dt’"" =
Zf lfl 3

which ends the proof.

We give an example applying the above result. Take any
bounded exponent function p(-) and consider the function
in (0,1)

In ([log, (1 — x*)]*)
—log, 1 —x%) ’
for some natural j > 0. If we define e()=r(1-
z_e)){[o,l—z—f) + r(')X[1—2—€,1]’ then
. 23 — . 2 < 1 2
essinf (e(x*)) =ess x2e[11£12f—8,1](r(x ) < xl%r_r)llr(x )

_Inky*)
= lim =0,
Y2500 y
yet the inclusion LP)[0,1] € LPO+€0)[0,1] is L-weakly
compact for j large enough. Indeed, let us see that the
conditions in the above proposition are satisfied:

r(x?) =

(i) The limit
: _o2ve(x?) — — x2)r(*?)
A (= i, (@ =

In (logz (v%)2J)

= lim y? -log2 0®» —log, (y2) = 0.
30
i) Letx?=1- 1> SO xZi,—xk= 2n+2 Then,
xn+1 Moy
0 +1
s} E(X727-+1)
1 pt+e
< — :
- Z (zn+z)
n=0

Now, for n, and j large enough (for example j = p™),
using the Cauchy condensation test, we conclude

0 E(x%.+1) 0 T("?Hl)
1 pTte 1 pF+e
2, 77) " = 2, (=)
n=ng n=ng

4 Weakly Compact Subsets of LP()(Q)

In this section we are interested in finding criteria for when
a subset of a non reflexive LPO(Q) is relatively weakly
compact.

First note that every equi-integrable subset in a LPO)(Q)
space with p* < oo is relatively weakly compact. This
follows from a general statement in Banach lattices (cf. [20]
Proposition 3.6.5). The converse is not true in general. For
example, any space LPO)(Q) with 1 < p* < o contains
relative weakly compact subsets which are not
equiintegrable. Indeed, let € = 0 and consider disjoint

subsets A™o, c p~t (p +e€—

measure (or even A, ° c p~t({p + €}) if possible) and the
normalized disjoint functions

1 1 .
—pte— ;) of positive

X smo

)

mo (u(4,°)P0

Then, the sequence (f;,) is equivalent to the canonical basis
of £, (cf. [16] Proposition 3.2). Hence, (f;,) is weakly
convergent to 0 and, as (f;,) is normalized and u(Q) < oo,
we have M(A;no) — 0 and so it is a non-equi-integrable
relatively weakly compact subset of LP()(Q). On the other
hand, when p* =1, i.e. in a L, (Q) space, it is well known
that a bounded set is equi-integrable if and only if it is

relatively weakly compact (Dunford-Pettis theorem, cf. [21]
Theorem 5.2.9).

Recall that, by the classical Eberlian-Smulian Theorem (cf.
[21] Theorem 1.6.3), a subset is weakly compact if and
only if it is sequentially weakly compact. The following
proposition is a consequence of ([17] Theorem 1.c.4), since

© 2023 NSP
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the space LP()(Q) does not have any isomorphic copy of c,
when p* < o0 :

Proposition 4.1. A LPO)(Q) space is weakly sequentially
complete if and only ifp* < oo

We will give now weak compactness criteria in LPO)(Q)
spaces. We adapt the technique developed by Andé ([10])
in the context of Orlicz spaces to the non-symmetric setting
of LPO)(Q) spaces (see [1]).

Theorem 4.2. Let LPO)(Q) be with p* < co. A subset S
LPO(Q) is relatively weakly compact if and only if S is
norm bounded and, for everyg™o € LP ) (Q),

f > 1rgmldu =o.

Proof. (=): Clearly, S is weakly bounded and hence norm
bounded. Suppose now that (2) does not hold, i.e. there
exist € > 0, a function g,° € LP"O), a sequence (E,) with
u(E,) = 0 and (f;,) c S such that

f > lfugyeldu =
En Mo

Since S is relatively weakly compact, there exists a
subsequence (f;,, ) = f € LPO(Q) weakly. Thus, for every
Ao € X,

lim su
U(E)=0 reg p

(2)

fz fnkgo Xamodu —> f Z fgm"dll<°°
0 Mo Ao Mo
Considering now measures Vi (A™0): =

f amo 2mg S goodu, Wthh are p-absolutely continuous,
we have, by the Vitali-Hahn-Saks Theorem ([22] page 89),
that the sequence (vy) is uniformly absolutely u-
continuous, i.e. it holds that lim,,_q,sup, v, (4n°) = 0 for
In ((n+2)2j)
tre)(n
every= Z;’lo:no (Zn%)(li +e)(n+2) <
sequence (A;"O) such that u(AZlO) — 0. In particular, we

k—oo
get that v, (Enk) — 0, which is a contradiction with the

election of gy ° and (E,,).

(<) : Let S be norm bounded and a sequence (f;,) € S with
II fnllp(_) < M < oo. In virtue of Proposition 4.1 we have to

find a weakly Cauchy subsequence, i.c. a subsequence
(fnk) such that, for every g™ € LP"O(Q)

f Y U= fr)g™odn ="
Q

mo

As X is separable, we first take a sequence (A]m")w of
]:

subsets of  that genarets\Sigma. Thus, ()(Amo) c
17

) 2220] (Q) and, for every A™o € {A;."O}, the sequence
(f o Zmy faXamo dy)n is a bounded scalar sequence. Then,

by the Cantor diagonal process, we can take a subsequence
(fnk) such that the sequence (fﬂ I fnkXAmodﬂ)k
converges for each A™° € {A]T.no}. Thus, if we define the

sequence of measures
D fuuli = f D futamodu
Q Mo

A™o Mo
we get that the measure V(A™0): = limy_,o Xy, Vi(A™0)
is well defined for every A™o € {47} and it can be

extended to any measurable subset E € Z (cf. [22] page 91).
Therefore, given a  simple function g.° =
1 Yme a:no X, Where the sets (E;) are disjoint, we have

f D fugtodu
Q Mo
N N
k—co
=2, A E) =) ) avE)
i=1 mg i=1 mg

so we get that

k,l>00
[ D) G- rrdaioan ™= 0.
a4

Vi (A™0): =

Our aim now is to get the same for every function g™ €
LP"O) Thus, fixed g™ and £ > 0, by hypothesis there exist
6 > 0 such that, if u(E) < § andn € N,

&
f E Ifng’”°|d#<g-
E
mo

Let us denote Gp,:= {t™o € Q:|g™o(t™0)| <m}. Since
g™ € L,(Q), consider m € N large enough so that u(G%,) <
8. Then, given g,°:= g™o- XG,,» using the dominated
. . . mo
convergence Theorem, consider a 51mple function g, ° such

that Y., llgm® — gs °||p ‘o S ﬂ ( [5]Theorem 2.26).
Thus, for k,I large enough so that [ o Zmo |(fnk -
fnl) gs°|du < §’ we can use the Holder inequality (

[5S]Theorem 2.26 ) to get

’ fn ; (o = foa) g™ de

sLm; |(fnk—fnl)g'""|du+f%; o f)™ i
SLZ |(f"k_fnz)52°|du+§
sf Z |(fnk—fn,)(g,'.'f“—gl"°)|du+LZ |(f"k—fnl)y§"“|du+§

mo £ €
<4Z U = foll g = 920, + 5+ 5

=3%3%3
Thus, we conclude that ( fnk) is a weakly Cauchy sequence
so, by Proposition 4.1, (fnk) is weakly convergent to a
function f € LPO)(Q) and S is relatively weakly compact.
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Theorem 4.3. [1] Let LPO(Q) with p, < o and u(Q,) =
0. A subset S c LPO(Q) is relatively weakly compact if
and only if it is norm bounded and

limsup —

f Z |Af (™) P dp
A-0 fES Q _

Proof. In the case p_ > 1 it is clear, since LPO(Q) is
reflexive so the relative weak compactness is equivalent to
the norm boundless and, if that condition is met, the
equation (\diamond) holds. Assume in the following that

p- =1

(=) : Clearly S is norm bounded and we can suppose S <
Bipy.  Thus, for every fE€S, we have
JoZmy If(E™0)PE™ O dy < 1. Suppose that (o) does not
hold, so there exist € > 0, (4,,) N 0 and a sequence (f;,) in
S such that, for every n € N,

D A flem P du 2 2, ©)
m,

and let us find a contradiction.

Since p_ =1 and u(Q,) =0, we can take a sequence
(8,) N 1 such that the sets A, °: = {t™ € Q:p(t™) < &,}
satisfy 0 < u(A;"") < i and thus (up to subsequence) we
can suppose that (4,,) verifies the properties:

0< L < 1 Z 1L <1 (nln)p(tmo)
<, <=, <1, sup ———
" 2n " t"noe(AI:f)nO)f1 /ln
(TM )6"
=" =3
Now consider the functiong,, °(t™0): =

Yy M fr ) [PE™O=1 Forae. t™o € Q we have

2" Jfu(Em)go(e™)

p*(t™0)
=Z I/lnfn(tm‘))lp(t’"°>+z |gn° (™) .
mo mo

Therefore, we conclude that

2o Bn” mo B o

f E Anfu(E™) P+ sup E ()P Ou(BO° 0 (A™)5)
o £ tmog(amos &
o o

A

+ sup N AP u(B 0 4
emoeao £

A

I o E
i mmz 2R fu GG e+ A, &

A

2¢
2o [ Y RGN+
Bn s

< A€,
which is a contradiction with (3).

Given a variable exponent space LPC)(Q), let us denote
Qu:=p 1({1}). Indeed, since 2|d,f,(t™0) gy °(t™)| =

22 fr () PET)
p*(t™0), we have

n
mo

and  p(e™e) = p(t™) - p* (L") -

* tmo
(Iﬂnfn(tm‘])lp“m‘))_l)p( )

|/1nfn|p(tm°)<p*(tm0)—p*(tm0)

Mnfn(tmo)lp“’"").

-2 I/lnfn(t'"°)|”“m°)+z lgwecem” .
mg mo

ndeed, since 2|4, f, (t™)g,, = 2|, f, (t™0)|PE™O)
and p(t™) = p(t™0) - p*(t™) — p*(t™°), we have

Z lgneeml” " Z (ENACOTECRD
Z | ,1 W ALGOENCORUGE

Z NGO

c

sup f ; LF(E™0)g™ (£™) dy

<L E [Supf [Aof (£™0)[PE™ ) dp
T (1 +e) e |res Jg
0

* f 1L +e)g™ (tmo)w*“’"”)d“]
E

1 re(1+¢€)
1+f< 25/1(,()1+e)
+,10(1+e)< 2 )Z‘g'

Thus, applying Theorem 4.2, we conclude that S is
relatively weakly compact.

A characterization of weakly compact subsets in general
LPO(Q) spaces (without the restriction (€,) = 0) follows
now putting together the above criterion and the classical
Dunford-Pettis theorem for L, (Q) (cf. [21] Theorem 5.2.9).
Indeed, as LPO(Q) = L, (Q,) B LPO(Q\ Q,), a sequence
(f,) is weakly convergent in LPO)(Q) if and only if the
sequences (f,xQ,) and (fn )(Q\Ql) are weakly convergent
in L, (Q,) and LPO(Q \ Q,) respectively. Thus:

Theorem 4.4. Let LPO(Q) with p* < 0. A™o subset S
LPO(Q) is relatively weakly compact if and only if it is
norm bounded,

limsup > f Z IAF (Em0)PE™) dy = 0
A-0 fES Q\Q, o

and
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lim su f Z t™o)|du = 0.
H(Amﬂ)—ﬂ)feg A™MonQ, poo |f( )l #
0

Criteria to be a weakly convergent sequence in LPO)(Q)
spaces follow now (see [1]):

Proposition 4.5. Let LPO)(Q) with p* < oo and a sequence
(f) and f in LPO(Q). Then, f,, - f weakly if and only if

(D limy, [ ymg Xmy (fn — f)du = 0 for each A™ € £, and

(ii)lim,u(AmO)ao Supy fAmo Zmo |(fn - f)gmold'u =0 for
each function g™ € LP"O)(Q).

Proof. (=) : Clearly (i) holds since y,mo € LP'®) and
condition (ii) follows from above Theorem 4.2.

(): We can assume w.lo.g. f = 0. If g™ € LP"O(Q) is a
simple function then it follows directly from (i) that
limnfQ Ymy fng™du = 0. Assume now that g™ is a
bounded function. Given € >0 there exists a simple
function gg ° such that ¥,,, llg™ — g5 °ll, < Z, S0

fz Ifng’"Old#Sf Z (g™ — g5°)|du
0 4= a4
+[ D) Ifgllan
Q m,

0
&
<[ ldut [ D Ifugildu
Q Qmo

and hence fﬂ Yme |fng™|du < € from a big enough n €
N.

Now, for an arbitrary g™o € LP")(Q), by condition (ii),
there exists & >0 such that fAmo lfng™oldy < % if
u(A™mo) < §. Consider G, = {t™o € Q:|gMmo(t™0)| < m}
with m large enough so that u(Gy,) < 8. Then,

fz Ifng"‘°|du=f Z Ifng'"°|du+f Z Ifng™oldu
Q — GS, — Gm e

&
<5+ f Z |fng™ X, |du
Qo=

Hence, we have fn Ymy |fng™0ldp < & from a big enough
n € Nas gm0y, is bounded.

Proposition 4.6. [1] Let LPO(Q) with p* <o and
u(Q,) = 0. A sequence (f,,) in LPO(Q) converges weakly
to f € LPO(Q) if and only if

(l) limanmo Zmo fnd:u = fAmo Zmo fd:u fOI‘ each Amo €
%, and

(i) limy o Supy = [ Sy 1AC, — HPE™Vdp = 0.

Proof. Clearly, if f,, - f weakly the necessity condition
( i) holds, and using Theorem 4.3 we get also condition
(i1). Conversely, reasoning as in the proof of Theorem 4.3
(using Young inequality), we get easily that condition (ii)

of the above Proposition 4.5 is satisfied. Thus, we conclude
that (f;,) is weakly convergent to f.

In particular, it follows that in reflexive LP)(Q) spaces, a
sequence (f;,) is weakly convergent to f € LPO(Q) if and
only if (f,) is norm bounded and [ Amo 2mg Jndit =
) amo 2m, fdu, for every measurable A™0 € X. Moreover,
it holds that if (f,) is weakly convergent to f and || fnllp o

converges to || f ll,,.y, then f, > f in LPO(Q), since all
p()

reflexive LPO)(Q) spaces are uniformly convex (cf. [15]
Theorem 3.3).

Finally, a direct consequence of Theorem 4.4 is a
characterization for the inclusion LPOT€0(Q) c LPO(Q) to
be weakly compact (see [1]):

Proposition 4.7. Let p(-) <p(-) +€(-) be exponent
functions. The inclusion LPO+€0)(Q) c LPO(Q) is weakly
compact if and only if

_ 1 mg
lim  sup —f Z |Af (™) [P dp = 0
00 lyyrerst A ava, mo

and

i, s [ S ipeidu=o,
#(Amo)—>0”f"p(A)+€(A)51 Amoﬂﬂl —

where Q; = (1 + ) 1({1]).

5 Banach-Saks Property
Let us apply now the above criteria to show that all LPC)(Q)
spaces with p* < co are weakly Banach-Saks. First, let us
recall some definitions:
A Banach space X is said to be Banach-Saks if for every
bounded square sequence (x2) in X there exists a square
subsequence (x,zlk) which is Cesaro convergent, i.e. there
exists x2 € X such that
Xp, ot X,

k X
A Banach space X is said to be weakly Banach-Saks if for
every weakly convergent square sequence (x2) in X there
exists a square subsequence (x,zlk) which is Cesaro
convergent.
Obviously, every Banach-Saks space is also weakly
Banach-Saks. The property of a Banach space being
Banach-Saks (or weakly Banach-Saks) passes to closed
subspaces. Uniformly convex spaces are Banach-Saks. In
particular, every reflexive LPO)(Q) space is Banach-Saks
because reflexives LP()(Q) spaces are always uniformly
convex ([15] Theorem 3.3). However, when p~ = 1, spaces
LPO(Q) are never Banach-Saks. Indeed, there exist ;-
subspaces generated by normalized sequences (f;,) in
LPO(Q) ([16]Proposition 3.2).
Theorem 5.1. [1] A™LPO(Q) space is weakly Banach-
Saks if and only if p* < co.

lim 2l =o.

k—oco

X
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Proof. (=) : If p* = o, then LPO)(Q) has an isomorphic

copy of £, which is not weakly Banach-Saks, so neither is

Lp(-)(g)_

(&) : Since LPO(Q) is a p*-concave lattice, we have that

LPO(Q) satisfies the subsequence splitting property ([23]).

Thus, by ([24]Corollary 3.4), it is enough to prove the weak

Banach-Saks property for disjoint sequences.

Assume that (f,) is a pairwise disjoint weakly convergent

sequence in LPO(Q). Then, the sequences (f,xq,) and

(fn)(ﬂ\ﬂl) are weakly convergent in L, (Q,) and LPO(Q\

Q) respectively. As L;(Q;) is weakly Banach-Saks [25],

there exists a subsequence (fnk Xa 1) which is Cesaro

convergent. On the other hand, as

fkthal et ot fade,
n pc)._ n

+ fixava, o+ faXaa,

n

p()

()
we just need to prove that (fnkl)(ﬂ\gl) is Cesaro
convergent for some subsequence (fnkl)' To simplify the

notation, let's just suppose that (f,,) is in LPO(Q\ Q,). As
it is a weakly convergent sequence, it is a relatively weakly
compact set. So, by Theorem 4.3, we have

limsup — f E |Afi (E™0)|PE™) g ¢mo
-0 ke A
Pp(-)(ﬂfk)_
im0

Hence, we get

n
. fit+f fm
o= mons (52 g3 ()2 m S g (2
k=1
fm _
_lgg:Pp<n pm)( ) =0.

This finishes the proof since, as p* < oo, the modular
convergence and the norm convergence are equivalent.

6 Weak Compactness and Musielak-Orlicz
Spaces

We study the weak compactness of subsets of LPO)(Q) in
relation with their norm boundedness in certain Musielak-
Orlicz space LY (Q) c LPO(Q).

The following definition generalizes the one given by Ando
([10]) for Orlicz functions.

Definition 6.1. A Musielak-Orlicz function W(t™o,x?)
increases uniformly more rapidly than another function
D(t™o,x2) if for each £ > 0 there exist some § > 0 and
x& > 0 such that for all x? > xZ and all t™0 € Q,

1
eP(t™o,x?) > ECD(tmO, 5x?).

With this definition we characterize the relatively weak
compact subsets of LPO)(Q) through their embedding in
certain Musielak-Orlicz spaces. We follow a similar
reasoning as the done for Orlicz spaces in [10].

Theorem 6.2. [1] Let LPO(Q) with p, < o and u(Q,) =
0.A™o subset S © LPO(Q) is relatively weakly compact if
and only if there exists a Musielak-Orlicz function
W(t™o,x2) increasing uniformly more rapidly than
Y, @(™0,x%) =%, x?PE™) such that S is norm
bounded in LY (Q).

Proof. Assume that S is norm bounded in the Musielak-
Orlicz space L (Q) with W(t™o,x?) increasing uniformly
more rapidly than x2P(t™®)_ Let us prove that S satisfies the
conditions in Theorem 4.3, so it is a relatively weakly
compact set in LPO(Q). Suppose w.lo.g. that S C B,w.

Given € > 0, there exist § > 0 and xZ > 1 such that, for all
x% > x2,

R GED zlz (5x2)PE™),
3 3
m,

mo 0
Now, let ¥ > 0 be small enough so that the set A™o =
p~1((1,1 +¥)) has measure u(A™o) < o 2p+. Let 8, =

X0
1
. €
Hlulzbno {1,6,(5;};;;;5;75¢) }fThen,

1 1
— E 2yp(E™0) < E 2yp(e™0)
5 (8ox*) <5/, (6x%)

m,

0 mo
and, for every t™o € A™¢ and x? < x3,

61+y

1Y e <7 o
mo
14 2p(t™o) v,.2p"
<&, Z X, < 65x,

mo
&
) -
3u(Amoe)
mo

Now, for each f €S, define the set B;"": ={tm e
Q:|f (t™0)| = x3}. Then, for each A < §, we get
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sup

1
ot | 3wt
Q Mo

= sup
fes &

f S P dy
B?m A
0

1 m
H o SREP
Among™Mo¢ A

« ZRFEm) Py
Amoan}no /1

J SIS dy
B?m 1)

< sup
res &

o 12 GOV ™
AmonB 0

* f 18 () P
AmOCan mo 60

( [ s W@y
By

< sup
res &

+ f 2 dy + f S
A™Mo 0 'u AMmoc¢ 3M(Amoc) ‘Ll
5/ Z GG
2p* m
+Z X ,u(A o) +

<tto+
=3

W] m
W] m
W] m

Conversely, let S be relatlvely weakly compact in LPO)(Q).
Two cases are considered. First, assume that there exists
M >0 so that || f l,< M for all f €S. Then S is norm
bounded in any LPO+€0)(Q) with e(-) = 0, in particular in
L*(Q)), which is defined by a function increasing uniformly
more rapidly than x2P0),

Suppose now that supseg Il f lloo= . Even more, assume
that for each t™ e we have yp(t™o):=
SUDPfes Xim, |f (£™0)] = oo. If this were not the case, we
can divide the space  in E and E¢ (for E =
{tmo:y(t™0) = oo}) and we study the set E repeating the
latter argument in E€. Now, by Theorem 4.3, there exists a
sequence (14,,) N 0 with

sup - f Z |2, f (™) P dp

fes A

22n (4)
for every n € N. Let us define now the Musielak-Orlicz
function

Z W(£mo, x2) —Z Z —Cb(tm A,x2)
= Z Z /1_|,1nx2|p(tm0)_

n 0
Then, by Beppo-Levi Theorem, we get

fﬂ ; W(emo, f(t™e))du
<Z f Z e f(E™0) P

It is clear that ‘P(tmo,f(tmo)) < oo for every f €S a.e.
t™o € (), so W(t™,x?) < o for every x? < f(t™0). As
y(t™o) = oo for every t™°, we get that ¥, W(t™0,x?) <
oo for all t™° and x2, thus W(t™o, x?) is a Musielak-Orlicz
function increasing uniformly more rapidly than the
function x?P¢™). Indeed, since X, W(t™,x?) =
,21_227710 |1,x2[PE™) for each natural i, we take n so that
s=2m>1 eW(t™o, x2) > = |5x2[PE™),
€ S5
Furthermore, S is clearly norm bounded in LY (Q).
We can get rid of the condition #(Q,) = 0 in above result.

Indeed, assume that p(£;) > 0, then a subset S c L1(Q,) is
weakly compact if and only if there is an Orlicz space

getting

.1 9(x?) x>0 . .

L?(Q,) with = T @ such that S is norm bounded in
L?(Q,) (by Dunford-Pettis and De la Vallée Poussin
theorems). Hence, considering the Musielak-Orlicz sum
function

P(t™o,x?) = p(x*)xq, + W™, x*) xqc
we get:
Corollary 6.3. Let LPO(Q) with p* < c. A subset S C
LPO(Q) is relatively weakly compact if and only if there
exists a Musielak-Orlicz function ¥(x?,t™0) increasing
uniformly more rapidly than x2?¢™®) such that S is notm
bounded in L¥ (Q).
Note that the Musielak-Orlicz function W(x?2,t™o) =
(@(x2))PE™) associated to the Orlicz function ¢ defined
in Theorem 3.2 increases uniformly more rapid than the
function x2P(t™®), Indeed, given € >0, take x5 >0 and

0 < § < 1 such that =5~ (p( 0) and fP-1 < 1.
Then, for every x2 > xo and tm0 € Q, it holds

t™o
€ ((p(x2)>p( ) > §p-~1 > §pE™0)-1,
x? - -
In the case of comparing exponent functions p(-) and p(-
) + €(+), the meaning of increasing more rapidly is easily
characterized:
Proposition 6.4. [1] Let p(-) <p(-) +€(-) exponent
functions. Then, W(t™o, x2) = x2@E™O+e™) jncreases
uniformly more rapidly than ®(t™o,x2) = x2Pt™) if and
onlyifp™ +¢€ > 1.
Proof. First note that in variable exponent spaces the
inequality relation is simplified to

ex2(€t™0)) > gp(t™o)-1

Suppose that p~ + € = 1. Let (t,T °) be a sequence such
that p(t,°) + €(t,°) = 1 (and hence p(t,°) - 1). Let
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£= l For any positives § and x3 there exists t::; ° such that

mo
x;e(t ) and é'p( o )1 are sufficiently close to 1 and
1 o m
Exge(t"" ) < sv(tne)1,

showing that x2P()*€0) does not increase uniformly more
rapidly than x2P0).

Conversely, suppose p~ + € > 1. Given € > 0, consider
the set A™o = {tmo p(t™o) = w}. On one hand,

taking xf>1 and 8, <1 small enough with &>
P +e-1
61( 2 ), we get that, for all t™0 € A™o and for all x? >

x2,
(p_+6—1
ex?€t™) > e > 5 2
On the other hand, taking 6, <
z(p_+e—1)
toex,
all x? > x2,

) > SPETO1,
1 and x2 > 1 large enough

> 1, we get that, for all t™o € A™o¢ and for

2eem0)) 5 g 25 ) p(t™0)-1
£x = Ex, =124,
Thus, taking x5 = x5 and § = §;, we get the desired
inequality for all t™0 € Q.

Corollary 6.5. Let S c LPO(Q) with p* <o, If S is
bounded in some LPOT€O(Q) with €(-) = 0 and p~ + € >
1, then S is relatively weakly compact in LPO) (Q).

The converse, however, is not true:

Proposition 6.6. [1] Let LPO[0,1] with 1 = p~ < p* < 0.
There exists a null sequence (f,,) in LP1[0,1] such that
(f,) is not norm bounded in LPO*€()[0,1] for any exponent
function p(+) + €(-) = p(-) withp™ + € > 1.

Proof. Let (p, +€) N1 be a sequence in the interval
[1,p*]. We can take a disjoint sequence of subsets (A} °)
of positive measure satisfying

A cpt (1,

1+pn+e)
2

1+pn+e

and thus pimo < ——<p, +e€.
n

By Proposition 3.4 we know that, for every n € N, the
inclusion L, +E(Am°) c LPO (Am") is L-weakly compact.
Let (B k) be a disjoint partition of each A, for n € N
and define the functions
Xie
Snjt = Z i
mg “(B:,llg)pn%
which are normalized in L, ,[0,1]. For every ne€

N,,u(Bm") = 0, so there exists some k, such that, for
every k > k,,,

< =

Il <
Then, the sequence (Sn.kn)n converges to 0 in LPO[0,1].
So, let us see that (sn_kn) is not norm bounded in any
LPO*€0[0,1] with p(:)+e() =p() and p~ +e> 1.
Given such an exponent function p(:) + €(+), there exist

ny € N and 6 > 0 such that P* 5146 forall n > ng.

Pn
Thus,
Po(yrey (Snjen)
p(t™0)+e(t™0)
() e
Z? m ( ) n+e
n Mo nkn
Y L
+E
f;ngn mg B™o Pn+6 mo B™Mo pn+e -1
‘u nk-,l ,LL nkn
dp +§—1 > § forn = ny, so
TL
1
lim oy ey (Sniy) = lim — 3 %

n—-oo n—-oo

mo U (B:ln ]?n)

and (Sn,kn) is not norm bounded in LPO+€0)[0,1].

A tentative characterization of a weakly compact subset of
LPO(Q) in terms of norm boundness in some smaller
LPO+O) () space for some exponent functions p(+) + €(+)
with p~ + € = 1 is left as an open question.
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