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Abstract: This paper investigates a highly efficient method that depends on the Tau method for solving initial and boundary value

problems. The second derivatives of Legendre polynomials (SDLPs) have been used as novel basis functions. A linearization relation

for the presented basis functions has been introduced and proved to avoid any issues arising during tau’s integration, especially for the

nonlinear problems. Consequently, some essential integrations have been determined. Moreover, we used those relations to construct

explicit forms for approximating the solutions of Lane-Emden and the Recatti equations. In addition, the presented strategy’s converge

and error analysis are discussed carefully and in-depth. Finally, the mentioned IVPs have been solved via the proposed method. The

results have been compared with the others’ methods, which showed our technique’s accuracy, efficiency, and stability.
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1 Introduction

Solving differential equations is highly important because
used to simulate scientific and engineering
phenomena [1–3]. That’s why many authors are interested
in finding the solution to these differential equations
using different methods. However, in some cases, we can
not find the exact solution by traditional methods. So,
numerical methods such as finite element [4], finite
difference [5], and spectral methods [6–8] have been used
to approximate the solutions. Several authors prefer the
spectral method because the approximate solution is more
efficient and accurate than the other methods.

The main idea of the spectral methods is to represent
the approximate solution as follows [9]:

u(q) ≈ un(q) =

n
∑

i=0

Aipi(q),

where Ai is unknown coefficients and pi(q) is the basis
functions.

The spectral methods will convert the differential
equation into a system of algebraic equations. The
unknown of that system is the coefficients {Ai}i=n

i=0 .
Then, we can find these coefficients using different
analytical or approximated methods. Consequently, the
approximate solution of the differential equation can be
found using these coefficients.

The spectral methods can be categorized into three
primary types: Galerkin [10], Tau [11], and
pseudo-spectral [12, 13]. In comparison, the
authors [14–16] applied the pseudo-Galerkin method as
one of the residual methods.

Choosing the basis functions is a critical part of the
spectral methods. Polynomials such as Legendre
polynomials (LPs) [17], Chebyshev polynomials [18],
and Ultraspherical polynomials [19] have been utilized as
basis functions. At the same time, the authors
in [14, 15, 20–22] applied the first and second derivatives
of Legendre and Chebyshev polynomials. This concept
shows more accurate and efficient approximate solutions.
The authors in [16] used the SDLPs as a new base
function. Some relations of these basis functions, such as
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an operational matrix for derivatives, have been
introduced. The second Legendre derivatives in the
Pseudo-Galerkin method verified accuracy, efficiency, and
stability.

This paper aims to extend the work in [16]. The tau
method will be applied to approximate the solutions of
the Lane-Emden and Riccati equations to get more
accurate and efficient ones. As it is known, we will face
complex integrations via the Tau method, especially in
nonlinear problems. Therefore, a linearization relation for
the polynomials will be derived.

This paper is planned as follows: The second section
presents essential relations and theorems of PLs and
SDLPs. Then, a novel Linearization relation of the
presented basis functions has been investigated in the
third section. In the fourth section, the technique of
solution is discussed. In addition, the third section will be
ended with an Algorithm of the introduced method.
Consequently, error analysis of differential equations is
studied in the fifth section. Then, we will be resolved
examples for Lane-Emden and Riccati equations during
the sixth section. Finally, the paper ended with a brief
conclusion in the seventh section.

2 Preliminaries

During this section, we will present several essential
concepts, theorems, and properties of the LPs, Ln(q), and

SDLPs, sDLn(q), of degree n, where q ∈ [−1, 1].
LPs can be presented via the relation [9]:

(n+ 1)Ln+1(q) = (2n+ 1)qLn(q)− nLn−1(q),

n = 1, 2, · · · , (1)

where L0(q) = 1, L1(q) = q.

LPs and the first derivatives of LPs satisfy the
following boundaries:

|Ln(q)| ≤ 1, (2)

Ln(1) = 1, (3)

Ln(−1) = (−1)n, (4)

L′
n(1) =

1

2
n(n+ 1), (5)

L′
n(−1) =

(−1)n−1

2
n(n+ 1). (6)

∫ 1

−1

L′
i(q)L

′
j(q) (1− q2) dq =

{

0 i 6= j,
2i(i+1)
2i+1 i = j,

(7)

SDLPs sDLn(q) of degree n can be defined as [16]:

sDLn(q) =
d2Ln+2(q)

dq2
, (8)

where n be any positive integer.
Also, SDLPs can be obtained using the recurrence

relation:

(n+ 1) sDLn+1(q) = (2n+ 5)q sDLn(q)

−(n+ 4) sDLn−1(q), n = 1, 2, · · · ,
(9)

where sDL0(q) = 3, sDL1(q) = 15q.
The boundaries of SDLPs and their derivatives satisfy:

sDLn(±1) =
(±1)n

8
(n+ 1)4, (10)

sDL
′

n(±1) =
(±1)n−1

48
(n)6, (11)

sDL
′′

n(±1) =
(±1)n

384
(n− 1)8, (12)

where (m)n = Γ (m+n)
Γ (m) is Pochhammer symbol.

The orthogonal relation for SDLPs is presented as:

∫ 1

−1

sDLi(q)
sDLj(q)w(q)dq =

{

0 i 6= j,
2(i+1)4
2i+5 i = j,

(13)

where w(q) = (1− q2)2.
The SDLPs’ moment formula is given by:

qr sDLn(q) =

r+1
∑

j=1

Fr,j
sDLb−2(q), (14)

where

Fr,j =



















αn r = 1, j = 1,
γn r = 1, j = 2,

Fr−1,1αn−r+1 r ≥ 2, j = 1,
Fr−1,j−1γb−3 + Fr−1,j αb−1 r ≥ 2, 2 ≤ j ≤ r,

Fr−1,rγn+r−1 r ≥ 2, j = r + 1,

with αn = n+4
2n+5 , γn = n+1

2n+5 , and b = n− r + 2j.

The mth derivatives of sDL(q) is:

Dm[sDL(q)] = Mm.sDL(q), (15)

where Mm = (ℜ(m)
ij )r+1

i,j=1,
such that:

ℜ(m)
ij =

1

2m−1(m− 1)!

{

G, i > j, (i +m+ j)even,
0 otherwise,

(16)

where G = (2j+3)
m−2
∏

f=0

[i+m− 2f)(i+m− 2f − 1)−

(j + 1)(j + 2)].
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We will investigate and prove the SDLPs linearization
relation in the next section. Then, some essential
integrations will be determined. Those results will be
used to construct explicit forms for the algebraic systems
of the coefficients Ai of Lane-Emden, and the Recatti
equations’ approximated solutions via the Tau method.

3 Second Derivatives of Legendre

Polynomials Linearization Formula

The section starts with the linearization formula of SDLPs
as follows.

Lemma 1.The product of two SDLPs can be presented as:

sDLn(q)
sDLm(q) =

8

3π

min(n,m)
∑

i=0

Kn,m,i
sDLn+m−2i(q),

(17)
where

Kn,m,i =
c(n− i+ 1) 3

2

(m− i+ 1) 3

2

(m+ n− i+ 7
2 ) 3

2

(m+ n− 2i+ 1)4
,

and c = (2m+ 2n− 4i+ 5)(i + 1) 3

2

.

Proof.From [23], the product of two Ultraspherical
polynomials is

C(v)
m (q)C(v)

n (q) =

min(n,m)
∑

i=0

Lm,n,sC
v
m+n−2i(q), (18)

where

Lm,n,s =
m+ n+ v − 2i

m+ n+ v − i

(v)i(v)m−i(v)n−i

i!(m− i)!(n− i)!

(2v)m+n−i

(v)m+n−i

(m+ n− 2i)!

(2v)m+n−2i
,

Since

dC
(v)
n (q)

dq
= 2vC

(v+1)
n−1 (q), (19)

d2C
(v)
n+2(q)

dq2
= 4v(v + 1)C(v+2)

n (q). (20)

and using the relation between Ultraspherical
polynomials and Legendre polynomials as:

C
( 1

2
)

n (q) = Ln(q), (21)

Thus:

C
( 5

2
)

n (q) =
1

3
sDLn(q). (22)

Using relation (18) and relation (22), the required relation
will be obtained.

Lemma 2.The integrations of SDLPs multiplied by q, q2

and q3 are determined by:
∫ 1

−1

q sDLn(q)dq = (1− (−1)n)[
(n+ 2)(n+ 3)

2
− 1],

(23)

∫ 1

−1

q2 sDLn(q)dq = (1−(−1)n−1)[
(n+ 2)(n+ 3)

2
−2],

(24)

∫ 1

−1

q3 sDLn(q)dq = (1−(−1)n−2)[
(n+ 2)(n+ 3)

2
−3].

(25)

Proof.Use Eqs. (5), (6), and (14) to get the desired
relations.

Lemma 3.The integration of the product of two SDLPs

given by:

∫ 1

−1

sDLn(q)
sDLm(q)dq =

8

3π

min(n,m)
∑

i=0

Kn,m,i

1

2
(r + 2)(r + 3)[1− (−1)r+1],

(26)

where r = n+m− 2i, and Kn,m,i as in Eq. (17).

Proof.From Eq. (17):

∫ 1

−1

sDLn(q)
sDLm(q)dq =

8

3π

min(n,m)
∑

i=0

Kn,m,i

∫ 1

−1

sDLn+m−2i(q)dq,

(27)

Using the definition of the SDLPs (8) and the
boundaries (5) and (6):
∫ 1

−1

sDLn+m−2i(q)dq = [L′(q)n+m−2i+2]
1
−1

=
1

2
(n+m− 2i+ 2)(n+m− 2i+ 3)−

(−1)n+m−2i+1

2
(n+m− 2i+ 2)(n+m− 2i+ 3)

=
1

2
(n+m− 2i+ 2)(n+m− 2i+ 3)

[1− (−1)n+m−2i+1],
(28)

Thus the proof is completed.

Theorem 1.The integration of two SDLPs multiplied by

q2 − q can be presented as:

∫ 1

−1

sDLn(q)
sDLm(q)w∗(q)dq =

8

3π

min(n,m)
∑

i=0

Kn,m,i

[

(−1)l[(l + 2)(l + 3)− 3]− 1

]

,

(29)
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where l = n+m−2i, Kn,m,i as in Eq. (17), and w∗(q) =
q2 − q.

Proof.From Eq. (17):

∫ 1

−1

sDLn(q)
sDLm(q)w∗(q)dq =

8

3π

min(n,m)
∑

i=0

Kn,m,i

∫ 1

−1

sDLn+m−2i(q)w
∗(q)dq.

(30)

The proof will be completed using Eqs. (23) and (24),

Now, the mathematical relationships and integrations are
ready for us to apply the Tau method easily.

4 Second Legendre derivatives Tau Method

(SDLP-TM)

This section will introduce the technique of finding the
approximate solution of IVP and BVP using SDLPs via
the Tau method.

Consider the linear/nonlinear ordinary differential
equation:

f
(

µm(q)u(m)(q), µm−1(q)u
(m−1)(q), · · · ,

µ1(q)u
(1)(q), µ0(q)u(q), µ(q)

)

= 0,
(31)

where −1 ≤ q ≤ 1, subject to the initial and boundary
conditions:

u(−1) = α0, u(1) = β0,
u′(−1) = α1, u′(1) = β1,

...
...

u(s)(−1) = αs, u
(r)(1) = βr,

(32)

such that {αi}s0 and {βs}r0 are constants, µ(q), µi(q) are
real valued functions. The required solution will be
approximated by:

u(q) ≈ un(q) =

n
∑

i=0

Ai
sDLi(q), (33)

where Ai are constant.

Eqs. (15),(16) can be used to represent the derivatives
of the unknown function u(q) as follows:

dmun(q)

dqm
=

n
∑

i=0

i−m
∑

k=0

Aiℜ(m)
ik

sDLk(q). (34)

At m = 0: the equation (34) will be equivalent to equation
(33). Substituting from Eq. (34) into the BVP (31-32) to

get the residual:

Rn = f

(

µm(q)

n
∑

i=0

i−m
∑

k=0

Aiℜ(m)
ik

sDLk(q) ,

µm−1(q)

n
∑

i=0

i−m+1
∑

k=0

Aiℜ(m−1)
ik

sDLk(q), · · · ,

µ0(q)

n
∑

i=0

Ai
sDLi(q), µ(q)

)

= 0,

−1 ≤ q ≤ 1,

(35)

with initial/boundary condition:

n
∑

j=0

(−1)i

8 Ai(i+ 1)4 = α0,

n
∑

i=0

1
8Ai(i+ 1)4 = β0,

n
∑

i=0

i−1
∑

k=0

(−1)k

8 Aiℜ(1)
ik (k + 1)4 = α1,

n
∑

i=0

i−1
∑

k=0

1
8Aiℜ(1)

ik (k + 1)4 = β1,

...
n
∑

i=0

i−s
∑

k=0

(−1)k

8 Aiℜ(s)
ik (k + 1)4 = αs,

n
∑

i=0

i−r
∑

k=0

1
8Aiℜ(r)

ik (k + 1)4 = βr.

(36)

Then, by applying the Tau method to get the
integration:

∫ 1

−1

Rn
sDLk(q)w

∗(q)dq, k = 0, 1, 2, . . . , n−m,

(37)
where w∗(q) = q2 − q is the appreciate weight function.
Eqs. (36) with Eqs. (37) generate an algebraic equations
system for unknown coefficients An. Consequently, we
will solve this system to get the approximate solution of
ODEs.

The steps of the solution will be summarized in
Algorithm (1). This Algorithm helps the reader to code
the approximation methods easily with any suitable
software.

The following two subsections will explicitly express
the Lane-Emden and Riccati Equations’ algebraic systems.

4.1 Riccati Equation via SDLP-TM

Theorem 2.Consider the following Riccati equation:

u′(q) = P (q) + Y (q)u(q) + Z(q)u2(q), 0 ≤ q ≤ 1.
(38)
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Algorithm 1 Steps for solving ODE via SDLP-TM

Step 1: Input n ∈ N.

Step 2: Expand the dependent variable of the BVP using the

spectral expansion (33).

Step 3: Shift the independent variable to [-1,1].

Step 4: Construct the operational matrix (Eq. (15)).

Step 5: Expand the BVP as depicted in Eqs. (35) and (36).

Step 6: Apply Tau method’s integration Eq. (37) to get the

algebraic system of the unknowns Ai.

Step 7: Solve the previous system to obtain Ai.

Step 8: Substitute into the spectral expansion, step (2), by Ai,

step (7), to get the approximated solution of the BVP.

So, the unknown coefficient Ai for the Riccati equation’s

algebraic system:

16

3π

n
∑

i=0

i−1
∑

r=0

min(r,k)
∑

s1=0

Aiℜ(1)
ir Kr,k,s1Qr,k,s1

−
t1
∑

e1=0

e1+1
∑

o1=1

pe1Fe1,o1Q2o1−e1,k,1

− 8

3π

n
∑

i=0

t2
∑

e2=0

e2+1
∑

o2=1

min(h1,k)
∑

s2=0

Aiye2Fe2,o2Kh1,k,s2Qh1,k,s2

− 64

9π2

n
∑

i=0

n
∑

j=0

t3
∑

e3=0

e3+1
∑

o3=1

min(j,k)
∑

s3=0

min(h2,h3)
∑

s4=0

AiAjze3Fe3,o3

Kj,k,s3Kh2,h3,s4Qh2,h3,s4 ,

(39)

where

h1 = i+ 2o2 − e2 − 2,

h2 = i− e3 + 2o3 − 2,

h3 = j + k − 2s3,

Fn,m as in Eq. (14),

Kn,m,i as in Eq. (17),

Qn,m,s = ((−1)n+m−2s[(n+m− 2s+ 2)(n+m− 2s

+3)− 3]− 1),

P (q) =
t1
∑

e1=0
pe1q

e1 ,

Y (q) =
t2
∑

e2=0
ye2q

e2 ,

Z(q) =
t3
∑

e3=0
ze3q

e3 ,

pe1 , ye2 and ze3 are constants.

Proof.Using Eqs. (33), (34), we obtain the residual:

Rn = 2
n
∑

i=0

i−1
∑

r=0

Aiℜ(1)
ir

sDLr(q)−
t1
∑

e1=0

pe1q
e1

−
n
∑

i=0

t2
∑

e2=0

ye2q
e2Ai

sDLi(q)

−
n
∑

i=0

n
∑

j=0

t3
∑

e3=0

AiAjze3q
e3 sDLi(q)

sDLj(q),

−1 ≤ q ≤ 1.

(40)

By applying relation (37) with the aid of relations (14),
(17), and (29), the proof will be completed.

4.2 Lane-Emden Equation via SDLP-TM

Similar to the previous subsection, an algebraic system for
the spectral’s coefficients of the Lane-Emden equation will
be introduced.

Theorem 3.Consider the following Lane-Emden

equation:

qu′′(q) + αu′(q) + βqu(q) = γU(q, u(q)), (41)

where 0 ≤ q ≤ X .

Then, the Lane-Emden equation’s algebraic system for

the unknown coefficient Ai will be:

32

3π

n
∑

i=0

i−2
∑

r=0

2
∑

j1=1

min(t,k)
∑

s1=0

Aiℜ(2)
ir F1,j1Kt,k,s1Qt,k,s1

+
16

3π
Xα

n
∑

i=0

i−1
∑

r=0

min(r,k)
∑

s2=0

Aiℜ(1)
ir Kr,k,s2Qr,k,s2

+
8

3π
X2β

n
∑

i=0

2
∑

j2=0

min(p,k)
∑

s3=0

AiF1,j2Kp,k,s3Qp,k,s3 − γW,

(42)

where

α, β, and γ are constants,

t = r + 2j1 − 3,

p = i+ 2j2 − 3,

U(q, u(q)) is a real-valued function,

W =
∫ 1

−1
X2 sDLk(q)U(q, u(q))w∗(q)dq,

Fn,m as in Eq. (14),

Kn,m,i as in Eq. (17),

Qn,m,s = ((−1)n+m−2s[(n+m− 2s+ 2)(n+m− 2s

+3)− 3]− 1).
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Proof.Using Eqs. (33) and (34), the residual of the shifted
Lane-Emden equation will be:

Rn =4q

n
∑

i=0

i−2
∑

r=0

Aiℜ(2)
ir

sDLr(q)

+ 2Xα

n
∑

i=0

i−1
∑

r=0

Aiℜ(1)
ir

sDLr(q)

+X2β q

n
∑

i=0

Ai
sDLi(q)

−X2γU(q, u(q)),

(43)

where −1 ≤ q ≤ 1.
By applying relation (37) and using relations (14),

(17), and (29), the required result will be proved.

In the next section, the error analysis and convergence
will study the proposed method’s accuracy. Moreover, we
will investigate the global errors of the Lane-Emden and
the Recatti equations.

5 Error Analysis

The following definition and theorems are necessary to
discuss error analysis and convergence.

Definition 1.Lipschitz Condition: [24] Let u(q) be

piecewise continuous in q, and defined on [a, b], then u(q)
is said to satisfy a Lipschitz condition on [a, b] if there

exists a constant ζ > 0 such that:

||u(q)− u(q̂)|| ≤ ζ||q − q̂||, ∀q̂ ∈ [a, b],
where ζ is called the Lipschitz constant.

Theorem 4. [16] If |u(p)(q)| ≤ M , that can be spectrally

expanded, as presented in Eq. (33), in terms of SDLPs.

Then:

|Ai| <
2p+2

ip+1
M, ∀ i > 2. (44)

Theorem 5. [16] Let u(q) be any continuous function that

satisfies the previous theorem, then :

|u(q)− un(q)| . O

(

1

n

)p−4

. (45)

Corollary 1.Let u(q) be any continuous function that

satisfies Theorems (4), (5), then:

(i)|u′(q)− u′
n(q)| . O

(

1

np−6

)

, (46)

(ii)|u′′(q)− u′′
n(q)| . O

(

1

np−8

)

, (47)

(iii) |u2(q)− u2
n(q)| . O

(

1

np−4

)

. (48)

Theorem 6.Consider the function u(q) that satisfies

Theorems (4), (5) and let U(q;u) satisfies Lipschitz

condition (1) for the variable u with constant ζ, then the

global error of:

i)The Lane-Emden equation

q u′′(q)+αu′(q)+β q u(q) = γ U(q;u); 0 ≤ q ≤ X ,

will be O
(

1
np−8

)

,

ii)The Ricatti equation

u′(q) = P (q)+Y (q)u(q)+Z(q)u2(q), ; 0 ≤ q ≤ 1,

will be O
(

1
np−6

)

.

Proof.Lane-Emden equation and its residual in the shifted
domain −1 ≤ q ≤ 1 will be:

4qu′′ + 2Xαu′ +X2βq u−X2γU(q;u) = 0. (49)

4qu′′
n + 2Xαu′

n +X2βq un −X2γU(q;un) ≈ 0. (50)

So the global error takes the form:

|en| = |4q (u′′(q)− u′′
n(q))

+ 2Xα (u′(q)− u′
n(q))

+X2β q (u(q)− un(q))

−X2γ (U(q;un)− U(q;u))
∣

∣ .

(51)

Since U satisfies Lipschitz condition, |q| ≤ 1, and by
corollary (1):

|en| .4O

(

1

np−8

)

+ 2X αO

(

1

np−6

)

+X2(γ ζ + β)O

(

1

np−4

)

. O

(

1

np−8

)

.

(52)

Similar procedures can prove the global error of the
Ricatti equation.

2u′(q)− P (q)− Y (q)u(q)− Z(q)u2(q) = 0. (53)

2u′
n(q)− P (q)− Y (q)un(q)− Z(q)u2

n(q) ≈ 0. (54)

Then:

|en| = |2 (u′(q)− u′
n(q))− Y (q) (u(q)− un(q))

−Z(q)
(

u2(q)− u2
n(q)

)
∣

∣ .
(55)

Consequently:

|en| .2O

(

1

np−6

)

− ζO

(

1

np−4

)

− ζO

(

1

np−4

)

. O

(

1

np−6

)

.

(56)

In the next section, the introduced method SDLP-TM
will be applied. Several tables and figures will be
presented to prove the accuracy and efficiency of the
method compared with the other methods.
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6 Numerical Examples

In the present section, we will find approximate solutions
for the Lane–Emden and Riccati equations by applying
SDLP-TM. Consequently, the SDLP-TM’s accuracy,
efficiency, and stability have been shown.

Example 1.Consider the standard nonlinear Lane-Emden
equation [16, 25–28]:

u′′(q) +
2

q
u′(q) + ut(q) = 0, 0 ≤ t ≤ 5, (57)

where initial conditions are u(0) = 1 and u′(0) = 0. The
Lane-Emden equation has physical importance for the
value of q with u(q) = 0 and for t = 0, 1.

The first case at t = 0, q ∈ (0, 2.5) with the exact

solution is u(q) = 1 − q
2

3! . Shifting q from (0,2.5) to the
domain [-1,1], and applying the explicit form of the Lane-
Emden equation using SDLP-TM (42):

32

3π

2
∑

i=0

i−2
∑

r=0

2
∑

j1=1

min(t,k)
∑

s1=0

Aiℜ(2)
ir F1,j1Kt,k,s1Qt,k,s1

+
80

3π

2
∑

i=0

i−1
∑

r=0

min(r,k)
∑

s2=0

Aiℜ(1)
ir Kr,k,s2Qr,k,s2

+
50

3π

2
∑

i=0

2
∑

j2=0

min(p,k)
∑

s3=0

AiF1,j2Kp,k,s3Qp,k,s3 = 0.

Consequently, we will get the system:

3A0 − 15A1 + 45A2 = 1,
15A1 − 105A2 = 0,
−240A1 + 672A2 = 5.

(58)

Then: A0 = 59
252 , A1 = −5

144 , and A2 = −5
1008 . Finally,

u2(q) =
71
96 − 25

48q− 25
96q

2, which equals the exact solution
for q ∈ (−1, 1).

The second case at t = 1, and the exact solution is
u(q) = sinq

q
. Table (1) shows the point-absolute error

(point-AE) compared with the methods in [16, 27, 28].

Example 2.Consider the following nonlinear Riccati
equation:

u′(q)− u2(q) = 1 , 0 ≤ q ≤ 1,

with the initial condition u(0) = 0, and the exact smooth
solution:

u(q) = tan q.

The explicit form of the Riccati Eq. (39) will be used.
Table (2) shows the efficiency of the presented method
compared with [29, 30]. While Fig. (1) illustrates the
stability of the SDLP-TM.

Table 1: The point-AE of Example 1 for t = 1.

q [27] [28] [16] SDLP-TM

n = 16 n = 10 n = 12 n = 10 n = 12

0.1 6.2e-13 8.8e-13 3.3e-16 3.3e-16 1.1e-16

0.2 - 2.8e-12 1.1e-16 7.8e-16 1.1e-16

0.3 - 7.9e-13 2.2e-16 1.6e-15 0

0.4 - 5.1e-12 2.2e-16 5.4e-15 0

0.5 5.8e-13 1.0e-11 3.3e-16 1.7e-14 1.1e-16

0.6 - 9.6e-12 2.2e-16 2.5e-14 1.1e-16

0.7 - 3.4e-12 3.3e-16 2.1e-14 0

0.8 - 5.3e-12 3.3e-16 1.4e-14 0

0.9 4.6e-13 1.2e-11 3.3e-16 7.4e-15 1.1e-16

Table 2: The point-AE for Example 2.

q [29] [30] SDLP-TM

n = 14 n = 15 n = 15 n = 25

0 0 0 1.6e-16 3.5e-17

0.1 6.8e-10 8.2e-10 7.8e-11 4.2e-17

0.2 6.0e-10 1.1e-07 5.2e-12 1.7e-16

0.3 1.3e-09 1.9e-06 5.2e-10 8.3e-16

0.4 1.3e-10 1.6e-05 2.0e-09 2.0e-15

0.5 7.4e-10 8.1e-05 3.7e-09 8.1e-15

0.6 2.7e-09 3.3e-04 3.9e-09 5.6e-15

0.7 2.6e-09 1.1e-03 5.6-09 9.9e-15

0.8 2.6e-09 3.5e-03 9.0e-09 1.3e-14

0.9 8.5e-10 1.1e-03 1.2-08 3.9-14

1.0 1.2e-09 2.8e-03 1.4e-08 1.5e-13
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rr
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Fig. 1: Log-error for Example 2.

Example 3.Consider the following nonlinear Riccati
equation [29, 31]:

u′(q) + u2(q) = 1, 0 ≤ q ≤ 1, (59)

with the initial condition u(0) = 0. The exact solution of
that equation is u(q) = tanh q. The efficiency and
accuracy of the proposed method have been shown in
Table (3). Fig. (2) presents the stability of the
approximate solution.
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Table 3: The point-AE Example 3.

q [31] [29] [32] [33] SDLP-TM

0.2 3.4e-11 5.0e-11 2.0e-11 1.7e-05 1.4e-16

0.4 2.9e-11 5.3e-11 5.0e-11 1.4e-05 1.7e-16

0.6 2.4e-11 1.0e-11 1.4e-10 1.3e-05 0

0.8 1.8e-11 3.0e-11 3.0e-11 8.9e-06 2.2e-16

1 1.5e-11 1.0e-11 2.0e-11 7.8e-06 1.1e-16
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Fig. 2: Log-error for Example 3.

Example 4.Consider the following nonlinear Riccati
equation [34]:

u′(q) + (u(q))
2 − 2 u(q) = 1 ,

u(0) = 0 0 ≤ q ≤ 1,
(60)

with the exact solution:

u(q) = 1 +
√
2 tanh(12 log(

√
2−1√
2+1

) +
√
2q). Table (4)

shows the efficiency of the presented method compared
with other methods.

7 Conclusions

This study presented a highly effective strategy that
employs the second derivative of Legendre (SDLPs) as
basis functions. Those novel basis functions have been
used via the Tau method (SDLP-TM) to approximate
solutions for linear and nonlinear ordinary differential
equations. A linearization relation for the SDLPs has been
investigated and proved. Additionally, some important
integrations have been introduced. The established
relations and integration have been used to utilize the Tau
method’s integration. These procedures are used to
construct explicit algebraic systems for the Land-Emden
and Riccati equations. Then, an algorithm for the
presented method is created. Also, the converge and error
analysis of the proposed technique are well covered, and
the global upper bounds of the errors for the discussed
problems have been determined. Finally, the SDLP-TM’s
accuracy, efficiency, and stability have been demonstrated
numerically.

Acknowledgment

The authors would like to thank the anonymous reviewers
for carefully reading the article and for their constructive
and valuable comments, which have improved the paper’s
present form. The authors also sincerely thank the
Helwan School of Numerical Analysis in Egypt
(HSNAE) members for their valuable effort and support.

References

[1] A.F. Koura, K.R. Raslan, K.K. Ali, M.A. Shaalan, Numerical

Analysis of a Spatio-Temporal bi Modal Coronavirus Disease

Pandemic, Appl. Math. Inf. Sci., 16(5), 729-737, (2022).

[2] K.K. Ali, M.I. Abdelrahman, K.R. Raslan, W. Adel, On

Analytical and Numerical Study for the Peyrard- Bishop

DNA Dynamic Model, Appl. Math. Inf. Sci., 16(5), 749-759,

(2022).

[3] E.M. Abo-Eldahab, R. Adel, H.M. Mobarak, M.

Abdelhakem, The effects of magnetic field on boundary

layer nano-fluid flow over stretching sheet. Appl. Math. Inf.

Sci., 15(6), 731-741, (2021).

[4] T. Saeed, I. Abbas, M. Marin, A GL model on thermo-elastic

interaction in a poroelastic material using finite element

method. Symmetry, 12(3), 488, (2020).

[5] Y. Wang, Y. Gu, J. Liu, A domain-decomposition generalized

finite difference method for stress analysis in three-

dimensional composite materials. Appl. Math. Lett., 104,

106226, (2020).

[6] M. Abdelhakem, A. Ahmed, M. El-kady, Spectral Monic

Chebyshev Approximation for Higher Order Differential

Equations. Math. Sci. Lett., 8 (2), 11-17, (2019).

[7] H.F. Ahmed, M.B. Melad, A new numerical strategy

for solving nonlinear singular Emden-Fowler delay

differential models with variable order. Math. Sci.,

https://doi.org/10.1007/s40096-022-00459-z, (2022).

[8] W.M. Abd-Elhameed, E.H. Doha, M.M. Alsuyuti, Numerical

treatment of special types of odd-order boundary value

problems using nonsymmetric cases of Jacobi polynomials.

Prog. Fract. Differ. Appl., 8 (2), 305–319, (2022).

[9] J. Shen, T. Tang, L. Wang, Spectral Methods:

Algorithms, Analyses and Applications, 1st ed., Springer:

Berlin/Heidelberg, Germany, (2011).

[10] H.B. Jebreen, Y.C. Cano, I. Dassios, An efficient algorithm

based on the multi-wavelet Galerkin method for telegraph

equation. AIMS Mathematics, 6 (2), 1296-1308, (2021).

[11] M. Mousa-Abadian, S.H. Momeni-Masuleh, Solving linear

fractional differential equations with time delay by steps

Chebyshev-tau scheme. Iran J. Sci. Technol. Trans. Sci.,

https://doi.org/10.1007/s40995-020-01058-0, (2021).

[12] M. Abdelhakem, H. Moussa, D. Baleanu, M. El-kady,

Shifted Chebyshev schemes for solving fractional optimal

control problems, J. Vib. Control, 25 (15), 2143–2150,

(2019).

[13] M. Abdelhakem, A. Ahmed, D. Baleanu, M. El-kady,

Monic Chebyshev pseudospectral differentiation matrices for

higher-order IVPs and BVPs: applications to certain types of

real-life problems, J. Comput. Appl. Math., 41, 253, (2022).

c© 2023 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 17, No. 3, 437-445 (2023) / www.naturalspublishing.com/Journals.asp 445

Table 4: The point-AE for Example (4).

q SDLP-TM [34] [35] [16]

n = 10 n = 14 n = 22 n = 10 n = 10 n = 14 n = 22

0 2.2e-16 2.2e-16 0 - 0 0 8.0e-17

0.1 3.8e-09 1.8e-11 5.6e-16 4.6e-09 1.0e-06 8.5e-08 9.3e-13

0.2 7.0e-09 1.6e-11 2.2e-16 9.7e-10 1.1e-06 8.8e-08 1.1e-12

0.3 1.8e-09 2.0e-10 8.9e-16 3.7e-09 1.2e-06 1.0e-07 1.3e-12

0.4 7.6e-08 4.9e-10 1.8e-15 1.3e-09 1.4e-06 1.1e-07 1.4e-12

0.5 2.1e-07 1.7e-09 2.3e-14 1.9e-09 1.5e-06 1.2e-07 1.5e-12

0.6 6.7e-07 5.4e-10 1.7e-14 2.7e-09 1.6e-06 1.3e-07 1.5e-12

0.7 6.4e-07 1.9e-11 1.3e-14 4.3e-09 1.5e-06 1.2e-07 1.5e-12

0.8 6.4e-07 4.0e-10 1.1e-14 2.4e-09 1.5e-06 1.2e-07 1.5e-12

0.9 5.8e-07 4.6e-10 1.3e-14 3.6e-10 1.4e-06 1.2e-07 1.3e-12

1 3.9e-09 4.9e-10 1.9e-14 7.0e-09 6.6e-07 4.3e-08 1.6e-12

[14] M. Abdelhakem, Y.H. Youssri, Two spectral Legendre’s

derivative algorithms for Lane-Emden, Bratu equations, and

singular perturbed problems. Appl. Numer. Math., 169, 243-

255, (2021).

[15] M. Abdelhakem, T. Alaa-Eldeen, D. Baleanu, M.G.

Alshehri, M. El-Kady, Approximating real-life BVPs via

Chebyshev polynomials’ first derivative pseudo-Galerkin

method. Fractal. Fract., 5 (4), 165, (2021).

[16] M. Abdelhakem, M. Fawzy, M. El-Kady, H. Moussa, An

efficient technique for approximated BVPs via the second

derivative Legendre polynomials pseudo-Galerkin method:

Certain types of applications, Res. Phys., 43, 106067, (2022).

[17] M. Abdelhakem, M. Biomy, S. A. Kandil, D. Baleanu,

M. El-Kady, A numerical method based on Legendre

differentiation matrices for higher order ODEs. Inf. Sci. Lett.,

9 (3), 175-180, (2020).

[18] D. Baleanu, B. Shiri, H.M. Srivastava, Al Qurashi M.,

A Chebyshev spectral method based on operational matrix

for fractional differential equations involving non-singular

Mittag-Leffler kernel. Adv. Differ. Equ., 2018, 353, (2018).

[19] Y.H. Youssri, Orthonormal ultraspherical operational

matrix algorithm for fractal-fractional Riccati equation with

generalized Caputo derivative. Fract. Fract., 5(3), 100,

(2021).

[20] M. Abdelhakem, D. Baleanu, P. Agarwal, H. Moussa,

Approximating system of ordinary differential-algebraic

equations via derivative of Legendre polynomials operational

matrices. Int. J. Mod. Phys.C, 34(3), 2350036, (2022).

[21] M. Fawzy, H. Moussa, D. Baleanu, M. El- Kady, M.

Abdelhakem, Legendre derivatives direct residual spectral

method for solving some types of ordinary differential

equations. Math. Sci. Lett., 11(3), 103-108 (2022).

[22] M. Abdelhakem, H. Moussa, Pseudo-spectral matrices as

a numerical tool for dealing BVPs, based on Legendre

polynomials’ derivatives. Alex. Eng. J., 66, 301-313, (2023).

[23] L. Carlitz, The product of two ultraspherical polynomials,

Glasg. Math. J., 5, 76-79, (1961).

[24] G.M. Phillips, P.J. Taylor, Theory and applications of

numerical analysis, 2nd ed., Academic Press, (1996).

[25] S. Tomar, A Rapid-Converging Analytical Iterative

Scheme for Solving Singular Initial Value Problems

of Lane–Emden Type. Int. J. Appl. Comput. Math., 7,

https://doi.org/10.1007/s40819-021-01029-y, (2021).

[26] A.H. Hadian-Rasanan, D. Rahmati, S. Gorgin, K. Parand, A

single layer fractional orthogonal neural network for solving

various types of Lane–Emden equation. New Astron., 75,

101307, (2020).

[27] S. Aydinlik, A. Kiris, A high-order numerical method for

solving nonlinear Lane-Emden type equations arising in

astrophysics. Astrophys.Space Sci., 363, 264, (2018).

[28] M. Omidi, B. Arab, A.H. Rasanan, J.A. Rad, K.

Parand, Learning nonlinear dynamics with behavior

ordinary/partial/system of the differential equations: looking

through the lens of orthogonal neural networks. Eng.

Comput., 38 (2), 1635-1654, (2022).

[29] S. Ezz-Eldien, J. Machado, Y. Wang, A. Aldraiweesh, An

algorithm for the approximate solution of the fractional

Riccati differential equation. Int. J. Nonlinear Sci. Numer.

Simul., 20(6), 661–674, (2019).

[30] O.S. Odetunde, O.A. Taiwo, A decomposition algorithm

for the solution of fractional quadratic Riccati differential

equations with Caputo derivatives. American J. of Comput.

and Appl. Math., 4(3), 83-91, (2014).

[31] A. Toma, F. Dragoi, O. Postavaru, Enhancing the Accuracy

of Solving Riccati Fractional Differential Equations. Frac.

Fract., 6(5), 275, (2022).

[32] W. Abd-Elhameed, Y.H. Youssri, Explicit shifted second-

kind Chebyshev spectral treatment for fractional Riccati

differential equation. Comput. Model. Eng. Sci., 121 (3),

1029–1049, (2019).

[33] M.A.Z. Raja, M.A. Manzar, R. Samar, An efficient

computational intelligence approach for solving fractional

order Riccati equations using ANN and SQP. Appl. Math.

Mod., 39(10-11), 3075-3093, (2015).

[34] H. Singh, H.M. Srivastava, Jacobi collocation method for

the approximate solution of some fractional-order Riccati

differential equations with variable coefficients. Phys. A Stat.

Mech. Appl., 523, 1130-1149, (2019).

[35] K. Rabiei, M. Razzaghi, Fractional-order Boubaker

wavelets method for solving fractional Riccati differential

equations. Appl. Numer. Math., 168, 221-234, (2021).

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Preliminaries
	Second Derivatives of Legendre Polynomials Linearization Formula 
	Second Legendre derivatives Tau Method (SDLP-TM)
	Error Analysis
	Numerical Examples
	Conclusions

