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Abstract: We deal with a complete normed space E, a scalar sequence space A, and an Orlicz mapping M to introduce and study some
properties of the spaces Ay{E} of all E—valued sequences that are absolutely (A,M)-summable. Denote by Ay {E}, the subspace of
Ay{E} whose elements are AK-sequences. We describe the continuous linear forms on this space in term of E*—valued sequences that

are absolutely (A*, N)-summable, where N is the Orlicz mapping complement of M.
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1 Introduction

The notion of absolutely and weakly A-summable
sequences in a locally convex space, for A a perfect Kothe
scalar sequence space, was first introduced by A.
Pietsch [1] to characterize the nuclearity of locally convex
spaces.

Since then many authors have been interested to the
study of these spaces defined by a combination of a Kéthe
scalar sequence spaces and a linear vector space. They
consider on A, not only its normal topology, but general
polar topologies. The space of absolutely A summable
sequence has been intensively studied by many authors as
in [2,3]. Later, an extension to the modular function has
been introduced in [4,5]. The authors in [6,7,8,9,10,11,
12] were mainly interested in the weakly A-summability.
In [12], the author involved the Orlicz mapping to define
a new class of these spaces

In this note, we deal with an Orlicz mapping M and a
a scalar sequence space A, supposed to be perfect, to
generalize the notion of the absolute A —summability by
defining Ay{E}, the space of all absolute
(A,M)-summable ones in a complete normed space E.
Notice that, for M(t) =1, the space Ay {E} is nothing else
but A{E} of all E— valued sequences that are A—
summable studied in [2,3].

In this paper, w study some of properties of Ay {E},
such as the description of the topological dual.

2 Preliminaries

Throughout this paper, if F' is a normed space then we
denote by F*, Bp+ and | - ||p+, respectively, the
topological dual, the closed unit ball and the norm of F.
Let the symbol @ stand for the linear space of all
complex sequences with respect to the standard
component operations. For all n € N, by, ¢, we mean the
standard unit vector of order n in ®. A linear subspace A
of w is said to be normal, whenever o and f3 are in @, and
o<BandB cAthenf €.
If A is a sequence space, its o¢-dual will be denoted A* and
defined as

Af = {([3,,) €w: Y 0Bl <o, V(00), € ),}.
n=1

It is easy to check the inclusion A C 1™ = (1*)*. We say

that A is perfect whenever the equality A = A** hols.

Everywhere it occurs in this note, A means a complete

and perfect normed sequence space such that

(a) || - || is solid, that is, whatever yand § in A, if y < &
then [|7]]3, < [[8][2-

(b) Every (B,), in A is the limit of the sequence
(Bi,---,Bn,0,...), n €N, the finite sections of § with
respect to the norm in || - |1 . In other words, the space
A satisfies the AK-property.

These two conditions make the continuous dual of A
coincide with A*. By using Hahn-Banach Theorem, the
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standard norm || - |3+ of A* can then be given as

[Vl[2 = Sup{ Z AARES

(Sa)n €4, 8]l < 1}

=1
Moreover, it will be needed to assumed that the dual space
(A%, ] - la+) of A* satisfies also the is also AK-property. In
that case, A will be a reflexive complete normed space.

An Orlicz mapping is a non-decreasing, non-negative,
convex and continuous, function M defined for every
t > 0, with the properties that M(0) = 0,M(x) > 0 for
x>0 and}ilgoM(x) = oo,

It is possible to represent an Orlicz mapping M in the
integral form

M(x) = /Oxm(t)dt,

where m is positive, continuous at the right for every ¢ > 0,
and m(0) = 0. Let n be defined by for ¢ > 0,

n(t) = sup{u: m(u) <t.Vf for > 0}.

So, n satisfies the same conditions as m. Let N be defined
by

Then N is also an Orlicz mapping. We say that N
complements M and M complements N. They satisfy

ts <M(t)+ N(s), forz,s > 0. (1)

For an Orlicz mapping M, define the space ¢); by

EMz{(an) c€w:3o >0, ZM(|?|)<00, }

Since M is non-decreasing, it is easy to verify that the
space ¢y is normal. Moreover, the quantity

1Bl = mf{o>o ZM('B"') }

is a solid norm on £, for which ¢ is a complete normed
space.

For M(1) =7, and 1 < p < oo, the space £) coincides
with the classical complete normed spaces /,,,.

Because of its convexity, M satisfies always the
inequality M (tx) < tM(x), for every 0 < < I.
We will assume that there is L > 0, verifying
M(2x) < LM(x), for all x € [0,0). This condition on M is
known as the condition Aj.

Particularly, from this condition, one derives that £,
and /y are ov—dual each other (Corollary 4.2 of [5]) and
are then perfect reflexive normed spaces.

3 The vector sequence space Ay {E }

For a complete normed space E, ®(E) will denote the
vector space of all E—valued sequences, and by Ay {E}
we mean the subset of ®(E) constituted by all sequences
in E that are absolutely (A,M)— summable. By this we
mean

Mi{E} ={(xn)n € @(E) : V(0

We have

In € A7, (||0wxnllE), € €u}-

Theorem 1. With respect to the standard component
operations, Ay{E}, is a linear space, and the quantity

¥l = | (oulleal),

= sup inf{c >0: Y M(||owx,|| /o) < 1}
n=1

(XGBl*
is a norm on Ay {E}.

Proof. Tt follows quickly from the subadditivity of the
norm of E and the fact that ¢, is normal that

tmu(E) = {x = (xn)n € @(E) : ([xnll£), € trr}

w)n € AF,

is a linear subspace of @(E). Now, for all (¢,

define Qg : @(E) — 0(E) by @g(x) = (otya(xy)).
Clearly, ¢4 is a linear mapping, and

MAEY = () 95 (u(E)).

aEr*

Then, Ay {E} is a linear space.

Next, we shall show that the quantity in (2) is finite.
To this purpose, let x = (x,), in Ay{E} fixed, and
consider the operator fy : A* — £y such that
5(¥) = (Wllxnl])n. An application of the closed graph
theorem yields the continuity of f;. It follows that

X[ 2} = sup inf{d >0: ZM(H}/,,an/G) < 1}
YEB) n=1

= sup ||(%allxalD)llr = sup [I£(7)llm;
YEBA* YEBZ’*

which gives the required property. The other conditions of
the norm are easily checked. |

Now, we prove that the projections are continuous.

Lemma 1. If i, is a natural number, let P; be the the
projection from Ay{E} to E, given as

if x = (x,) € Au{E}, then P;(x) = x;.

Then, P; is a linear and continuous mapping.
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Proof. Leti € N, and (1), € By such that §; > 0. Let K =
1/(y:lleillm)- For all x = (x,) € Ay {E}, since the norm || -
|las is solid and %||x;||le; < (||¥nxnl|)n, We have

villxillllellsr = llvecilllleillar < 1115 Dnllr = Nl Gl sy

Thus,

Vo= () € {E}, il e < Kllxla, ey

from which one derives the continuity of P,. |

Theorem 2. The space Ay{E} so normed is a complete
normed space for which E and A are closed linear
subspaces.

Proof. We will show first that, if @ =
then ((Xkl‘)k € )LM{E},
Consider 0 # ot = (o) € A, B = (Br)r € A* and 0 #
t€EE.Leto = Z |louBit || and 1 = || o Pit|| /o, for every
i

(ax)r €A andr €E,

k. Then,

;M(llakﬁktll/G)ZZM

k

(M) < zk:nkM(l) = M(1) < oo.

So, (out)x € Ay{E}. Now, Let us show that for all o =
o) €EAandt €E,

(0t )il 2y < (1M (1))l le] - @)

The assertion (2) is trivial when r = 0. Assume that 7 # 0.
Let op = (1 +M(1)|t||elle]|. If B = (Bu)n € A* with
1Bl < 1, since M is convex,

s |t 2] o 0Bl l[]21]]
nz:lM<7GO )S,,Zlico M(1)

t
_ Nl
c M(1)+1

Thus,

(et )nllay gy = [1(@lltDallnr < 00 = (M(1) + 1)l e[ Iz -

For a nonzero T = (1,), fixed in A, the well defined
mapping fr from E to Ay {E} with f¢(t) = (Tut), is linear
and one to one ; its continuity holds by (2).

Suppose that (), is any sequence of members of E that
satisfies the convergence of (7#; )i in Ay {E} to y = (x)n.
For any natural number m such that 7, # 0, we conclude
from Lemma 1 the convergence of the sequence (1), to
%xm. Suppose then that (# ), tends to ¢ as k — oo.. Thus,
when 1, # 0, x, =t and x, = 0 for 7, = 0. Then, y = 17,
which means that £ can be assimilated as a closed
subspace of Ay {E}. The same argument applies to prove
that A can also be assimilated with a closed subspace of

A{E}.

Consider a Cauchy sequence x* = (xf),k=1,2,...,in
Ay{E}. Letibe anatural number. Thanks to the continuity
of the mapping P; stated and proved in the lemma 1, the
projected sequence x Jh=1,2,. ,in fact, in E ; a
Cauchy sequence, denote its 11m1t by X e E.

We clam that x = (x;); € Ay {E} and that (x*); tends to
x as k — co. For a fixed a = (a,) € A*, We will verify that
the mapping Qo : y = (yn) € Au{E} — (0wllynll) € fy is
uniformly continuous. Since the norm || - || of £y is solid,

forally = (y,,) and z = (z,) € Am{E}, we can write
H%ﬂ()’) HM H | yall)n — (Cnllznll) HM
= || Cnllynll = llznll)) []4

< [l (o lyall = llznll[),, [
S H a”Hyn_ZnH)nHM = Hﬁoa()’_Z)HM-

S0, @u(x¥) = {0t ||x||}5,. Since £y is a complete
normed space, this sequence converges to a limit that we
denote by B = (B,) in . Let k be a natural number.
Then

o llxelle = oyl lim x|
p—roo

1 AT
= I}grgoakllxk | = B

So, (au||lxx||)n = B € fm. By what we proved that
x € M{E}.

A more difficult task is to prove the convergence of
{x*}7_, to x. Consider a positive real number €.

We can select a natural number N for which, if
o = (o) is laying in By« and p and ¢ are natural numbers
greater than N, there exists 0 < o < € that satisfies

o 5 30 (1t =1 _ £ (Lo ) o,

KeNy—1

Thanks to the is continuity of M, letting p — o, we find
K

q

a —

Z M <M> < 1 for every natural number K

n=1

greater than N. One can then conclude that

" = x5 gy = sup inf
QEB;

{G>0:§2M(%‘X")|) gl}ge,

whenever p is greater than N. The proof is over. |

4 On the continuous dual of A, {E}

For x = (x,) € @(E), let {x¥}%_ denote the sequence of
the finite sections of x. That is

k
B = (xy,x2,..., 3,0

me
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It is immediately seen that Ay {E} contains the finite
sections of all its elements. In other words, if
y = (ya) € Au{E}, then {y¥}7 | C Ay {E}. Using the &
notation for y¥), we see that if y is an AK-sequence, that
is {y®¥)1%_| converges toy, in Ay {E}, then

~ fimy® — Y
y=limy" =) y.en. 3)

Let Ay{E}, denote the subspace of elements of
A{E} satisfying the equation (3). The vector sequence
space Ay{E} is said to have the AK-property, if it
coincides with Ay {E},.

The following result relates topologically these two
spaces.

Theorem 3. Ay {E}, is a closed subspace of Ay{E}.

Proof. Since the norm || - || of £y is solid, the definition
of the norm || - [[5,(zy of Au{E} reveals that it is
monotonic ; in particular, if y = (y,) € Ay{E} then
HY(MHAM{E} < |Iyllay;4£}- Consider an element y € Ay {E}

which is laying in the closure Ay {E}, of Ay{E}, and a
positive number 8. One has z € Ay{E}, and K € N for
which |‘Y*Z||AM{E} < 8/3 and Hz(k) *ZH;LM{E} < 8/3if
k> K. So, since || - [|3,,{£} is monotonic,

I = Mgy < 0% =29y + llz = 29 ey
+ 1y =2l ey
<2lly = 2llayiey
+0/3<9,

if k > K. This means that y € Ay{E}, and Ay{E}, is
indeed closed in Ay {E}. |

Theorem 4. Suppose that ¢ is a mapping which is linear
and continuous on Ay{E}. Define, for every natural
number n, the mapping x, on E by setting x;;(t) = @(tey).
Then, (x)n € AY{E*}. In other words, (x},), is absolutely
(A*,N)-summable in the dual space E* of E.

Proof. The continuity of ¢ provides a positive constant K
with the property that

[@)| < K[Yll2,, (£}, whenevery = (ya)n € Au{E}.

Now, for a natural number n and a vector z in E, the
inequality (2) yields

()| = |@(zen)| < Kllzenlln,, gy < K(M(1)+1)lenll2]|2]|z-

“)
By the inequality (4), one has (x}), € ®(E™).
The proof that (x;), € A*(E*,N) is the only what is
remaining. To do so, consider a = (o) € A. We will

prove that (o4, ||x;||), € Iy = €3y Let Yy = (1) € bu.

Since ||y, 00,5 || = sup{|x;(ont)| : t € Bg}, if 6 > 0, one

can find, for every natural number 7, a vector t, in the
closed unit ball Bg of E satisfying

* * 5
||')/n(annH < |xn(’}/nantn)| + ﬁ

Let (&,)n € @ be such that |@(¥,0tyen)| = €,0(YnCutnen).
For every k € N, we have,

k k k € k
ZHYnO‘anH < Z|x:(7nantn)| JFZ? = Z|‘P(Vnantnen)|

k
+8=1Y o(esthOutnen)| + 8

= ’(p (Xk‘,enynantnen> ]+6

k
< K” ZgnynantnenHlM{E} +0.
n

Let (By)n € By+.Then,

k k
Hzgn%zanﬁnthHen < Hzanﬁnyrzen
n M n

<|la .
3y < el

Thus, HZ’,‘,enynoc,,t,,enHAM{E} < |le||||7l]l, which

proves that the series Y.~ |1||lowx)|| converges. So,
(G )n € ANTE"}.

For the ¢—duality, we prove what follows.

Lemma 2. Denote by (Ay{E})* the ot— dual of Ay{E}:

(A{E})* ={(an)a CE": i | (xn)| < ©0,Y(Xn)n € A {E}}.

n=1

Then one has the double inclusion
(AM{E})" C (AM{E})™ C (AN{E™}).
Proof. We first show the inclusion

(A{E})" C (An{E})™.

As in the proof of the theorem 4, let ¢ be in (Ay{E})*.
For every natural number n and vector z € E, define
bu(z) = ¢(zen). By the continuity of ¢ one has p > 0
such that

@) < pl[yllayE), Whenevery = (ya), belongs to Ay {E}.
In particular, we get, by (2),

|bn(z)

foralln e Nandz € E.

This means that (b,), € ©(E™).

Now, we are ready to prove that (b,), € (Ay{E},)*. Let
x = (xu)n € Aum{E},. By the equation (3),

=9(zen)| < plltenlln, gy < P(M(1)+ 1) lenll2]l2]|,
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x = limy_eox®) = ¥
Au{E},, we can write

o(x) = o(lim x*)) = lim o(x) )

k—roo

| Xnepn. Since @ is continuous on

oo

= lim Z Q(xnen) Z Q(xnen)

k*}w =1 el

= Z b, (xn)- (6)
n=1

Then, the series Y ; a,(x,) converges. Actually, it
converges absolutely. In fact, let (&,), a sequence of real
numbers such that

|an(x,)| = €nan(xy), for every n € N.

It is not hard to verify that y = (&,x,), belongs to Ay {E},

and that N
Z xn | - y)'

Now, let a = (ay), € (AM{E})*. We have to prove that for
all @ = (ay)n € A, (O ||an]|g+) € €n. As in the second part
of the proof of (4), since £y = (},, it is enough to prove that
the series Yoo | %04 ||an|| converges, for all (%,), € Ly
For every n € N, since

|V 0nan || = sup{|an(¥n0tt)| : t € Be},

there exists t, € Bg such that

1aenan | < lan(VaQoutn) | + -
But, (Y4 Qutn)n € (Am{E}. Indeed, if B = (B,), € A then
(y"a”Ht”H)" < ||OCH Hﬁ”(%)n and /), is normal.

Now, Yo |an(YaOnty)| < oo since a € (Ay{E})* and
(Y Oty )n € Au{E}, and then
Yo llaman]l < Yo lan(¥n0tn)| + 1 is finite too. This
completes the proof.

Theorem 5. Let y be the correspondence from (Ay{E},)
to (A*{E*,N}) which assigns to every continuous linear
SJormon Ay{E}, the element of (A*{E*,N}) defined by the
sequence b= (by), given in the theorem 4. Then, ¥ defines
a one- to- one continuous mapping, when these two spaces
are endowed with their standard respective norms.

Proof. If @ € (Ay{E},)" the sequence a = (ay),
represents ¢ as seen in (5). So, y is well defined.
Moreover, using (5), one can see that y is linear and one
to one. Now, let us prove that y is continuous.

Let a = (a,), be an element of € AJ{E*}, and o =
(a)n € By. Since Uy = £}, the norm of (04, ||ax]|)n||n is
defined by,

| (0u|@n|)nlln = sup{ Z Y0l an|)n

Y= (Yn) EBEM}'

For € > 0, a sequence (#,), C Bg can be found such that,
for every n € N,

€

YnOnllan|| < an(¥nOutn) + o

But, as can be easily seen, y = (%,0,t,), € Au{E},, and
then, if ¢ is represented by the sequence (ay,),, we have

Y [lonllan] <o) < &+ 1@llayiey)- )]

n=1

<e+ |-
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