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Abstract: We deal with a complete normed space E, a scalar sequence space λ , and an Orlicz mapping M to introduce and study some

properties of the spaces λM{E} of all E−valued sequences that are absolutely (λ ,M)-summable. Denote by λM{E}r the subspace of

λM{E} whose elements are AK-sequences. We describe the continuous linear forms on this space in term of E∗−valued sequences that

are absolutely (λ ∗,N)-summable, where N is the Orlicz mapping complement of M.
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1 Introduction

The notion of absolutely and weakly λ -summable
sequences in a locally convex space, for λ a perfect Köthe
scalar sequence space, was first introduced by A.
Pietsch [1] to characterize the nuclearity of locally convex
spaces.

Since then many authors have been interested to the
study of these spaces defined by a combination of a Köthe
scalar sequence spaces and a linear vector space. They
consider on λ , not only its normal topology, but general
polar topologies. The space of absolutely λ summable
sequence has been intensively studied by many authors as
in [2,3]. Later, an extension to the modular function has
been introduced in [4,5]. The authors in [6,7,8,9,10,11,
12] were mainly interested in the weakly λ -summability.
In [12], the author involved the Orlicz mapping to define
a new class of these spaces

In this note, we deal with an Orlicz mapping M and a
a scalar sequence space λ , supposed to be perfect, to
generalize the notion of the absolute λ−summability by
defining λM{E}, the space of all absolute
(λ ,M)-summable ones in a complete normed space E .
Notice that, for M(t) = t, the space λM{E} is nothing else
but λ{E} of all E− valued sequences that are λ−
summable studied in [2,3].

In this paper, w study some of properties of λM{E},
such as the description of the topological dual.

2 Preliminaries

Throughout this paper, if F is a normed space then we
denote by F∗, BF∗ and ‖ · ‖F∗ , respectively, the
topological dual, the closed unit ball and the norm of F .

Let the symbol ω stand for the linear space of all
complex sequences with respect to the standard
component operations. For all n ∈ N, by, en we mean the
standard unit vector of order n in ω . A linear subspace λ
of ω is said to be normal, whenever α and β are in ω , and
α ≤ β and β ∈ λ then β ∈ λ .

If λ is a sequence space, its α-dual will be denoted λ ∗ and
defined as

λ ∗ =

{

(βn) ∈ ω :
∞

∑
n=1

|αnβn|< ∞, ∀(αn)n ∈ λ

}

.

It is easy to check the inclusion λ ⊂ λ ∗∗ = (λ ∗)∗. We say
that λ is perfect whenever the equality λ = λ ∗∗ hols.
Everywhere it occurs in this note, λ means a complete
and perfect normed sequence space such that

(a) ‖ · ‖λ is solid, that is, whatever γ and δ in λ , if γ ≤ δ
then ‖γ‖λ ≤ ‖δ‖λ .

(b) Every (βn)n in λ is the limit of the sequence
(β1, . . . ,βn,0, . . .), n ∈ N, the finite sections of β with
respect to the norm in ‖ · ‖λ . In other words, the space
λ satisfies the AK-property.

These two conditions make the continuous dual of λ
coincide with λ ∗. By using Hahn-Banach Theorem, the
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standard norm ‖ · ‖λ ∗ of λ ∗ can then be given as

‖γ‖λ ∗ = sup

{

∞

∑
n=1

|δnγn|, δ = (δn)n ∈ λ , ‖δ‖λ ≤ 1

}

.

Moreover, it will be needed to assumed that the dual space
(λ ∗,‖ ·‖λ ∗) of λ ∗ satisfies also the is also AK-property. In
that case, λ will be a reflexive complete normed space.

An Orlicz mapping is a non-decreasing, non-negative,
convex and continuous, function M defined for every
t ≥ 0, with the properties that M(0) = 0,M(x) > 0 for
x > 0 and lim

x→∞
M(x) = ∞.

It is possible to represent an Orlicz mapping M in the
integral form

M(x) =
∫ x

0
m(t)dt,

where m is positive, continuous at the right for every t > 0,
and m(0) = 0. Let n be defined by for t ≥ 0,

n(t) = sup{u : m(u)≤ t. ∀ f for ≥ 0}.

So, n satisfies the same conditions as m. Let N be defined
by

N(u) =

∫ u

0
n(x)dx

Then N is also an Orlicz mapping. We say that N

complements M and M complements N. They satisfy

ts ≤ M(t)+N(s), for t,s ≥ 0. (1)

For an Orlicz mapping M, define the space ℓM by

ℓM =

{

(αn)n ∈ ω : ∃σ > 0,
∞

∑
n=1

M

(

|αn|

σ

)

< ∞,

}

.

Since M is non-decreasing, it is easy to verify that the
space ℓM is normal. Moreover, the quantity

‖(βn)n‖M = inf

{

σ > 0,
∞

∑
n=1

M

(

|βn|

σ

)

≤ 1

}

,

is a solid norm on ℓM for which ℓM is a complete normed
space.

For M(t) = t p, and 1 ≤ p < ∞, the space ℓM coincides
with the classical complete normed spaces ℓp,.

Because of its convexity, M satisfies always the
inequality M(tx)≤ tM(x), for every 0 ≤ t ≤ 1.
We will assume that there is L > 0, verifying
M(2x)≤ LM(x), for all x ∈ [0,∞). This condition on M is
known as the condition ∆2.

Particularly, from this condition, one derives that ℓM

and ℓN are α−dual each other (Corollary 4.2 of [5]) and
are then perfect reflexive normed spaces.

3 The vector sequence space λM{E}

For a complete normed space E , ω(E) will denote the
vector space of all E−valued sequences, and by λM{E}
we mean the subset of ω(E) constituted by all sequences
in E that are absolutely (λ ,M)− summable. By this we
mean

λM{E}= {(xn)n ∈ ω(E) : ∀(αn)n ∈ λ ∗,(‖αnxn‖E)n ∈ ℓM} .

We have

Theorem 1. With respect to the standard component

operations, λM{E}, is a linear space, and the quantity

‖x‖λM{E} =
∥

∥

∥

(

αn‖xn‖
)

n

∥

∥

∥

M

= sup
α∈Bλ∗

inf

{

σ > 0 :
∞

∑
n=1

M(‖αnxn‖/σ)≤ 1

}

is a norm on λM{E}.

Proof. It follows quickly from the subadditivity of the
norm of E and the fact that ℓM is normal that

ℓM(E) = {x = (xn)n ∈ ω(E) : (‖xn‖E)n ∈ ℓM}

is a linear subspace of ω(E). Now, for all (αn)n ∈ λ ∗,
define ϕα : ω(E)→ ω(E) by ϕα(x) = (αna(xn)).
Clearly, ϕα is a linear mapping, and

λM{E}=
⋂

α∈λ ∗

ϕ−1
α (ℓM(E)).

Then, λM{E} is a linear space.

Next, we shall show that the quantity in (2) is finite.
To this purpose, let x = (xn)n in λM{E} fixed, and
consider the operator fx : λ ∗ → ℓM such that
fx(γ) = (γn‖xn‖)n. An application of the closed graph
theorem yields the continuity of fx. It follows that

‖x‖λM{E} = sup
γ∈Bλ∗

inf

{

σ > 0 :
∞

∑
n=1

M(‖γnxn‖/σ)≤ 1

}

= sup
γ∈Bλ∗

‖(γn‖xn‖)‖M = sup
γ∈Bλ∗

‖ fx(γ)‖M,

which gives the required property. The other conditions of
the norm are easily checked. �

Now, we prove that the projections are continuous.

Lemma 1. If i, is a natural number, let Pi be the the

projection from λM{E} to E, given as

if x = (xn) ∈ λM{E}, then Pi(x) = xi.

Then, Pi is a linear and continuous mapping.
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Proof. Let i ∈N, and (γn)n ∈ Bλ ∗ such that γi > 0. Let K =
1/(γi‖ei‖M). For all x = (xn) ∈ λM{E}, since the norm ‖ ·
‖M is solid and γi‖xi‖ei ≤ (‖γnxn‖)n, we have

γi‖xi‖‖ei‖M = ‖γixi‖‖ei‖M ≤‖(‖γnxn‖)n‖M = ‖(xn)n‖λM{E}.

Thus,

∀x = (xn) ∈ λM{E}, ‖xi‖E ≤ K‖x‖λM{E},

from which one derives the continuity of Pi. �

Theorem 2. The space λM{E} so normed is a complete

normed space for which E and λ are closed linear

subspaces.

Proof. We will show first that, if α = (αk)k ∈ λ and t ∈ E ,
then (αkt)k ∈ λM{E},

Consider 0 6= α = (αk)k ∈ λ , β = (βk)k ∈ λ ∗ and 0 6=
t ∈ E . Let σ = ∑

k

‖αkβkt‖ and ηk = ‖αkβkt‖/σ , for every

k. Then,

∑
k

M(‖αkβkt‖/σ) =∑
k

M(ηk)≤∑
k

ηkM(1) = M(1)< ∞.

So, (αkt)k ∈ λM{E}. Now, Let us show that for all α =
(αk)k ∈ λ and t ∈ E,

‖(αkt)k‖λM{E} ≤ (1+M(1))‖α‖λ‖t‖E . (2)

The assertion (2) is trivial when t = 0. Assume that t 6= 0.
Let σ0 = (1+M(1))‖t‖E‖α‖λ . If β = (βn)n ∈ λ ∗ with
‖β‖λ ∗ ≤ 1, since M is convex,

∞

∑
n=1

M

(

|αnβn‖t‖|

σ0

)

≤
∞

∑
n=1

|αnβn||‖t‖|

σ0

M(1)

≤
‖α‖λ‖t‖E

σ
M(1) =

M(1)

M(1)+ 1
≤ 1.

Thus,

‖(αnt)n‖λM{E}= ‖(αn‖t‖)n‖M ≤σ0 =(M(1)+1)‖α‖λ‖t‖E .

For a nonzero τ = (τn)n fixed in λ , the well defined
mapping fτ from E to λM{E} with fτ (t) = (τnt)n is linear
and one to one ; its continuity holds by (2).

Suppose that (tk)k is any sequence of members of E that
satisfies the convergence of (τtk)k in λM{E} to y = (xn)n.
For any natural number m such that τm 6= 0, we conclude
from Lemma 1 the convergence of the sequence (tk)k to
1

τm
xm. Suppose then that (tk)k tends to t as k → ∞.. Thus,

when τn 6= 0, xn = t and xn = 0 for τn = 0. Then, y = τt,
which means that E can be assimilated as a closed
subspace of λM{E}. The same argument applies to prove
that λ can also be assimilated with a closed subspace of
λM{E}.

Consider a Cauchy sequence xk = (xk
n),k = 1,2, . . . , in

λM{E}.Let i be a natural number. Thanks to the continuity
of the mapping Pi stated and proved in the lemma 1, the
projected sequence xk

i ,k = 1,2, . . . , is , in fact, in E ; a
Cauchy sequence, denote its limit by xi ∈ E .

We clam that x = (xi)i ∈ λM{E} and that (xk)k tends to
x as k → ∞. For a fixed α = (αn) ∈ λ ∗, We will verify that
the mapping ϕα : y = (yn) ∈ λM{E} → (αn‖yn‖) ∈ ℓM is
uniformly continuous. Since the norm ‖ ·‖M of ℓM is solid,
for all y = (yn) and z = (zn) ∈ λM{E}, we can write
∥

∥ϕα(y)−ϕα(z)
∥

∥

M
=
∥

∥(αn‖yn‖)n − (αn‖zn‖)n

∥

∥

M

=
∥

∥(αn(‖yn‖−‖zn‖))n

∥

∥

M

≤
∥

∥

(

αn

∣

∣‖yn‖−‖zn‖
∣

∣

)

n

∥

∥

M

≤
∥

∥(αn‖yn − zn‖)n

∥

∥

M
=
∥

∥ϕα(y− z)
∥

∥

M
.

So, ϕα(x
k) = {αn‖xk

n‖}
∞
k=1. Since ℓM is a complete

normed space, this sequence converges to a limit that we
denote by β = (βn) in ℓM. Let k be a natural number.
Then

αk‖xk‖E = αk‖ lim
p→∞

x
p
k‖E

= lim
p→∞

αk‖x
p
k‖= βk.

So, (αn‖xn‖)n = β ∈ ℓM. By what we proved that
x ∈ λM{E}.

A more difficult task is to prove the convergence of
{xk}∞

k=1 to x. Consider a positive real number ε.
We can select a natural number N for which, if

α = (αn) is laying in Bλ ∗ and p and q are natural numbers
greater than N, there exists 0 < σ < ε that satisfies

sup
K∈N

K

∑
n=1

M

(

‖αn(x
p
n − x

q
n)‖

σ

)

=
∞

∑
n=1

M

(

‖αn(x
q
n − x

p
n)‖

σ

)

≤ 1.

Thanks to the is continuity of M, letting p → ∞, we find
K

∑
n=1

M

(

‖αn(x
q
n − xn)‖

ε

)

≤ 1 for every natural number K

greater than N. One can then conclude that

‖xp − x‖λM{E} = sup
α∈B∗

λ

inf

{

σ > 0 :
∞

∑
n=1

M

(

|αn(x
p
n − xn)|

σ

)

≤ 1

}

≤ ε,

whenever p is greater than N. The proof is over. �

4 On the continuous dual of λM{E}

For x = (xn) ∈ ω(E), let {x(k)}∞
k=1 denote the sequence of

the finite sections of x. That is

x(k) = (x1,x2, . . . ,xk,0 . . .) =
k

∑
n=1

xnen.

© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


550 M. A. Sidaty: Duality in vector Köthe- Oricz spaces

It is immediately seen that λM{E} contains the finite
sections of all its elements. In other words, if
y = (yn) ∈ λM{E}, then {y(k)}∞

k=1 ⊂ λM{E}. Using the Σ

notation for y(k), we see that if y is an AK-sequence, that

is {y(k)}∞
k=1 converges to y, in λM{E}, then

y = lim
k→∞

y(k) =
∞

∑
n=1

ynen. (3)

Let λM{E}r denote the subspace of elements of
λM{E} satisfying the equation (3). The vector sequence
space λM{E} is said to have the AK-property, if it
coincides with λM{E}r.

The following result relates topologically these two
spaces.

Theorem 3. λM{E}r is a closed subspace of λM{E}.

Proof. Since the norm ‖ · ‖M of ℓM is solid, the definition
of the norm ‖ · ‖λM{E} of λM{E} reveals that it is

monotonic ; in particular, if y = (yn) ∈ λM{E} then

‖y(k)‖λM{E} ≤ ‖y‖λM{E}. Consider an element y ∈ λM{E}

which is laying in the closure λM{E}r of λM{E}r and a
positive number δ . One has z ∈ λM{E}r and K ∈ N for

which ‖y− z‖λM{E} < δ/3 and ‖z(k) − z‖λM{E} < δ/3 if

k ≥ K. So, since ‖ · ‖λM{E} is monotonic,

‖y(k)− y‖λM{E} ≤ ‖y(k)− z(k)‖λM{E}+ ‖z− z(k)‖λM{E}

+ ‖y− z‖λM{E}

< 2‖y− z‖λM{E}

+ δ/3 < δ ,

if k ≥ K. This means that y ∈ λM{E}r and λM{E}r is
indeed closed in λM{E}. �

Theorem 4. Suppose that ϕ is a mapping which is linear

and continuous on λM{E}. Define, for every natural

number n, the mapping x∗n on E by setting x∗n(t) = ϕ(ten).
Then, (x∗n)n ∈ λ ∗

N{E∗}. In other words, (x∗n)n is absolutely

(λ ∗,N)-summable in the dual space E∗ of E.

Proof. The continuity of ϕ provides a positive constant K

with the property that

|ϕ(y)| ≤ K‖y‖λM{E}, whenever y = (yn)n ∈ λM{E}.

Now, for a natural number n and a vector z in E , the
inequality (2) yields

|x∗n(z)|= |ϕ(zen)| ≤K‖zen‖λM{E}≤K(M(1)+1)‖en‖λ‖z‖E .
(4)

By the inequality (4), one has (x∗n)n ∈ ω(E∗).
The proof that (x∗n)n ∈ λ ∗(E∗,N) is the only what is
remaining. To do so, consider α = (αn) ∈ λ . We will
prove that (αn‖x∗n‖)n ∈ ℓN = ℓ∗M. Let γ = (γn) ∈ ℓM .

Since ‖γnαnx∗n‖= sup{|x∗n(γnαnt)| : t ∈ BE}, if δ > 0, one

can find, for every natural number n, a vector tn in the
closed unit ball BE of E satisfying

‖γnαnx∗n‖ ≤ |x∗n(γnαntn)|+
δ

2n
.

Let (εn)n ∈ ω be such that |ϕ(γnαntnen)|= εnϕ(γnαntnen).
For every k ∈ N, we have,

k

∑
n

‖γnαnx∗n‖ ≤
k

∑
n

|x∗n(γnαntn)|+
k

∑
n

ε

2n
=

k

∑
n

|ϕ(γnαntnen)|

+ δ =
∣

∣

k

∑
n

ϕ(εnγnαntnen)
∣

∣+ δ

=
∣

∣

∣
ϕ

(

k

∑
n

εnγnαntnen

)

∣

∣

∣
+ δ

≤ K
∥

∥

k

∑
n

εnγnαntnen

∥

∥

λM{E}
+ δ .

Let (βn)n ∈ Bλ ∗ .Then,

∥

∥

∥

k

∑
n

εnγnαnβn‖tn‖en

∥

∥

∥

M
≤
∥

∥

∥

k

∑
n

αnβnγnen

∥

∥

∥

M
≤ ‖α‖‖γ‖.

Thus,
∥

∥∑k
n εnγnαntnen

∥

∥

λM{E}
≤ ‖α‖‖γ‖, which

proves that the series ∑∞
n |γn|‖αnx∗n‖ converges. So,

(x∗n)n ∈ λ ∗
N{E∗}.

For the α−duality, we prove what follows.

Lemma 2. Denote by (λM{E})× the α− dual of λM{E}:

(λM{E})×= {(an)n ⊂E∗ :
∞

∑
n=1

|an(xn)|<∞,∀(xn)n ∈ λM{E}}.

Then one has the double inclusion

(λM{E}r)
∗ ⊂ (λM{E})× ⊂ (λ ∗

N{E∗}).

Proof. We first show the inclusion
(λM{E})∗ ⊂ (λM{E})×.
As in the proof of the theorem 4, let ϕ be in (λM{E})∗.
For every natural number n and vector z ∈ E , define
bn(z) = ϕ(zen). By the continuity of ϕ one has ρ > 0
such that

|ϕ(y)| ≤ ρ‖y‖λM{E}, whenever y=(yn)n belongs to λM{E}.

In particular, we get, by (2),

|bn(z)|= |ϕ(zen)| ≤ ρ‖ten‖λM{E}≤ ρ(M(1)+1)‖en‖λ‖z‖E ,

for all n ∈ N and z ∈ E .
This means that (bn)n ∈ ω(E∗).
Now, we are ready to prove that (bn)n ∈ (λM{E}r)

×. Let
x = (xn)n ∈ λM{E}r. By the equation (3),
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x = limk→∞ x(k) = ∑∞
n=1 xnen. Since ϕ is continuous on

λM{E}r, we can write

ϕ(x) = ϕ( lim
k→∞

x(k)) = lim
k→∞

ϕ(x(k)) (5)

= lim
k→∞

k

∑
n=1

ϕ(xnen) =
∞

∑
n=1

ϕ(xnen)

=
∞

∑
n=1

bn(xn). (6)

Then, the series ∑∞
n=1 an(xn) converges. Actually, it

converges absolutely. In fact, let (εn)n a sequence of real
numbers such that

|an(xn)|= εnan(xn), for every n ∈ N.

It is not hard to verify that y = (εnxn)n belongs to λM{E}r

and that
∞

∑
n=1

|an(xn)|= ϕ(y).

Now, let a = (an)n ∈ (λM{E})×. We have to prove that for
all α = (αn)n ∈ λ , (αn‖an‖E∗) ∈ ℓN . As in the second part
of the proof of (4), since ℓN = ℓ∗M, it is enough to prove that
the series ∑∞

n=1 |γnαn|‖an‖ converges, for all (γn)n ∈ ℓM.
For every n ∈N, since

‖γnαnan‖= sup{|an(γnαnt)| : t ∈ BE},

there exists tn ∈ BE such that

‖γnαnan‖ ≤ |an(γnαntn)|+
1

2n
.

But, (γnαntn)n ∈ (λM{E}. Indeed, if β = (βn)n ∈ λ ∗ then
(γnαn‖tn‖)n ≤ ‖α‖‖β‖(γn)n and ℓM is normal.

Now, ∑∞
n=1 |an(γnαntn)| < ∞ since a ∈ (λM{E})× and

(γnαntn)n ∈ λM{E}, and then

∑∞
n=1 |γn‖αnan‖ ≤ ∑∞

n=1 |an(γnαntn)|+ 1 is finite too. This
completes the proof.

Theorem 5. Let ψ be the correspondence from (λM{E}r)
∗

to (λ ∗{E∗,N}) which assigns to every continuous linear

form on λM{E}r the element of (λ ∗{E∗,N}) defined by the

sequence b=(bn)n given in the theorem 4. Then, ψ defines

a one- to- one continuous mapping, when these two spaces

are endowed with their standard respective norms.

Proof. If ϕ ∈ (λM{E}r)
∗ the sequence a = (an)n

represents ϕ as seen in (5). So, ψ is well defined.
Moreover, using (5), one can see that ψ is linear and one
to one. Now, let us prove that ψ is continuous.

Let a = (an)n be an element of ∈ λ ∗
N{E∗}, and α =

(αn)n ∈ Bλ . Since ℓN = ℓ∗M, the norm of ‖(αn‖an‖)n‖N is
defined by,

‖(αn‖an‖)n‖N = sup

{

∞

∑
n=1

|γn|αn‖an‖)n : γ = (γn) ∈ BℓM

}

.

For ε > 0, a sequence (tn)n ⊂ BE can be found such that,
for every n ∈ N,

γnαn‖an‖ ≤ an(γnαntn)+
ε

2n
.

But, as can be easily seen, y = (γnαntn)n ∈ λM{E}r, and
then, if ϕ is represented by the sequence (an)n, we have

∞

∑
n=1

|γn|αn‖an‖ ≤ |ϕ(y)| ≤ ε + ‖ϕ‖(λM{E}r)∗‖y‖

≤ ε + ‖α‖‖γ‖.
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