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1 Introduction

A function f : I ⊆ R → R is said to be convex on the
interval I , if the inequality

f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y) (1)

holds for all x,y ∈ I and t ∈ [0,1]. We say that f is
concave if − f is convex.

Let f : I ⊂ R → R be a convex function defined on
the interval I of real numbers and a,b ∈ I with a < b. The
following inequalities

f

(

a+ b

2

)

≤
1

b− a

∫ b

a
f (x)dx ≤

f (a)+ f (b)

2
. (2)

holds. This double inequality is known in the literature as
Hermite–Hadamard integral inequality for convex
functions (see [1]). Note that some of the classical
inequalities for means can be derived from (1) for
appropriate particular selections of the mapping f . Both
inequalities hold in the reversed direction if f is concave.
For some results which generalize, improve and extend

the inequalities (4) we refer the reader to the recent papers
[2,3,4,5,6,7,8].

Consider the classic biparameter Mittag–Leffler
function Ea,b(.), with Re(a) > 0, Re(b) > 0, defined by

E a,b(z) =
∞

∑
k=0

zk

Γ (ak+ b)
. For convenience, we will use

the notation Ea,b(t
−α)k to designate the k-th term of

Ea,b(.) when necessary. Two classic examples are
E 1,1(z) = ez and E 1,1(z)1 = z.

A non empty set K is called generalized e-convex set
if

u+ t Ea,b(v− u) ∈ K , (3)

holds for all u,v ∈ K and t ∈ [0,1]. A function h : K ⊆
R→R is said to be generalized e-convex on a generalized
e-convex set K , if the inequality

h(u+ t Ea,b(v− u))≤ th(v)+ (1− t)h(u), (4)

holds for all u,v ∈ K and t ∈ [0,1] with Ea,b(z) the
Mittag–Leffler function. We say that h is e-concave if −h

is e-convex.
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Remark.Obviously, if in the (4) we have E 1,1(z)1, then the
classical definition of convexity is obtained.

In [9] a generalized fractional derivative was defined
in the following way.

Definition 1.Given a function f : [0,+∞) → R. Then the

N-derivative of f of order α is defined by

Nα
F f (t) = lim

ε→0

f (t + εF(t,α))− f (t)

ε
(5)

for all t > 0, α ∈ (0,1) and F(t,α) is some function. Here,

we will use some cases of F defined in terms of the Mittag–

Leffler function Ea,b(.) with Re(a),Re(b)> 0.

If f is α−differentiable on (0,α) and lim
t→0+

N
(α)
F f (t)

exists, then define N
(α)
F f (0) = lim

t→0+
N
(α)
F f (t). Note that, if f

is differentiable, then N
(α)
F f (t) = F(t,α) f ′(t) where f ′(t)

is the ordinary derivative.

The function Ea,b(z) was defined and studied by
Mittag–Leffler in the year 1903. It is a direct
generalization of the exponential function. This
generalization was studied by Wiman in 1905, Agarwal in
1953 and Humbert and Agarwal in 1953, and others.

We consider the following examples:
I) F(t,α) ≡ 1. In this case, we have the ordinary

derivative.
II) F(t,α) = e(α−1)t . This kernel satisfies the

property that F(t,α) → 1 as α → 1 and yields a
conformable derivative used in [10].

III)F(t,α) = tα . With this kernel, we have
F(t,α) → t as α → 1. It is clear that since it is a
non-conformable derivative, the results will differ from
those obtained previously, which enhances the study of
these cases.

IV) F(t,α) = t−α . With this kernel, we have
F(t,α) → t−1 as α → 1 .This is the derivative Nα

3
studied in [11]. As in the previous case, the results
obtained have not been reported in the literature.

V)F(t,α) = E1,1( t−α)1 = tα . With this kernel we
have F(t,α) → x as α → 1 (see [7]). It is clear that since
it is a non-conformable derivative, the results will differ
from those obtained previously, which enhances the study
of these cases.

VI) Using the Robotov’s Function given by

F(t,α) = Rα(β , t) = tα
∞

∑
k=0

β ktk(α+1)

Γ (1+α)(k+ 1)
=

tαEα+1,α+1(β tα+1).

Definition 2.Let I be an interval I ⊆ R, a, t ∈ I and α ∈
R. The integral operator Jα

T,a, right and left, is defined for

every locally integrable function f on I as

Jα
T,a+( f )(t) =

∫ t

a

f (s)

T (t − s,α)
ds, t > a. (6)

Jα
T,b−( f )(t) =

∫ b

t

f (s)

T (s− t,α)
ds,b > t. (7)

Remark.It is easy to see that the case of the Jα
T operator

defined above contains, as particular cases, the integral
operators obtained from conformable and
non-conformable local derivatives. However, we will see
that it goes much further by containing some of the
fractional integrals that already exist in the literature. For
example, we have that

1) if T (t,α) = t1−α , T (t,α) = Γ (α)T (x− t,α), then
from (12) we have the right-sided Riemann–Liouville
fractional integrals (Rα

a+ f )(t). Similarly, from (13) we
obtain the left-sided derivative of Riemann–Liouville
fractional integral. Then its corresponding right
differential operator is

(RL Dα
a+ f )(t) =

d

dt
(R1−α

a+ f )(t).

Analogously, we obtain the left differential operator.
2) with
T (t,α) = t1−α , T (t − x,α) = Γ (α)T (ln t − lnx,α)t,
we obtain the right-sided Hadamard integral from (12).
The left-sided Hadamard integral is obtained similarly
from (13). The right derivative is

(H Dα
a+ f )(t) = t

d

dt
(H1−α

a+ f )(t),

and in a similar way, we can obtain the left.
3) The right-sided Katugampola integral is obtained from
(12) making

T (t,α) = t1−α , e(t) = tρ , T (t,α) =

Γ (α)

F(ρ ,α)

F(e(t)− e(x),α)

e′(t)
,

analogously for the integral left fractional. In this case, the
right derivative is

(K D
α ,ρ
a+

f )(t) = t1−ρ d

dt
K

1−α ,ρ
a+

f (t) =

F(t,ρ)
d

dt
K

1−α ,ρ
a+

f (t),

and we can obtain the left derivative in the same way.

4) The solution of equation (−∆)−
α
2 φ(u) = − f (u)

called Riesz potential, is given by the expression

φ = Cα
n

∫

Rn
f (v)

|u−v|n−α dv, where Cα
n is a constant (see [12,

13,14]). Obviously, this solution can be expressed in
terms of the operator (12) very easily.
5) Obviously, we can define the lateral derivative
operators (right and left) in the case of our generalized
derivative, for this it is sufficient to consider them from
the corresponding integral operator. To do this, just make
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use of the fact that if f is differentiable, then
Nα

F f (t) = F(t,α) f ′(t) where f ′(t) is the ordinary
derivative. For the right derivative we have
(

Nα
F,a+ f

)

(t) = Nα
F

[

Jα
T,a+( f )(t)

]

=

d
dx

[

Jα
T,a+( f )(t)

]

F(t,α), similarly to the left.

6) It is clear then, that from our definition, new extensions
and generalizations of known integral operators can be
defined. For example, in [15] presented the definition of
fractional integral of f with respecto to g of following
way. Let g : [a,b] → R be an increasing and positive
monotone function on (a,b] having a continuous
derivative g′(x) on (a,b). The left-sided fractional integral
of f with respect to the function g on [a,b] of order α > 0
is defined by

Iα
a+;g( f )(t) =

1

Γ (α)

∫ t

a

g′(s) f (s)

[g(t)− g(s)]1−α
ds, x > a, (8)

similarly the right lateral derivative is defined as well

Iα
b−;g( f )(t) =

1

Γ (α)

∫ b

t

g′(s) f (s)

[g(s)− g(t)]1−α
ds, x < b. (9)

It will be very easy for the reader to build the kernel T

in this case.

7) We can define the function space L
p
α [a,b] as the set

of functions over [a,b] such that (Jα
T,a+[ f (t)]

p(b))<+∞.

It is clear that it is necessary to define an integral
operator associated with the NF derivative, which will be
used in this work, which allows us to obtain results
associated with integration processes (see [16]). The
following statement is analogous to the one known from
the Ordinary Calculus (see [17,9]).

Theorem 1.Let f be N-differentiable function in (t0,∞)
with α ∈ (0,1]. Then for all t > t0 we have

a)If f is differentiable NF
Jα

t0
(Nα

F f (t)) = f (t)− f (t0).

b)Nα
F

(

NF
Jα

t0
f (t)

)

= f (t).

An important property, and necessary, in our work is
that established in the following result.

Theorem 2.(Integration by parts) Let u and v be

N-differentiable function in (t0,∞) with α ∈ (0,1]. Then

for all t > t0 we have

NF
Jα

t0
((uNα

F v)(t)) = [uv(t)− uv(t0)]−NF
Jα

t0
((vNα

F u)(t))
(10)

In this work, to facilitate the calculations related to the
definition of Generalized e-convex, we will use the
following differential and integral operators as follows.

Definition 3.Given a function f : [0,+∞) → R. Then the

N4-derivative of f of order α is defined by

Nα
4 f (t) = lim

ε→0

f (t + ε e tα
)− f (t)

ε
(11)

for all t > 0, α ∈ (0,1).
If f is N4−differentiable in some (0,α), and

lim
t→0+

N
(α)
4 f (t) exists, then define

N
(α)
4 f (0) = lim

t→0+
N
(α)
4 f (t), note that if f is differentiable,

then N
(α)
4 f (t) = e tα

f ′(t) where f ′(t) is the ordinary

derivative.

In [17] the integral operator corresponding to the
derivative NF was defined as follows.

Definition 4.Let I be an interval I ⊆R, a, t ∈ I, α ∈R and

F an absolutly continuous function. The integral operator

Ja
F,a+, right and left, is defined for every locally integrable

function f on I as

Ja
F,a+( f )(t) =

∫ t

a

f (s)

F(t − s,α)
ds, t > a. (12)

Ja
F,b−( f )(t) =

∫ b

t

f (s)

F(s− t,α)
ds,b > t. (13)

Then the corresponding integral operator of the
Derivative N4, is given by the following form.

Definition 5.Let I be an interval I ⊆R, a, t ∈ I, α ∈R. The

integral operator Ja
F,a+, right and left, is defined for every

locally integrable function f on I as

N4
Jα

a+ f (b) =

∫ b

a
e− ( b−x

b−a)
α

(b− x)α−1
f (x)dx,x > a.

(14)

N4
Jα

b− f (a) =
∫ b

a
e− ( x−a

b−a)
α

(x− a)α−1
f (x)dx,b > x.

(15)

Remark.As can be seen, the integral operator thus defined
is a ”weighted” Riemann-Liouville integral.

Also, from [7] we have the following.

Definition 6.Let α ∈ R and a < b. For each function f ∈
Lα ,0 [a,b], let us define the fractional integrals

N3
Jα

a+ f (x) =

∫ x

a
(x− t)−α

f (t)dt

N3
Jα

b− f (x) =

∫ b

x
(t − x)−α

f (t)dt

for every x ∈ [a,b]

The aim of our paper is to establish some generalized
inequalities of Hermite–Hadamard type for e-convex
functions using the generalized integral operator defined
above.
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2 Main Results

We will start with the following equality that will be useful
in establishing.

Lemma 1.Let α ∈ (0,1), f : [a,b] → [0,+∞) be a

differentiable function defined on [a,b], with 0 < a < b. If

f ′ ∈ L [a,b], then

α

(b− a)α+1

[

N4
Jα

b−
f (a)+ N4

Jα
a+ f (b)

]

+

(e−1 − 1)( f (b)+ f (a))

b− a

=

∫ 1

0

[

e−(1−t)α
− e−tα

]

f ′(at +(1− t)b)dt.

Proof.We can write I as follows:

I =

∫ 1

0

[

e−(1−t)α
− e−tα

]

f ′(at +(1− t)b)dt

=
∫ 1

0
e−(1−t)α

f ′(at +(1− t)b)dt

−

∫ 1

0
e−tα

f ′(at +(1− t)b)dt.

Integrating by parts and using the change of variables
x = at +(1− t)b, we have that

∫ 1

0
e−(1−t)α

f ′(at +(1− t)b)dt

=
1

b− a

(

e−1 f (b)− f (a)
)

−
α

b− a

∫ 1

0
e−(1−t)α

(1− t)α−1 f (at +(1− t)b)dt

=
1

b− a

(

e−1 f (b)− f (a)
)

+
α

(b− a)α+1

∫ b

a
(x− a)−α

e
−( x−a

b−a)
α

f (x)dx

=
1

b− a

(

e−1 f (b)− f (a)
)

+
α

(b− a)α+1 N4
Jα

b−
f (a).

Using similar arguments as in the above, we deduce that

∫ 1

0
e−tα

f ′(at +(1− t)b)dt

=
1

b− a

(

f (b)− e−1 f (a)
)

−
α

(b− a)α NF
Jα

a+ f (b).

The desired equality follows by combining these two
identities and rearranging the terms.

Corollary 1.Under the conditions of the previous lemma,

if f ′ is an increasing and generalized φ -convex function,

then we have

α

(b− a)α+1
[ N4

Jα
b−

f (a)+ N4
Jα

a+ f (b)]

+
(e− 1){ f (b)+ f (a)}

(b− a)

≤

∫ 1

0

[

e−(1−t)α
− e−tα

]

f ′{b+ t Ek(a− b)}dt.

Theorem 3.Let α ∈ (0,1), f : [a,b] → [0,+∞) a

differentiable function. If f ′ ∈ L1[a,b] and increasing,

then

1−α

(b− a)2−α
[ N4

Jα
b−

f (a)+ N4
Jα

a+ f (b)]

≤
(e− 1)( f (b)+ f (a))

(b− a)
.

Proof.Consider the following.

∫ 1

0

[

e−(1−t)α
− e−tα

]

f ′(b+ t Ek(a− b))dt

=

∫ 1/2

0

[

e−(1−t)α
− e−tα

]

f ′(b+ t Ek(a− b))dt

+

∫ 1

1/2

[

e−(1−t)α
− e−tα

]

f ′(b+ t Ek(a− b))dt

=
∫ 1/2

0

[

e−(1−t)α
− e−tα

]

f ′(b+ t Ek(a− b))dt

+

∫ 1

1/2

[

e−(t)α
− e−(1−t)α

]

f ′(a+ t Ek(b− a))dt

=
∫ 1/2

0

[

e−(1−t)α
− e−tα

]

[

f ′(b+ t Ek(a− b))− f ′(a+ t Ek(b− a))
]

dt.

Since the integrand is non-negative, we obtain the
desired inequality.

Theorem 4.Let α ∈ (0,1), f : [a,b] → [0,+∞) be a

differentiable function, with 0 < a < b. If f ′ ∈ L [a,b] and

increasing, and | f ′| is a generalized φ -convex function,

then

α

(b− a)α+1

[

N4
Jα

b−
f (a)+ N4

Jα
a+ f (b)

]

+
(e− 1)( f (b)+ f (a))

(b− a)

≤

(

Γ

(

1

α
,0

)

−Γ

(

1

α
,1

))

×

(

| f ′(a)|+ | f ′(b)|

α

)

,

with Γ (a,x) the classical gamma function.
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Proof.From the previous Corollary, we have

α

(b− a)α+1

[

N4
Jα

b−
f (a)+ N4

Jα
a+ f (b)

]

+
(e− 1)( f (b)+ f (a))

(b− a)

≤
∫ 1

0

[

e−(1−t)α
− e−tα

]

∣

∣ f ′(b+ t Ek(a− b))
∣

∣dt

≤

∫ 1

0
e−(1−t)α ∣

∣ f ′(b+ t Ek(a− b))
∣

∣dt

+
∫ 1

0
e−tα ∣

∣ f ′(b+ t Ek(a− b))
∣

∣dt

≤

∫ 1

0
e−(1−t)α (

t
∣

∣ f ′(a)
∣

∣+(1− t)
∣

∣ f ′(b)
∣

∣

)

dt

+

∫ 1

0
e−tα (

t
∣

∣ f ′(a)
∣

∣+(1− t)
∣

∣ f ′(b)
∣

∣

)

dt.

After calculating both integrals, we obtain the desired
result.

Theorem 5.Let α ∈ (0,1), f : [a,b] → [0,+∞) be a

generalized φ -convex and increasing function, with

1 < a < b, then

α

b− a
N3

Jα
a f (b)≤ min

{ f (b)(A−B)− f (a)C), f (a)(A−B)− f (b)C)},
(16)

where A = Γ ( 2
α ,1)−Γ ( 1

α ,1), B = Γ ( 2
α ,0)−Γ ( 1

α ,0) and

C = Γ ( 2
α ,1)−Γ ( 2

α ,0).

Proof.We observe that for t ∈ [a,b], the following holds;

tα =

(

t

t − a

)α

(t − a)α ≥

(

a

b− a

)α

(t − a)α (17)

and

tα =

(

t

b− t

)α

(b− t)α ≥

(

a

b− a

)α

(b− t)α . (18)

From (17) and (18), we obtain, respectively

e −tα
≤ e −( a

b−a )
α
(t−a)α

(19)

and

e −tα
≤ e −( a

b−a)
α
(b−t)α

. (20)

From (19) we have

N3
Jα

a f (b) ≤ (b− a)

∫ b

a
f (t) e− aα ( t−a

b−a)
α

dt

≤ (b− a)
∫ 1

0
f (a+(b− a)z) e− aα zα

dz

≤ (b− a)

∫ 1

0
f (a+ z Ek(b− a)) e−zα

dz

≤ (b− a)
∫ 1

0
[ f (a)z+(1− z) f (b)] e−zα

dz

≤ { f (b)(A−B)− f (a)C)}

Thus

N3
Jα

a f (b)≤ { f (b)(A−B)− f (a)C)}

Now using (20) and similar arguments as in the above, we
obtain

N3
Jα

a f (b)≤ { f (a)(A−B)− f (b)C)}

We obtain the desired result from the last two inequalities.

Theorem 6.Let α ∈ (0,1), f : [a,b] → [0,+∞) be a

generalized φ -convex and increasing function, with

0 < a < b, then

N3
Jα

a f (b)≤
1

(b− a)3α

×{A( f (b)− f (a))−B(b f (b)− a f (a))}
(21)

where A = Γ ( 2
α , bα) − Γ ( 2

α , aα), and

B = Γ ( 1
α , bα)−Γ ( 1

α , aα).

Proof.Using change of variables with t = bs+a(1−s) and
the generalized φ -convexity of f yields

∫ b

a
f (t) e− tα

dt

=
1

(b− a)

×
∫ 1

0
f (bs+ a(1− s)) e −(bs+a(1−s))α ds

≤
1

(b− a)

×

∫ 1

0
f (a+ s Ek(b− a)) e −(bs+a(1−s))α ds

≤
1

(b− a)

×

∫ 1

0
[ f (a)s+ f (b)(1− s)] e −(bs+a(1−s))α ds.

Integrating the last expression, we obtain
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∫ 1

0
[ f (a)s+ f (b)(1− s)] e −(bs+a(1−s))α ds

=
1

(b− a)2α

{[

Γ (
2

α
, bα)−Γ (

2

α
, aα)

]

( f (b)− f (a))

−

[

Γ (
1

α
, bα)−Γ (

1

α
, aα)

]

×(b f (b)− a f (a))

}

.

Where we get the inequality sought.

The inequality (21) can be refined, if we use the notion
of generalized φ -convexity directly, as the following result
shows.

Theorem 7.Let α ∈ (0,1), f : [a,b] → [0,+∞) be a

generalized φ -convex and increasing function, with

0 < a < b, then

N3
Jα

a f (b)≤
f (a)

Ek(b− a)(b− a)2α
[

Γ

(

2

α
,

(

(b− a)
b− a

Ek(b− a)
+ a

)α)

−Γ

(

2

α
, aα

)]

−b

[

Γ

(

1

α
,

(

(b− a)
b− a

Ek(b− a)
+ a

)α)

−Γ

(

1

α
, aα

)]

+ f (b)

[

Γ

(

2

α
,

(

(b− a)
b− a

Ek(b− a)
+ a

)α)

−Γ

(

2

α
, aα

)]

+a

[

Γ

(

1

α
,

(

(b− a)
b− a

Ek(b− a)
+ a

)α)

−

Γ

(

1

α
, aα

)]

.

Proof.Using change of variables with t = bs+ a(1− s),
the φ -convexity of f and integrating, we have

∫ b

a
f (t)e−tα

dt =
1

Ek(b− a)
∫ b−a

Ek (b−a)

0
f{a+ sEk(b− a)}e−{a+sEk(b−a)}α

ds

≤
1

Ek(b− a)

∫ b−a
Ek(b−a)

0
[ f (b)s+ f (a)(1− s)]

×e−{bs+a(1−s)}α
ds

1

Ek(b− a)(b− a)2α

×{ f (a)(A− bB)+ f (b)(A+ aB)},

with

A =

[

Γ

(

2

α
,

(

(b− a)
b− a

Ek(b− a)
+ a

)α)

−Γ

(

2

α
,aα

)]

and

B =

[

Γ

(

1

α
,

(

(b− a)
b− a

Ek(b− a)
+ a

)α)

−Γ

(

1

α
,aα

)]

This completes the proof.

3 Conclusion

In the development of tgis article we have presented some
new extensions of the Hermite-Hadamard type for convex
functions, within the framework of a generalized integral
operator integral with the kernel associated to the
functions ets

which is a particular case of the generalized
of the integral operator related to the NF derivative
extensively studied by the authors in [18,17]. At this
point we point out that differents generalized convexity
type, such as s−convex functions, (s,m)−convex
functions and others, can be obtained. We hope that this
work will stimulate progress in the line of research
associated with the study of integral inequalities
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[9] J.E. Nápoles, P.M. Guzman, L.M. Lugo, A. Kashuri, The

local non conformable derivative and Mittag Leffler function,

Sigma J Eng & Nat Sci., 38(2), 1007-1017, (2020).
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