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Abstract: The aim of this paper to introduce two incomplete first Appell hypergeometric matrix functions (IFAHMFs) γ1 and Γ1 by

means of the incomplete Pochhammer matrix symbols. Furthermore, there is a derivation of some results such as integral formula,

recursion formula, differentiation formula and finite summation formula of the IFAHMFs γ1 and Γ1.

Keywords: Gamma matrix function, incomplete Pochhammer symbols, hypergeometric matrix function, Bessel matrix function.

1 Introduction

In 2012, Srivastava et al. [1] introduced new incomplete
Pochhammer symbols and discussed many related
applications. Recently, Bansal et al. [2] established
certain incomplete ℵ- functions and investigated some
properties of them. Several properties of the incomplete
multivariable hypergeometric functions have been
investigated in the recent papers [3,4,5,6,7,8].

The matrix theory is appearing in the field of
mathematical, physical and engineering. In recent years,
many researchers have introduced and investigated
several kind of special matrix functions [9,10,11,12,13].
Matrix analogue of the two variable Appell
hypergeometric functions are defined in [14,15,16]. The
incomplete multivariable hypergeometric matrix
functions have been studied by many authors (see, e.g.,
[17,18,19]). Recursion formula, infinite summation
formula for the Srivastava’s triple hypergeometric matrix
functions HA , HB and HC are presented in [20]. Verma et

al. [21] have obtained some results of the Kampé de
Feŕiet hypergeometric matrix function.

Throughout in this paper, let C
s×s be the complex

space of complex matrices of common order s. For any
matrix E ∈ Cs×s, its spectrum ν(E) is the family of
eigenvalues of E . Suppose that f1(z) and f2(z) are
holomorphic functions in Θ an open set of the complex

plane and E ∈ Cs×s with ν(E) ⊂Θ , then by means of the
properties of the matrix functional calculus [22], we get
f1(E) f2(E) = f2(E) f1(E). Moreover, let F be a matrix in
Cs×s for which ν(F) ⊂ Θ , then
f1(E) f2(F) = f2(F) f1(E). A matrix E ∈ Cs×s is called
positive stable (In short, PS) if Re(τ) > 0 for all
τ ∈ σ(E).

The Gamma matrix function Γ (E) is given by [23]

Γ (E) =

∫ ∞

0
e−ttE−Idt; tE−I = exp((E − I) ln t), (1)

where E is a PS matrix in Cs×s.
In addition, if E + dI is invertible for each integer d ≥ 0,
hence the reciprocal gamma function [23] is stated as:

Γ −1(E) = (E)d Γ −1(E + dI).

Here, (E)d denotes the shifted factorial matrix function for
E ∈ Cs×s stated as ([24]):

(E)d =

{

E(E + I) · · ·(E +(d− 1)I), d ≥ 1

I, d = 0.
(2)

I denotes the identity matrix in Cs×s. If the matrix
E ∈ Cs×s is PS and d ≥ 1, so by [23], one has
Γ (E) = limd→∞(d− 1)!(E)−1

d dE .
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The Gauss hypergeometric matrix function [24] is
stated as

2F1(E,F;G;z1) =
∞

∑
d=0

(E)d(F)d(G)−1
d

d!
zd

1 , (3)

for matrices E , F and G in C
s×s so that G+dI is invertible

for each integer d ≥ 0 and |z1| ≤ 1.
The incomplete gamma matrix functions γ(E,x) and

Γ (E,x) are respectively given as (see [17])

γ(E,x) =

∫ x

0
e−ttE−Idt (4)

and

Γ (E,x) =

∫ ∞

x
e−ttE−Idt. (5)

The next decomposition identity

γ(E,x)+Γ (E,x) = Γ (E), (6)

is fulfilled. The incomplete Pochhammer matrix symbols
(E;x)d and [E;x]d are defined by (see [17])

(E;x)d = γ(E + dI,x)Γ −1(E) (7)

and

[E;x]d = Γ (E + dI,x)Γ −1(E), (8)

where E and x denote the PS matrix and positive real
number, respectively. By using (6), we get the following
decomposition formula:

(E;x)d +[E;x]d = (E)d , (9)

where (E)d is the Pochhammer matrix symbol introduced
in (2).
The incomplete Gauss hypergeometric matrix functions
are given as (see [17])

2γ1

[

(E;x),F ;G;z1

]

=
∞

∑
m=0

(E;x)m(F)m(G)−1
m

zm
1

m!
(10)

and

2Γ1

[

[E;x],F ;G;z1

]

=
∞

∑
m=0

[E;x]n(F)n(G)−1
n

zm
1

m!
, (11)

where E , F and G are matrices in Cs×s such that G+ k1I
is invertible for each integer k1 ≥ 0.
Furthermore, the integral representation of the incomplete
Gauss hypergeometric matrix function 2Γ1 is stated as:

2Γ1 [[E;x],F ;G;z1] =

(

∫ 1

0
1Γ0 [[E;x];−;z1t] tF−I(1− t)G−F−Idt

)

×Γ −1(F)Γ −1(G−F)Γ (G), |z1|< 1,

(12)

where G, F and G − F are PS, GF = FG, and

1Γ0

[

[E;x];−;z1t
]

is the incomplete Gauss

hypergeometric matrix function of one numerator.

The Bessel matrix function (see, e.g.,[25,26,27]) is
stated as:

JE(z) =
∞

∑
m≥0

(−1)m Γ −1((m+ 1)I+E)

m!

( z1

2

)2mI+E

,

(13)

where k1I+E is invertible for all integers k1 ≥ 0. Also, the
modified Bessel matrix functions are defined as follows
(see[27]):

IE = e
−Eiπ

2 JE(z1e
iπ
2 ); −π < arg(z1)<

π

2
,

IE = e
Eiπ

2 JE(z1e
−iπ

2 ); −π

2
< arg(z1)< π . (14)

2 Main Results

This section deals with the IFAHMFs γ1 and Γ1 as follows:

γ1

[

(E;x),F,F ′;G;z1,w1

]

= ∑
m1,m2≥0

(E;x)m1+m2
(F)m1

(F ′)m2
(G)−1

m1+m2

m1!m2!
z

m1
1 w

m2
1 ,

(15)

Γ1

[

[E;x],F,F ′;G;z1,w1

]

= ∑
m1,m2≥0

[E;x]m1+m2
(F)m1

(F ′)m2
(G)−1

m1+m2

m1!m2!
z

m1
1 w

m2
1 ,

(16)

where E , F , F ′, G are PS matrices inCs×s such that G+k1I

is invertible for every integer k1 ≥ 0 and z1, w1 are complex
variables.
From (9), we get the following decomposition formula

γ1

[

(E;x),F,F ′;G;z1,w1

]

+Γ1

[

[E;x],F,F ′;G;z1,w1

]

= F1

[

E,F,F ′;G;z1,w1

]

, (17)

where F1

[

E,F,F ′;G;z1,w1

]

is the first Appell

hypergeometric matrix function [16].

Remark.If we set z1 = 0 or w1 = 0 in (15) and (16), we
obtain the classical incomplete families of Gauss
hypergeometric matrix functions [17].

By means of the properties of γ1

[

(E;x),F,F ′;G;z1,w1

]

,

we can determine the properties of

Γ1

[

[E;x],F,F ′;G;z1,w1

]

using the decomposition

formula (17).
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Theorem 1.Let E, F, F ′ and G be matrices in Cs×s such

that FG = GF, FF ′ = F ′F and F ′G = GF ′. Then the

following function:

S = S (z1,w1) =γ1

[

(E;x),F,F ′;G;z1,w1

]

+Γ1

[

[E;x],F,F ′;G;z1,w1

]

meets the system of partial differential equations:

z1(1− z1)
∂ 2T

∂ z2
1

+(1− z1)w1

∂ 2T

∂ z1∂w1

− z1(E + I)
∂T

∂ z1

−z1
∂T

∂ z1

F −w1
∂T

∂w1

F +
∂T

∂ z1

G−ET F = O,

(18)

w1(1−w1)
∂ 2T

∂w2
1

+(1−w1)z1
∂ 2T

∂ z1∂w1

−w1(E + I)
∂T

∂w1

−w1
∂T

∂w1

F ′− z1
∂T

∂ z1

F ′+
∂T

∂w1

G−ET F ′ = O.

(19)

Proof.The relation (17) succeeds into the following proof

conjoined with F1

[

E,F,F ′;G;z1,w1

]

which adequately

fulfil the matrix differential equations given in [14,15].

Theorem 2.Let E, F, F ′ and G be non commuting

matrices in C
s×s so that E and G are PS, then we have the

following integral representation:

Γ1

[

[E;x],F,F ′;G;z1,w1

]

= Γ −1(E)
[

∫ ∞

x
e−t tE−IΦ2(F,F

′;G;z1t,w1t)dt

]

, (20)

where Φ2 is Humbert’s hypergeometric matrix function

given by (see [28])

Φ2(F,F
′;G;z1,w1)

= ∑
m1,m2≥0

(F)m1
(F ′)m2

(G)−1
m1+m2

m1!m2!
z

m1
1 w

m2
1 . (21)

Proof.By substituting [E;x]m1+m2
in (5) and (8) by its

integral representation in (16), we have

Γ1

[

[E;x],F,F ′;G;z1,w1

]

= Γ −1(E) ∑
m1,m2≥0

(

∫ ∞

x
e−t tE+(m1+m2−1)Idt

)

× (F)m1
(F ′)m2

(G)−1
m1+m2

zm1wm2

m1!m2!
,

= Γ −1(E) ∑
m1,m2≥0

(

∫ ∞

x
e−ttE−I(F)m1

(F ′)m2
(G)−1

m1+m2

× (z1t)m1(w1t)m2

m1!m2!
dt
)

. (22)

Hence, the proof is completed.

Theorem 3.For matrices E, F, F ′ and G in Cs×s such that
FG = GF, FF ′ = F ′F and F ′G = GF ′, and F, F ′, G are
PS, we have the following integral representation:

Γ1

[

[E;x],F,F ′;G;z1,w1

]

=
[

∫ ∞

0

∫ ∞

0
e−t1−t2

1Γ1

[

[E;x];G;z1t1 +w1t2

]

tF−I
1 tF ′−I

2 dt1dt2

]

×Γ −1(F)Γ −1(F ′). (23)

Proof.By using the integral representation of the
Pochhammer matrix symbols (F)m, (F ′)n in the definition
of (16), we get

Γ1

[

[E;x],F,F ′;G;z1,w1

]

= ∑
m1,m2≥0

[

∫ ∞

0

∫ ∞

0
e−t1−t2 [E;x]m1+m2

× tF−I
1 tF ′−I

2 (G)−1
m1+m2

(z1t)m1(w1t)m2

m1!m2!
dt1dt2

]

Γ −1(F)Γ −1(F ′).

(24)

With the help of the summation formula [29]

∑
M≥0

f (M)
(z+w)M

M!
= ∑

m1,m2≥0

f (m1 +m2)
zm1 wm2

m1!m2!
, (25)

we get (23).

Theorem 4.For matrices E, F, F ′ and G in Cs×s such that
FG = GF, FF ′ = F ′F and F ′G = GF ′, and E, F, F ′, G
are PS, the following integral representation holds true:

Γ1

[

[E;x],F,F ′;G;z1,w1

]

= Γ −1(E)
[

∫ ∞

0

∫ ∞

0

∫ ∞

x
e−s−t1−t2 sE−I

× tF−I
1 tF ′−I

2 0F1(−;G;z1t1s+w1t2s)dt1dt2ds
]

Γ −1(F)Γ −1(F ′). (26)

Proof.By substituting [E;x]m+n in (5) and (8) by its integral
representation in (23), we are led to the desired result (26).

Corollary 1.We have

Γ1

[

[E;x],F,F′;G+ I;−z1,−w1

]

= Γ −1(E)
[

∫ ∞

0

∫ ∞

0

∫ ∞

x
e−s−t1−t2 sE− G

2
−ItF−I

1 tF ′−I
2

× (z1t1 +w1t2)
− G

2 JG(2
√

z1t1s+w1t2s)dt1dt2ds
]

Γ −1(F)Γ −1(F ′)Γ (G+ I) (27)

Γ1

[

[E;x],F,F′;G+ I;z1,w1

]

= Γ −1(E)
[

∫ ∞

0

∫ ∞

0

∫ ∞

x
e−s−t1−t2 sE− G

2
−ItF−I

1 tF ′−I
2

× (z1t1 +w1t2)
− G

2 IG(2
√

z1t1s+w1t2s)dt1dt2ds
]

Γ −1(F)Γ −1(F ′)Γ (G+ I), (28)
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Theorem 5.For non commuting matrices E, F, F ′ and G

in Cs×s such that E and G are PS, we have the following

recursion relation:

Γ1

[

[E;x],F + sI,F ′;G;z1,w1

]

= Γ1

[

[E;x],F,F ′;G;z1,w1

]

+ z1E

[ n

∑
k=1

Γ1

[

[E + I;x],F + kI,F ′;G+ I;z1,w1

]]

G−1
.

(29)

Also, if F − kI is invertible for every integer k ≤ n where n

is a non-negative integer, then

Γ1

[

[E;x],F − sI,F ′;G;z1,w1

]

= Γ1

[

[E;x],F,F ′;G;z1,w1

]

− z1E

[n−1

∑
k=0

Γ1

[

[E + I;x],F − kI,F ′;G;z1,w1

]]

G−1
.

(30)

Proof.By using (20) and the following formula:

(F + I)m = F−1(F)m(F +mI),

we have

Γ1

[

[E;x],F + I,F ′;G;z1,w1

]

= Γ1

[

[E;x],F,F ′;G;z1,w1

]

+z1E
[

Γ1[(E + I;x],F + I,F ′;G+ I;z1,w1]
]

G−1
.

(31)

Now, applying (31) to the matrix function Γ1 with the
matrix parameter F + 2I, we find that

Γ1

[

[E;x],F + 2I,F ′;G;z1,w1

]

= Γ1

[

[E;x],F,F ′;G;z1,w1

]

+z1E
[ 2

∑
k=1

Γ1

[

[E + I;x],F + kI,F ′;G+ I;z1,w1

]]

G−1
.

(32)

Recursion formula (29) follows by repeating n-times the
process of result (31).
Again, replace F with F − I in (31) to get

Γ1

[

[E;x],F − I,F ′;G;z1,w1

]

= Γ1

[

[E;x],F,F ′;G;z1,w1

]

−z1E
[

Γ1

[

[E + I;x],F,F ′;G+ I;z1,w1

]]

G−1
.

(33)

Iteratively, we obtain (30).

By using the relations (31) and (33), we have another
form of recursion formulas for Γ1.

Theorem 6.For non commuting matrices E, F, F ′ and G

in Cs×s such that E and G are PS, we have the following

recursion relation:

Γ1

[

[E;x],F + nI,F ′;G;z1,w1

]

= ∑
k1≤n

(

n

k1

)

(E)k1
z

k1
1

×
[

Γ1

[

[E + k1I;x],F + k1I,F ′;G+ k1I;z1,w1

]]

(G)−1
k1
.

(34)

Also, if F − kI is invertible for every integer k ≤ n (where

n is a non-negative integer), then

Γ1

[

[E;x],F − nI,F ′;G;z1,w1

]

= ∑
k1≤n

(

n

k1

)

(E)k1
(−z1)

k1

×
[

Γ1[[E + k1I;x],F,F ′;G+ k1I;z1,w1]
]

(G)−1
k1
. (35)

Proof.To prove the result (34), it suffices to apply the
induction on n ∈ N. For n = 1, (34) holds. Suppose (34) is
true for n = t, i.e.,

Γ1

[

[E;x],F + tI,F ′;G;z1 ,w1

]

=

∑
k1≤t

(

t

k1

)

(E)k1
z

k1
1

[

Γ1

[

[E + k1I;x],F + k1I,F ′;G+ k1I;z1 ,w1

]]

(G)−1
k1
. (36)

Replacing F with F + I in (36) and using (31), we get

Γ1

[

[E;x],F +(t+1)I,F ′;G;z1 ,w1

]

=

∑
k1≤t

(

t

k1

)

(E)k1
z

k1
1

[

Γ1

[

[E + k1I;x],F + k1I,F ′;G+ k1I;z1 ,w1

]

+ z1(E + k1I)Γ1

[

[E +(k1 +1)I;x],F +(k1 +1)I,F ′;G+(k1 +1)I;z1,w1

]

(G+ k1I)−1
]

× (G)−1
k1
. (37)

After some simplification, (37) takes the form

Γ1

[

[E;x],F +(t +1)I,F ′;G;z1 ,w1

]

=

∑
k1≤t

(

t

k1

)

(E)k1
z

k1
1 Γ1

[

[E + k1I;x],F + k1I,F ′;G+ k1I;z1,w1

]

(G)−1
k1

+ ∑
k1≤t+1

(

t

k1 −1

)

(G)k1
z

k1
1 Γ1

[

[E + k1I;x],F + k1I,F ′;G+ k1I;z1 ,w1

]

(G)−1
k1
.

(38)

By applying Pascal’s formulas (38), we obtain

Γ1

[

[E;x],F +(t +1)I,F ′;G;z1 ,w1

]

= ∑
k1≤t+1

(

t +1

k1

)

(E)k1
z

k1
1 Γ1

[

[E + k1I;x],F + k1I,F ′;G+ k1I;z1 ,w1

]

(G)−1
k1
. (39)

We get the desired formula (34) for n = t + 1. Hence,
through induction, the relation (34) stands true for all
values of n. A similar argument will establish the formula
(35).
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The recursion formulas for

Γ1

[

(E;x),F,F ′ ± nI;G;z1,w1

]

are obtained by replacing

F ↔ F ′ and z1 ↔ w1 in Theorems 5 – 6, respectively.

Theorem 7.Given the matrices E, F, F ′ and G in Cs×s so

that EF = FE, F ′G = GF ′, and E, G are PS, then we have

the following recursion relation:

Γ1

[

(E;x),F,F ′;G−mI;z1,w1

]

= Γ1

[

[E;x],F,F ′;G;z1,w1

]

+ z1EF
[ m

∑
l=1

Γ1

[

[E + I;x],F + I,F ′;G+(2− l)I;z1,w1

]

× (G− lI)−1(G− (l− 1)I)−1
]

+w1E
[ m

∑
l=1

Γ1

[

[E + I;x],F,F ′+ I;G+(2− l)I;z1,w1

]

× (G− lI)−1(G− (l− 1)I)−1
]

F ′
. (40)

Proof.Applying the integral formula (20) of Γ1 and the
following transformation:

(G− I)−1
n1+n2

= (G)−1
n1+n2

[

I + n1(G− I)−1 + n2(G− I)−1
]

,

we obtain the contiguous matrix relation

Γ1

[

[E;x],F,F ′;G− I;z1,w1

]

= Γ1

[

[E;x],F,F′;G;z1,w1

]

+ z1EF
[

Γ1

[

[E + I;x],F + I,F ′;G+ I;z1,w1

]

(G− I)−1(G)−1
]

+w1 E
[

Γ1

[

[E + I;x],F,F ′+ I;G+ I;z1,w1

]

(G− I)−1(G)−1
]

F ′
.

(41)

Replacing G with G− I in (41), we arrive at

Γ1

[

[E;x],F,F ′;G− 2I;z1,w1

]

= Γ1

[

[E;x],F,F ′;z1,w1

]

+ z1EF
[ 2

∑
l=1

Γ1

[

[E + I;x],F + I,F ′;G+(2− l)I;z1,w1

]

× (G− lI)−1(G− (l− 1)I)−1
]

+w1 E
[ 2

∑
l=1

Γ1

[

[E + I;x],F,F ′+ I;G+(2− l)I;z1,w1

]

× (G− lI)−1(G− (l− 1))−1
]

F ′
. (42)

Repeating this relation s-times on

Γ1

[

[E;x],F,F ′;G−mI;z1,w1

]

, we get (40).

Theorem 8.Given the matrices E, F, F ′ and G in Cs×s so
that E and G are PS, then we have the following derivative

formulas:

D
k1
w1

[

Γ1

[

[E;x],F,F ′;G;z1 ,w1

]]

= (E)k1

[

Γ1

[

[E + k1I;x],F,F ′+ k1I;G+ k1I;z1 ,w1

]]

(F ′)k1
(G)−1

k1
,F ′G = GF ′;

(43)

D
k1
w1

[

Γ1

[

[E;x],F,F ′;G;z1 ,w1

]

w
F′+(k1−1)I
1

]

=
[

Γ1

[

[E;x],F,F ′ + k1I;G;z1 ,w1

]]

wF′−I
1 (F ′)k1

,F ′G = GF ′; (44)

D
k1
w1

[

Γ1

[

[E;x],F,F ′;G;z1w1,w1

]

wG−I
1

]

=
[

Γ1

[

[E;x],F,F ′;G− k1I;z1w1,w1

]]

(−1)k1 (I−G)k1
w

G−(k1+1)I
1 , (45)

where Dw1
f = d f

dw1
and G− I is an invertible matrix for

(45).

Proof.By differentiating (20) with respect to w, we get

d

dw1

[

Γ1

[

[E;x],F,F ′;G;z1,w1

]]

= E Γ −1(E + I)

×
[

∫ ∞

x
e−t t(E+I)−IΦ2(E,E

′+ I;G+ I;z1t,w1t)dt
]

F ′G−1
.

(46)

From the relations (20) and (46), we find that

d

dw1

[

Γ1

[

[E;x],F,F ′;G;z1,w1

]]

= E
[

Γ1

[

[E + I;x],F,F ′+ I;G+ I;z1,w1

]]

F ′G−1
. (47)

Hence, (43) is true for k1 = 1. The significant formula
comes by the principle of induction on k1. Thus, we
obtain (43). Formulas (44) and (45) can be established in
a similar way.

Theorem 9.For matrices E, F, F ′ and G in Cs×s such
that F ′G = GF ′ and E, G are PS, the following
summation formula holds true:

k1

∑
l=0

(

k1

l

)

(E)lw
l
1 Γ1

[

[E + lI;x],F,F′+ lI;G+ lI;z1,w1

]

(G)−1
l

= Γ1

[

[E;x],F,F′+ lI;G;z1,w1

]

. (48)

Proof.From definition of incomplete matrix function Γ1

and the generalized Leibnitz formula for differentiation of
a product of two functions, we have

Dk1
w1

[

Γ1

[

[E;x],F,F ′;G;z1,w1

]

w
F ′+(k1−1)I
1

]

=
k1

∑
l=0

(

k1

l

)

Dl
w1

[

Γ1

[

[E;x],F,F ′;G;z1,w1

]]

Dk1−l
w1

[

w
F ′+(k1−1)I
1

]

=
k1

∑
l=0

(

k1

l

)

(E)l

[

Γ1

[

[E + lI;x],F,F ′+ lI;G+ lI;z1,w1

]]

(F ′)l(G)−1
l

w
F ′+(l−1)I
1 . (49)

We used (43) and some simplification in the second
equality. From (44) and (49), we get (48).
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Remark.The first Appell hypergeometric matrix function
F1 will be obtained if we assume x = 0 in the IFAHMF Γ1.
Hence, taking x = 0, the obtained formulas for Γ1 convert
to the formulas for the Appell hypergeometric matrix
function F1.

3 Conclusion

In this paper, we studied the IFAHMFs Γ1 and γ1. We
obtained some integral formula, recursion formula,
differentiation formula and finite summation formula of
the IFAHMFs Γ1 and γ1. The particular case of our results
coincides with the results obtained in [4] when taking
matrices from C1×1.
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