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Abstract: Herein, modified orthogonal polynomials are introduced. These polynomials are generated from the second kind of shifted

Chebyshev polynomials on the interval [α, β]. The operational matrix of its derivative is constructed. The Tau and Galerkin method

with the proposed orthogonal polynomials is used to solve the boundary value problems (BVPs) with even order. The effectiveness of

these methods is proved through their application to several BVPs.
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1 Introduction

BVPs have risen in importance since they are used in
various domains, including chemistry [1], physics [2],
biology [3], fluid dynamics [4], engineering [5], and
diseases [6]. Most of these applications haven’t exact
solutions. That’s why we turn to the approximate
solutions—one of those approximate solutions is the
numerical solution. There are several numerical methods
available, each one having advantages and disadvantages.
The finite difference approach, for example, implies
dividing a continuous domain into a grid of discrete
points and estimating derivatives using finite differences
between neighboring grid points [7, 8]. The finite element
method includes expressing the domain as a collection of
smaller, simpler subdomains and then solving the
problem by merging the solutions for each subdomain.
This approach is very beneficial for issues involving
irregularly shaped domains or complex boundary
conditions [9]. On the other hand, spectral methods have
been most prevalent because of their advantages. Like,
higher accuracy, speed, convergence, and the ability to
deal with complex geometries and boundary conditions.

These techniques implied the approximate solution as a
summation of unknown constants times suitable basis
functions. There are three kinds of spectral methods. The
first is the Galerkin method used in [10, 11]. A critical
condition to using the Galerkin method is the chosen
basis functions that should satisfy the initial and boundary
conditions of the given BVP. In contrast, the Tau method
hasn’t any conditions but needs a suitable weight
function [12–15]. The collocation (pseudospectral)
method is the third kind [16–19]. Its technique depends
on differentiation matrices.

The base function mentioned may be orthogonal or
not. Some examples of these polynomials were presented.
The first kind of Chebysheve polynomials was used
in [20–26]. The second kind of Chebyshev polynomials
was applied in [27, 28]. Similar to the authors in [29],
they use the Chebyshev polynomials’ first derivative,
orthogonal polynomials. The authors in [30] used the
Legendre polynomials. Additionally, the second
derivative Legendre polynomials were utilized as a base
function in [10, 31]. The authors [32, 33] choose the
ultraspherical polynomials to be their base functions.
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In this paper, we modified the second kind of shifted
Chebyshev polynomials in the interval [α, β] (SCH2-Ps)
and named it Modified shifted second kind Chebyshev
polynomial (MSCH2-Ps). These novel polynomials were
used to solve the even BVPs using Galerkin and Tau
method.

This paper consists of five sections. All necessary
definitions and relations are presented in the second
section. Section 3 consists of 2 parts; in the first part, we
defined the new orthogonal polynomial, its recurrence
relations, and orthogonality relations. The second part
constructed the operation matrix of the differentiation of
order k. The two proposed methods, Galerkin and Tau,
are presented in detail to solve even-order BVPs in
section 4. In section 5, the efficiency and accuracy of the
two techniques were proved by solving even-order BVPs
and comparing the obtained results with other methods.
Some of the solutions to these problems achieved the
exact solution. Finally, the paper will be ended by
conclusion and the future work.

2 Some needed relations

In this section, important and essential relationsCH2-Ps
are listed. The CH2-Ps, Uj(y) of order j ≥ 0, are defined
on interval [−1, 1] as [35, 36]:

Uj(y) =
sin(j + 1)θ

sin θ
; y = cos θ.

Its recurrence relation:

Uj(y) = 2yUj−1(y)− Uj−2(y) j ≥ 2, (1)

with its initials U0(y) = 1 and U1(y) = 2y.
{Uj(y)}j≥0 are orthogonal concerning their weight

function w(y) =
√

1− y2:

∫ 1

−1

Ui(y)Uj(y)w(y) dy =

{

π
2
, i = j,

0, i 6= j.
(2)

The boundaries of Uj(y) satsisfy:

Uj(−1) = (−1)j(j + 1), Uj(1) = 1 + j, (3)

U ′
j(−1) =

(−1)j−1j(j − 1)

2
, U ′

j(1) =
j(j − 1)

2
, (4)

|Uj(y)| ≤ 1,
∣

∣U ′
j(y)

∣

∣ ≤
j(j − 1)

2
. (5)

The formula of Uj(y) as series defined as:

Uj(y) =

⌊j/2⌋
∑

i=0

(−1)i
2j−2i(j − i)!

(i)!(j − 2i)!
yj−2i. (6)

Moreover,the SCH2-Ps, U∗
j (y); y ∈ [α, β], of order j can

be defined as:

U∗
j (y) = Uj

(

2y − β − α

β − α

)

, j = 0, 1, 2, ... (7)

The orthogonality relation of {U∗
j (y)}

N
j=0 with respect to

its weight functionw∗(y) =
√

(y − α)(β − y) formed as:

∫ β

α

U∗
i (y)U

∗
j (y)w

∗(y)dy =

{

0, i 6= j,
π
8
(β − α)2, i = j.

(8)

The linearization relation of two SCH2-Ps is represented
as:

U∗
i (y)U

∗
j (y) =

i+j
∑

l=|i−j|
step 2

U∗
l (y). (9)

In the next section, the presented novel polynomials will
be introduced. Consequently, the operational matrix of
derivatives will be constructed.

3 Modified shifted second kind Chebyshev

polynomials

The following section will be divided into two parts. In
the first part, we will establish novel orthogonal
polynomials based on SCH2-Ps. The new polynomials
will be called modified shifted second-kind Chebyshev
polynomials (MSCH2-Ps). Furthermore, all relations of
these polynomials are investigated in that part. While in
the second part, the operational matrix of these
polynomials’ derivatives will be introduced.

3.1 Modified shifted second kind Chebyshev

polynomial

In the beginning, we defined the investigated polynomials
MSCH2-Ps on the interval [α, β].

Definition 1.The set of MSCH2-Ps {ψr,j(y)};

r, j = 0, 1, 2, · · · , y ∈ [α, β] will be generated as:

ψr,j(y) = (y − α)r(β − y)rU∗
j (y), (10)

where
ψr,0(y) = (y − α)r(β − y)r, (11)

ψr,1(y) = 2(y − α)r(β − y)r(
2y − a− b

b− a
), (12)

ψr,2(y) = (y − α)r(β − y)r
(

16y2 − 16(α+ β)y + 3(α+ β)2 + 4αβ

(β − α)2

)

.

(13)

From the recurrence relation (1), the recurrence relation of
MSCH2-Ps defined as:

ψr,j+2(y) =2

(

2y − α− β

β − α

)

ψr,j+1(y)− ψr,j(y),

j = 0, 1, 2, · · · .
(14)
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Here are some of the initials and boundaries of ψr,j(y):

ψr,j(α) = ψr,j(β) = 0, r > 0, (15)

ψ′
r,j(α) = ψ′

r,j(β) = 0, r > 1. (16)

The set of polynomials {ψr,j(y)}r,j≥0 are orthogonal with
respect to its weight function ŵ(y) as:

∫ β

α

ψr,i(y)ψr,j(y)ŵ(y)dy =

{

0, i 6= k,
π
8
(β − α)2, i = j,

(17)
such that ŵ(y) =

√

(y − α)1−4r(β − y)1−4r.

In addition, the linearization of MSCH2-Ps is defined
in the following remark.

Remark.The product of two MSCH2-Ps expressed as:

ψr,i(y)ψr,j(y) = (x− α)r(β − x)r
i+j
∑

l=|i−j|
step 2

ψr,l(y) (18)

3.2 Operational matrix of MSCH2-Ps

In this part, the first derivative of ψr,j(y) will be defined
in terms of itself. Based on that, the first derivative
operational matrix of MSCH2-Ps will be created. Then,
the kth derivative operational matrix will be inducted.

Theorem 1.The first derivative of MSCH2-Ps can be

interpreted as:

d

dy
ψr,j(y) =

j
∑

n=0

(4 en ηj Rj,n + ξr,j(y))ψr,j(y), (19)

where:

en =
n+ 1

β − α
, (20)

ξn,j(y) = r

(

1

y − α
−

1

β − y

)

, (21)

ηj =

{

0 j = 1,

1 otherwise,
(22)

Rj,n =

{

1 n+ j odd,

0 n+ j even.
(23)

Proof.This theorem can be proved by using mathematical
induction: at j = 0

ψ′
r,0(y) = −r [(β − y)(y − α)]

r−1
(2y − α− β). (24)

Consider that the summation of Eq.(19) is true at j = v.
So, by differentiate (Eq.1) of index j = v − 1

d

dy
ψr,v+1(y) =

4

β − α
ψr,v

+ 2

(

2y − α− β

β − α

)

×

v
∑

n=0

(4 en ηv Rv,n + ξr,v(y))ψr,v(y)

−

v−1
∑

n=0

(4 en ηv−1Rv−1,n + ξr,v−1(y))ψr,v−1(y)

(25)

By simplifying the previous equation, the theorem was
proved.

On the other hand, the derivative of ψr,j(y) can be formed
as a matrix.

Corollary 1.The first derivative of ψr,j(y) can be

expressed as:

ψ′(y) =M.ψ(y), (26)

where ψ′(y) = [ψ′
r,0(y), ψ

′
r,1(y), · · · , ψ

′
r,N(y)]T ,

ψ(y) = [ψr,0(y), ψr,1(y), · · · , ψr,N (y)]T , and M =
(mjn)

N
j,n=0 is the (N + 1 × N + 1) square matrix such

that:

mjn =











0 n > j

4 en ηj Rj,n + ξr,j(y) otherwise

(27)

For example, if N = 3 and r = 2

M =






















2

y − α
+

2

y − β
0 0 0

4

β − α

2

y − α
+

2

y − β
0 0

0
8

β − α

2

y − α
+

2

y − β
0

4

β − α
0

12

β − α

2

y − α
+

2

y − β























.

(28)

Similar to for N = 3 and r = 3

M =






















3

y − α
+

3

y − β
0 0 0

4

β − α

3

y − α
+

3

y − β
0 0

0
8

β − α

3

y − α
+

3

y − β
0

4

β − α
0

12

β − α

3

y − α
+

3

y − β























.

(29)
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Corollary 2.The kth derivative of ψ(y) can be expressed as:

ψ
(k)(y) = [M .ψ(y)](k) , k = 1, · · · , N. (30)

After constructing the operation matrix of the derivative of

ψ(y), we can used it via two spectral methods; Galerkin and Tau

methods. These will be presented in the next section.

4 The two Methods for solving BVPs

Assumethe BVP of the even-order p:

Z
(p)(y) = F

(

y,Z(y), Z′(y), ..., Z(p−1)
)

, (31)

where y ∈ [α, β]. The homogeneous initial and boundary

conditions are:

Z(α) = Z
′(α) = Z

′′(α) = · · · = U
(
p

2
−1)(α) = 0,

Z(β) = U
′(β) = Z

′′(β) = · · · = Z
( p

2
−1)(β) = 0.

(32)

Considering the approximate solution of Eq.(31) as:

Z(y) ≃
N
∑

j=0

cjψr,j(y). (33)

Applying Theorem (1) and Corollary (2) to Eq.(31) and

determining its residual:

ℜ(y) =

N
∑

j=0

cjψ
(p)
r,j (y)−

F

(

y,

N
∑

j=0

cjψr,j(y),
N
∑

j=0

cjψ
′
r,j(y), ...,

N
∑

j=0

cjψ
(p−1)
r,j (y)

)

.

(34)

4.1 Galerkin spectral method via MSCH2-Ps

(MSCH2-Gal)

As we know, the basis functions should be verified the initial and

boundary conditions to meet the use of Galerkin method. From

Definition (1), the basis function ψr,j(y) and its derivative equal

zero at α and β for suitable choice of r.

Collocating the residual (34) by N + 1 points, ys, and

applying the Galerkin method to get:

ℜ(ys) = 0; r = 0, 1, · · · , N, (35)

to get system of (N + 1) equations.: The collocation point ys ∈

[α, β] were chosen as the equidistant points, zeros of SCH2-Ps,

or any suitable points. Any numerical solver may be used to solve

the previous system to find the constant cj .

4.2 Tau spectral method via MSCH2-Ps

(MSCH2-Tau)

In the Tau method, the algebraic system will be generated by

solving the Tau integral:
∫ β

α

ℜ(y)φj(y)W (y)dy = 0, j = 0, 1, · · · , N −BC. (36)

where W (y) is any trial function, W (y) be any suitable weight

function, and BC is the number of the non-zero initial and

boundary conditions. We choose the trial function similar to the

base function and the weight function will specified as

W (x) =
√

(y − α)1−2r(β − y)1−2r So, 36 can be written as:

∫ β

α

ℜ(y)ψr,j(y)W (y)dy = 0, j = 0, 1, · · · , N. (37)

The N + 1 algebraic system (37) of N + 1 unknowns ci can be

solved using any appreciate method

The homogeneity of initial and boundary conditions is the

primary condition to use the investigated polynomials. However,

there are some BVPs whose conditions are non-homogeneous.

The following remark fix the non-homogeneous conditions.

Remark.The non-homogeneous initial and boundary conditions

can be transformed into homogeneous as:

z(y) = Z(y) +

p−1
∑

v=0

Gvy
v
, (38)

such that

z(α) = z
′(α) = z

′′(α) = · · · = z
( p

2
−1)(α) = 0,

z(β) = z
′(β) = z

′′(β) = · · · = z
(
p

2
−1)(β) = 0,

(39)

where, Gv are constants determined by solving Eqs.(38,39).

In the next sections, some BVPs will solved using MSCH2-

Ps via the two introduced spectral methods.

5 Numerical Examples

Example 1.Consider fourth-order linear BVP:

Z
(4)(y) = Z(y) + Z

′′(y) + e
y(y − 3),

Z(0) = 1, Z(1) = 0, Z′′(0) = −1, Z′′(1) = −2e,
(40)

and its exact solution Z(y) = (1 − y)ey. The example’s initial

and boundary conditions are non-homogeneous, so we need to

convert it to be homogeneous at r = 2. Table (1) shows the

absolute error (AE) of the two proposed methods and other

method at N = 5. While Fig (1) shows the stability of the

solution using MSCH2-Gal

Example 2.Consider fourth-order linear BVP:

Z
(4)(y) =Z(y)− 4(2y cos(y) + 3 sin(y)), y ∈ [0, 1],

Z(0) = 0, Z(1) = 0,

Z
′′(0) = 0, Z′′(1) = −2 sin(1) + 4 cos(1),

(41)

and its exact solution Z(y) = (y2 − 1) sin(y).
To satisfy the homogeneity, we use Remark (4.2) at r = 3.

Table (2) compares the two proposed methods and another

author’s method at N = 5.
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Table 1: The AE Example 1 at N = 5.

y MSCH2-Gal MSCH2-Tau [38]

0.1 2.76 ∗ 10−10 3.62 ∗ 10−12 7.69 ∗ 10−10

0.2 4.90 ∗ 10−10 9.95 ∗ 10−11 1.46 ∗ 10−9

0.3 6.48 ∗ 10−10 1.40 ∗ 10−10 2.02 ∗ 10−9

0.4 7.53 ∗ 10−10 1.13 ∗ 10−11 2.39 ∗ 10−9

0.5 7.93 ∗ 10−10 1.13 ∗ 10−10 2.53 ∗ 10−9

0.6 7.77 ∗ 10−10 1.83 ∗ 10−11 2.44 ∗ 10−9

0.7 6.89 ∗ 10−10 1.43 ∗ 10−10 2.10 ∗ 10−9

0.8 5.38 ∗ 10−10 1.04 ∗ 10−10 1.55 ∗ 10−9

0.9 3.11 ∗ 10−10 3.20 ∗ 10−12 8.27 ∗ 10−9

2 4 6 8 10 12 14

- 15

- 10

- 5

0



lo
g
E
rr
o
r

Fig. 1: The log error via MSCH2-Gal of Example 1.

Table 2: The AE for Example 2 at N = 5.

y MSCH2-Gal MSCH2-Tau [38]

0.1 1.27 ∗ 10−13 6.00 ∗ 10−14 1.54 ∗ 10−9

0.2 8.76 ∗ 10−13 1.05 ∗ 10−13 2.95 ∗ 10−9

0.3 1.32 ∗ 10−12 5.11 ∗ 10−13 4.10 ∗ 10−9

0.4 1.56 ∗ 10−12 3.32 ∗ 10−14 4.88 ∗ 10−9

0.5 1.73 ∗ 10−12 6.48 ∗ 10−13 5.21 ∗ 10−9

0.6 1.59 ∗ 10−12 6.05 ∗ 10−14 5.04 ∗ 10−9

0.7 1.38 ∗ 10−12 5.29 ∗ 10−13 4.36 ∗ 10−9

0.8 9.23 ∗ 10−13 1.26 ∗ 10−13 3.22 ∗ 10−9

0.9 1.21 ∗ 10−13 6.29 ∗ 10−14 1.72 ∗ 10−9

Example 3.Consider the Lane–Emden–Fowler equation of the

first type:

Z
(4)(y)+

4

y
Z

(3)(y) = −Z
m(y), y ∈ [0, 1],

Z(0) = Z
′′(0) = 0

(42)

and its exact solution at m = 0 is Z(y) = 1− 1
120

y4. In this

example, the initial conditions are homogeneous. However, the

conditions at the y = 1 are non-homogeneous. The convert all

conditions to homogeneous conditions, Remark (4.2) at r = 2.

Let:

Z(y)1 = c0ψ2,0(y) + c1ψ2,1(y). (43)

Applying MSCH2-Gal to get the algebraic system:

120 c0 + 720 c1 = −1

120 c0 + 120 c1 = −1
(44)

Solving the previous system to get c0 = −1
120

and c1 = 0.

Substitute into Eq.(43) to get Z1(y) = −
y4

120
+ y3

60
−

y2

120
,

which is the exact solution of the homogeneous BVP. The same

exact solution can be achieved by using MSCH2-Tau.

Example 4.Consider the tenth-order BVP:

Z
(10)(y) = e

−y(Z(y))2, y ∈ [0, 1]

Z
(2m)(0) = 1, Z(2m)(1) = e,

(45)

where m = 0, 1, 2, 3, 4. Its exact solution is Z(y) = ey. Table

(3) shows the accuracy of MSCH2-Gal.

Table 3: The AE for Example 4.

y MSCH2-Gal [39]

0 0 0

0.2 6.52 ∗ 10−18 7.37 ∗ 10−7

0.4 3.07 ∗ 10−16 1.18 ∗ 10−6

0.6 4.26 ∗ 10−15 1.26 ∗ 10−6

0.8 2.63 ∗ 10−14 9.11 ∗ 10−7

1 1.04 ∗ 10−13 0

6 Conclusions

In this study, we introduce a new set of orthogonal polynomials

called MSCH2-Ps. These polynomials are generated by shifting

the second kind of Chebyshev polynomials. The paper

investigates and proves some meaningful relationships of

MSCH2-Ps before constructing the operational matrix of the kth

derivative. The resulting matrix is then used with the Galerkin

and Tau methods to solve even-order BVPS. The accuracy and

efficiency of the presented methods are demonstrated through

the successful solution of several even-order BVPs, with results

compared to those obtained using other techniques.
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