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Abstract: Wolbachia-based control for the reduction of arboviruses transmitted by Aedes aegypti mosquito is often designed to

thoroughly wipe out the wild population replacing it by Wolbachia-carrying individuals. Overall, there has been no focus on plans

looking for establishing the coexistence of these populations sharing the same locality. Holding repeated replacement interventions

could lead us in a long-term to a possible eradication scenario for this species in its natural state. Nevertheless, annihilating species has

been a subject of great controversy and qualms among conservative scientists, since there is no warranty of safeguarding the ecological

balance and human welfare. Taking this into account, we explore the application of two non-classical techniques for optimal control

proposition, Feedback (Exact) Linearization and Genetic Algorithm, to a system composed of Wolbachia-carrying and wild Aedes

aegypti populations aiming to achieve the coexistence equilibrium. The Feedback Linearization technique is used to provide a control

law by which one rules the releases of Wolbachia-carrying mosquitoes so that the system solution locally asymptotically stabilizes around

the coexistence steady-state. In addition, the Genetic Algorithm is used to propose a control strategy to be introduced in a worst-case

scenario, when the wild population is at the level of the carrying-capacity without the presence of Wolbachia-carrying mosquitoes.

Remarkably, the presented strategy is very interesting because it consists in applying the control with higher intensity in the early days

and fairly low as the solution approaches the coexistence equilibrium. Furthermore, the control can be temporarily interrupted, reducing

the costs to zero for a considerable length of time.
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1 Introduction

The control of insect population through
environmental-friendly techniques is an old subject of
research that has been growing in importance within the
context of agroecosystem and epidemiology [1,2], partly
for the sake of resistance to pesticides arising in
agricultural pests and human disease vectors worldwide
[3,4,5]. Due to its broad geographic distribution and the
ability to transmit several diseases, the Aedes mosquito is
one of the main targets for vector control [6]. Among the
arboviruses transmitted by this genus are Dengue, Yellow
fever, Zika, Murray Valley, La Crosse, Chikungunya, and
Rift Valley fever [7,8,9]. For most of them, an efficient
and safe vaccine is not available yet, and although a lot of
effort has been done to control the mosquito population,
the current strategies are proving inadequate [10,11,12].
Several factors such as climate change, urbanization,
connectivity, poverty, land use and land cover change,

behavior, and chemical resistance of this mosquito are
associated with the failure of vector control efforts [13,14,
15].

Consequently, the idea of integrated intervention for
insect-borne diseases is gaining attention. Focusing on
Dengue and Aedes mosquito, for example, the identified
bottlenecks are (i) assessment of current vector control
tools and those under development, and (ii) how to
combine the best vector control options with effective
DENV vaccines [16]. In this context, a novel and
promising control technique is based on the release of
Wolbachia-carrying mosquitoes. While this
endosymbiotic bacterium can be naturally found on Aedes

albopictus, the presence of it on Aedes aegypti is still
under debate [17]. Wolbachia is maternally inherited and
has an astonishing capability to manipulate host
reproduction. Four reproductive manipulation phenotypes
are described as caused by this bacterium: cytoplasmic
incompatibility, male killing, parthenogenesis induction,

∗ Corresponding author e-mail: antone.santos@unesp.br

© 2023 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/170320


522 A. S. Benedito et al.: Establishing the Coexistence of Wolbachia-Carrying and Wild Aedes...

and feminization [18]. All of them provide infected female
hosts with a reproductive advantage relative to uninfected
females. Artificial infection of mosquito Aedes is done by
embryonic microinjection of Wolbachia-infected
cytoplasm or Wolbachia purified from infected insect
hosts, and more likely to be successful when the donor
and recipient organisms are closely related. Before
releasing Wolbachia-carrying mosquitoes on the field, the
power of Wolbachia strains to generate viral blockage and
its influence on host fitness have to be assessed [19].

Few mathematical models have addressed the
suppression of both populations using some control
technique [20,21], while many others explore the
replacement of the wild Aedes aegypti population by
Wolbachia-carrying individuals [22,23,24,25]. Holding
repeated replacement interventions could lead us in a
long-term to a possible eradication scenario for this
species in its natural state. Nevertheless, annihilating
species has been a subject of great controversy and
qualms among conservative scientists, since there is no
warranty of safeguarding the ecological balance and
human welfare. To our knowledge, there is no work in the
literature focusing on a coexistence scenario of both
populations, since this is generally unstable when perfect
maternal inheritance, unstructured panmictic host
population, and high CI-driven competition are
considered. Thus, we addressed the nonlinear model
presented in [24] attempting to apply the feedback
linearization technique in order to achieve the coexistence
of Wolbachia-carrying and wild Aedes aegypti

populations with a decreasing control effort.
The feedback linearization technique turns the

dynamics of a nonlinear system into linear dynamics by
means of nonlinear feedback of the states or outputs [26,
27]. One of its several applications is to provide a control
law to "force" the local asymptotic stability of unstable
steady states, which we intend to handle here. This
methodology has been employed efficiently in several
application fields such as ballistics, robotics, aeronautics,
medicine, pharmacy, chemical industry, and others [26,
27]. Going further than [28] that already used this
technique to Aedes aegypti population control, our paper
presents the first research based on both feedback
linearization technique and Wolbachia bacterium for that
purpose.

In short, we propose in this work a biocontrol strategy
based on Wolbachia to promote the coexistence of wild
and Wolbachia-carrying Aedes aegypti mosquitoes. The
feedback linearization technique applied to a dynamical
system provides both a mathematical expression for a
controller and the necessary conditions so that it can keep
the intended coexistence. Depending on the wild
population size, an extra control will be primarily
required to provide an appropriate level where the usage
of the feedback linearization control is effective.

This paper is organized as follows. Section 2 presents
the model proposed by [24] for the mosquito population
dynamics. Section 3 approaches the feedback linearization

technique stressing the input-output type. In Section 4, the
feedback linearization is applied to the model and a control
law for the coexistence steady state is determined. Section
5 presents an optimization model to obtain an extra control
to then implement effectively the control law. In addition,
a genetic algorithm is proposed to solve the optimization
model by reducing as much as possible both the application
period and the total cost. Finally, computational results are
discussed.

2 On the model dynamics

Let F := F(t) and W := W(t) be state variables describing
respectively the number of Wolbachia-free and
Wolbachia-carrying adult female mosquitoes at each time
t. The interaction between the populations can be
modeled by

ÛF(t) = f1 (F(t),W(t))

ÛW(t) = f2 (F(t),W(t)) + u(t), t > 0,
(1)

where u(t) is a non-negative function standing for the
control (number of Wolbachia-carrying mosquitoes to be
released on a day t at a target locality) [24]. The functions
fi (F,W) , i = 1, 2, are defined as

f1 (F,W) =
(
φ f − r f

K f
(F +W)

)
F
(
F
K0
− 1

)
− δf F,

f2 (F,W) =
(
φw − rw

Kw
(F +W)

)
W − δwW,

(2)

where φ j, δj, rj = φ j − δj (with j = f ,w corresponding,
sequentially, to the Wolbachia-free and
Wolbachia-carrying population) denote the natural birth
and death rates of adult female mosquitoes in absence of
the density dependence and the intrinsic growth rate of
female mosquitoes in absence of the density dependence,
respectively. In turn, K f is a parameter related to the wild
carrying capacity and Kw represents the
Wolbachia-infected carrying capacity itself. The term(

F
K0
− 1

)
, with K0 associated to the wild population size

when the infection frequency reaches its steady state,
includes an undercrowding term on the recruitment of the
Wolbachia-free population (which together with the
others terms will model the Allee-effect) coming from the
fact that only mating among Wolbachia-free mosquitoes
produces Wolbachia-free offspring due to cytoplasmic
incompatibility (CI). Therefore, when the uninfected
population is small (F < K0), few individuals will be
recruited for the new generation, emulating the effect of
CI which guarantees that only mating between uninfected
mosquitoes produces viable eggs. Observe that this is not
true for the female Wolbachia-carrying mosquitoes, which
can mate with infected or uninfected male mosquitoes;
thus, this term is not present on f2. Furthermore, the
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model considers both perfect/efficient maternal
transmission and host reproductive manipulation (CI).
Regarding equations (1) and (2), in the absence of control
(i.e. u(t) = 0, ∀t > 0) and interaction between the
populations (i.e. f1(F, 0) and f2(0,W)) the dynamics of F

and W will be driven by a logistic equation and by a
strong Allee-effect, respectively. Lastly, although the
proposed model does not comprise explicitly the
sterilizing effect on infected mosquitoes caused by the
sperm-egg incompatibility, it reproduces the results
obtained when CI is explicitly modeled [25].

Ignoring any control and considering
φw < φ f , rw < rf , δw > δf , φ f > δf and φw > δw
(which is biologically reasonable, since the first three
inequalities mean that the bacteria impact negatively the
infected mosquito fitness, and the two last ones are needed
to ensure that birth overcomes death), the dynamical
system (1) has five steady states (F̄, W̄):

a) the trivial one (0, 0), where both mosquito populations
go to extinction, which is always unstable;

b) one nodal repeller (Kb, 0) where Kb > 0 indicates the
minimum viable population size of uninfected
mosquitoes

Kb =
rf K0 + φ f K f −

√
∆

2rf
, where

∆ = (rf K0 + φ f K f )2 − 4rf K0K f (φ f + δf );
c) one saddle point (Fc,Wc) of unstable coexistence of

both mosquito populations with

Fc =
K0

[
φ f

(
K f − Kw

)
+ δf

(
K f + Kw

)]

φ f
(
K f − Kw

)
+ δf Kw

,

and Wc = Kw − Fc ;

d) two nodal attractors (0,Kw) and (K∗, 0), where K∗ >
K f defines the carrying capacity of wild females, and

K∗ =
rf K0 + φ f K f +

√
∆

2rf
.

Relying exclusively upon the initial conditions, just one
of these steady states can be reached:

i. If F(0) > Kb and W(0) > 0 then
(F(∞),W(∞)) = (K∗, 0). This steady state
corresponds to the persistence of wild mosquitoes
and extinction of Wolbachia-carriers.

ii. If F(0) < Kb and W(0) > 0 then
(F(∞),W(∞)) = (0,Kw). This steady state
corresponds to the persistence of
Wolbachia-carriers and extinction of wild
mosquitoes.

Observe that Kb depends on the birth and death rates and
on the carrying capacities.

In [24], it is assumed that Kw < K f , and a control
strategy is used to bring the solution from (K∗, 0) to

(0,Kw), but there was no intervention towards (Fc,Wc)
due to its instability. With this in view, we want to find a
control function to bring the solution of system (1) to this
coexistence point, avoiding the total suppression of the
wild Aedes aegypti population and assuring the
permanence of Wolbachia infection in a target area.
Additionally, we will try to find both the optimal
(minimum) application period and total cost (associated
with the number of released mosquitoes) to achieve it. For
further details about the calculation of the equilibrium
points and their stability (by analytical or numerical
techniques), we refer to [24].

3 Feedback Linearization Technique

Essentially, exact feedback linearization relies on
algebraically convert the dynamics of a nonlinear system
into a (fully or partly) linear system, thus allowing the
application of linear control techniques. Compared to the
classical Taylor series (or Jacobian) linearization, it has
the following advantages:

i. potential global validity, i.e. the linearization holds to
the entire state space domain (other than possible
singularity points);

ii. feedback and exact state transformations, instead of
linear approximations of the system dynamics.

Another important feature of this technique is getting
a mathematical expression, depending on some
parameters, which may be optimized based on intended
objectives (minimizing control cost, application time, or
maximizing the system performance, etc.) to obtain an
optimal control of the system [26,27].

Feedback linearization may be of two types: input-state
and input-output linearization. In this paper, we focus on the
input-output linearization of single-input nonlinear systems
described by the state space representation

Ûx = f(x) + g(x) u
y = h(x) (3)

where x ∈ Rn is the state vector, y is the system output,
u is the scalar control input and f, g : D ⊆ Rn → Rn are
smooth vector fields.

Basically, the input-output linearization entails two
steps: (i) to differentiate the output function y repetitively
until the input u comes up and (ii) design u in order to
remove the nonlinearities. Step (ii) is only possible when
the system relative degree (r), which stands for the
number of differentiations in step (i), is defined.
Necessarily, the relative degree does not exceed the
system order n, i.e. r ≤ n, and if r = n the input-output
linearization produces an input-state linearization.
Remarkably, the input-output technique converts the
nonlinear system (3) into a linear observable subsystem
and a nonlinear unobservable subsystem (also called
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internal dynamics), such that only the former is changed
by the control law.

Let us detail what goes on when r < n. In the state
space, consider a region (an open connected set) Ωx.
Following the notation of differential geometry, the
process of repeated differentiation starts with

Ûy = ∇h(f + gu) = Lf h(x) + Lg h(x) u

where Lih, i = {f, g}, represents the Lie derivative of h

with respect to i.
If Lg h(x) , 0 for some x = x0 in Ωx, then, by

continuity, that relation is valid in a finite neighborhood Ω
of x0. In Ω, the input transformation

u =
1

Lg h
(−Lf h + ν) ,

where ν is the external reference input, results in a linear
relation between y and ν, namely Ûy = ν.

If Lg h(x) = 0 for all x in Ωx, it is possible to
differentiate Ûy to get

Üy = L2
f h(x) + Lg Lf h(x) u.

If again Lg h(x) = 0 for all x in Ωx, we shall differentiate
again and again

y
(i)
= Li

f h(x) + Lg Li−1
f h(x) u

until for some r

Lg Lr−1
f h(x) , 0.

for some x = x0 in Ωx. Then, by continuity, the above
relation is verified in a finite neighborhood Ω of x0. In Ωx,
the control law

u =
1

Lg Lr−1
f

h

(
−Lr

f h + ν
)

(4)

applied to

y
(r)
= Lr

f h(x) + Lg Lr−1
f h(x) u (5)

leads to the linear relation

y
(r)
= ν. (6)

Isidori [26] observes that on the linear system thus
obtained one can impose the external reference input ν in
order to assign a specific set of eigenvalues or to satisfy an
optimality criterion.

If r is defined and r < n, it is possible to get more formal
notions of the internal dynamics and zero-dynamics (see
definition later) by transforming the nonlinear system (3)
into the so-called “normal form”, wherein y, Ûy, . . . , y(r−1)

are part of the new state components. Letting

µ =
[
µ1 µ2 · · · µr

]T
=

[
y Ûy · · · y(r−1) ]T , (7)

in a neighborhood of a point x0, the normal form may be
set as

Ûµ =



µ2

. . . .

. . . .
µr

a(µ,Ψ) + b(µ,Ψ) u


ÛΨ = w(µ,Ψ)
y = µ1.

(8)

The nonlinear system (3) can only be transformed into
the normal form (8) if such a coordinate transformation
exists and it is a true state transformation. Equivalently, a
(local) diffeomorphism

φ(x) =
[
µ1 . . . µr Ψ1 . . . Ψn−r

]T
(9)

must be conceivable so that (8) is verified.
An important step is determining the vector field Ψ to

complete the transformation into a normal form. This is
achieved by solving the following set of partial differential
equations in Ψj :

∇Ψj g =
∂Ψj

∂x
g = 0, 1 ≤ j ≤ n − r, (10)

whence it immediately follows that Ψ := Ψ(x) and hence
the equations ÛΨ = w(µ,Ψ) in (8) are ultimately determined
by using the system (3) equations.

The internal dynamics in the input-output linearization
correspond to the (n − r) equations ÛΨ = w(µ,Ψ) of the
normal form and represent the unobservable dynamics of
the system (for more information, see [26,27]).

The effectiveness of the control design relies upon the
stability of the internal dynamics, which can be
determined more easily by examining the stability of the
zero-dynamics, defined to be the internal dynamics of the

system when the system output is kept at zero by the input.
After the normal form (8), the zero dynamics are
described by

Ûµ = 0

ÛΨ = w(0,Ψ).
(11)

Although the input-output linearization is motivated
in the context of output tracking, it can also be applied
to stabilization problems. Let us see how it works in this
regard. Assume that in (6) we let

ν = −qr−1y
(r−1) − . . . − q1 Ûy − q0y, (12)

where the coefficients qi are chosen such that the
polynomial

Q(p) = pr + qr−1pr−1
+ . . . .. + q1p + q0 (13)

has all its roots strictly in the left-half plane. Then, the
actual control input u can be written from (4) as

u(x) = 1

LgLr−1
f

y

[
−Lr

f y − qr−1y
(r−1) − . . . − q1 Ûy − q0y

]
.

(14)
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Finally, since the zero-dynamics are asymptotically
stable, the Slotine theorem [27] ensures that the control
law (14) locally stabilizes the whole system.

Next, a control law for the trivial solution is determined
by applying the input-state linearization technique to the
system (1). A suitable translation of it produces the control
law for any non-trivial equilibrium point, what we will do
for the coexistence equilibrium point (Fc,Wc).

4 Input-Output Linearization on the system

Setting a system output as a linear combination of the states

y = aF + bW, (15)

with a and b constants, the mathematical model (1) can be
written as

[ ÛF
ÛW

]
=

[
f1 (F,W)
f2 (F,W)

]
+ g u(t), (16)

where g = [0 1]T .

4.1 Control law for the trivial steady state

By deriving one time (r = 1) the output equation (15), the
following direct relation between the input u and the output
y may be found:

Ûy = a f1 (F,W) + b f2 (F,W) + bu(t). (17)

Thus, we determine the control input to locally
asymptotically stabilize the system around the origin from
the expression which cancels the nonlinearity into (17):

u0 = −
1

b
[a f1 (F,W) + b f2 (F,W) − ν] , (18)

where ν = −q0y = −q0(aF+bW) and q0 is properly chosen
so that the polynomial Q(p) = p + q0 has negative roots,
i.e. q0 > 0.

Now, let us put the system into the normal form and get
its internal dynamics.

4.1.1 Normal form of the system

As the relative degree is r = 1, the system conversion to
the normal form is done by a diffeomorphism (9) whose
expression is:

Φ =
[
µ1 Ψ1

]T
(19)

where µ1 = y and Ψ1 is solution of the partial differential
equation (PDE) ∇Ψ1.g = 0. Among all the possibilities,
we will try the simplest assignment Ψ1 = F . Therefore,
from (19) and (15):

Φ =
[
µ1 Ψ1

]T
=

[
aF + bW F

]T
. (20)

By analyzing the Jacobian of (20), we conclude thatΦ
is a diffeomorphism if a ∈ R, b ∈ R∗, ∀F,W . Moreover,
the inverse diffeomorphism is

F = Ψ1,

W =
µ1−aΨ1

b
.

(21)

Introducing the relations (20)-(21) into (8), we get the
normal form to the system (1):

Ûµ1 = a
[ (
φ f −

r f
K f

(
Ψ1 +

µ1−aΨ1

b

))
Ψ1

(
Ψ1

K0
− 1

)
− δfΨ1

]
+

b
[(
φw − rw

Kw

(
Ψ1 +

µ1−aΨ1

b

))
µ1−aΨ1

b
− δw µ1−aΨ1

b
+

u(t)
]
,

ÛΨ1 =

(
φ f − r f

K f

(
Ψ1 +

µ1−aΨ1

b

))
Ψ1

(
Ψ1

K0
− 1

)
− δfΨ1,

y = µ1.
(22)

4.1.2 Asymptotic stability of the zero dynamics

The zero dynamics result from (22) by assuming µ1 =

0, ∀t:

ÛΨ1 =

(
φ f − r f

K f

(
Ψ1 − aΨ1

b

))
Ψ1

(
Ψ1

K0
− 1

)
− δfΨ1,

y = 0.
(23)

Also, Ψ∗
1
= 0 is a critical point of the zero dynamics (23)

whose characteristic equation is given by:

λ + φ f + δf = 0, (24)

with a single eigenvalue

λ = −(φ f + δf ). (25)

Therefore, the zero dynamics (23) are asymptotically stable
around Ψ∗

1
= 0 if and only if

φ f , δf > 0, (26)

leading to the local asymptotic stability of system (1)
around the origin, by the Slotine theorem [27], when the
control is applied according to Eq. (18).

4.2 Control law for the nonzero steady state

After translating the coexistence steady state (Fc,Wc) to
the origin by the coordinate transformation

z1 = F − Fc,

z2 = W −Wc,
(27)
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the control law to locally asymptotically stabilize the
populations around (Fc,Wc) is obtained from (18) as

uc = −
a

b
f1(z1+Fc, z2+Wc)− f2(z1+Fc, z2+Wc)+

ν

b
, (28)

with

ν = −q0 [a(z1 + Fc) + b(z2 +Wc)] , q0 > 0. (29)

According to [24], the instantaneous growth of wild

females should be negative
(
dF
dt
< 0

)
when F(t) < Kb

and positive
(
dF
dt
> 0

)
when F(t) > Kb (see the

corresponding phase diagram in [24], Figure 1 on page
1015). Since the control law (18) is state-dependent and
acts directly on the solution component W(t) and not F(t),
it may not be sufficiently large to bring the solution to the
origin if F(0) > Kb . Hence, (28) can fail to drive the
solution to the coexistence equilibrium point (Fc,Wc) if
the following condition to the system translated by (27) is
not fulfilled:

z1(0) < Kb =⇒ F(0) − F(c) < Kb

=⇒ F(0) < Fc + Kb .
(30)

For the possible scenario where the wild population is
above the threshold Fc + Kb , we determined an optimized
pattern to release Wolbachia-carrying mosquitoes pushing
the wild population under it to successfully apply uc. In
the following section, this additional strategy based on a
genetic algorithm solution is presented. Firstly, the
optimization problem is set up; after, a sub-optimal
solution is obtained.

5 Heuristic approach

As discussed earlier, when F(0) > Fc + Kb , the uc-driven
control is not able to make the solution converge to the
coexistence equilibrium. Thus, we want to find a strategy
to lead the solution component F(t) below the threshold
Fc + Kb. From that point on, the uc-driven control shall
work such as it is meant to do.

Let u(t) be the decision variable describing the
number of Wolbachia-carriers to be released on a day t at
a target locality. Also, t ∈ [0,T ] and u(t) ∈ [0,wmax],
where T is the total amount of days of a control
application and wmax is the maximum number of
Wolbachia-carrying females available for a daily release,
naturally depending on the production capacity of a
laboratory where Wolbachia-carriers are raised. We want
to determine u∗(t) which satisfies the optimization
problem described below. To solve it, a Genetic Algorithm

(GA) is proposed, hence a discretized form is demanded.

Minimize J =

T∑

t=1

u(t) (31)

Subject to

System (1) (32)

F(T ) < Fc + Kb (33)

W(T ) < Wc (34)

F(0) = K∗ (35)

W(0) = 0 (36)

F(t), W(t) ≥ 0 (37)

0 ≤ u(t) ≤ wmax (38)

0 ≤ t ≤ T (39)

The functional (31) is related to the control applied in
the time interval [0,T ]. The constraint (34) guarantees
positive values of uc, which will be applied after u∗(t), for
t > T . If W(t) is smaller than Wc , more individuals are
needed to approach Wc , otherwise uc would assume
negative values representing the death of mosquitoes,
which is inappropriate after its biological definition as
mosquito release. Constraints (35)-(36) correspond to the
worst scenario where a wild (Wolbachia-free) mosquito
population is established in the target area free of
Wolbachia-carrying individuals [24]. Ultimately, the
constraint (37) establishes the non-negativity of the state
variables ensuring their biological meaning.

Let us see a brief description of the Genetic
Algorithm used for solving the previous problem (a
complete explanation of genetic algorithm features may
be found in [29]).

5.1 Genetic Algorithm

The metaheuristics Genetic Algorithm is based on
Charles Darwin’s theory of natural selection and was
originally proposed by J. H. Holland in 1992 [30]. In this
algorithm, a population of N individuals is created, where
each one constitutes a solution of the optimization
problem. In general, these individuals are represented by a
matrix, the so-called chromosome of the individual. At
each generation (iteration), the individuals are evaluated
with regard to their fitness (usually based on the cost
function) and come across genetic operators which might
promote an improvement of solutions: selection,
crossover, and mutation. The selection of individuals who
will be crossed is performed by a randomized process in
which fitter individuals have a higher probability of being
chosen. From the several existent methods [31], we used
the Tournament Method due to its simplicity, where the
fitter of every two individuals randomly taken is chosen
and stored in a mating pool. Two individuals (father and
mother) from the mating pool are randomly selected for
crossover, which generates new individuals (children)
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through their genetic combination. Moreover, the
individuals have a low probability (usually until 0.05) of
undergoing mutation. This process favors population
diversity avoiding local convergence. After that, a new
population is created composed of the best individuals
from the previous population and those from the crossover
and mutation processes. In the new population, one or
more of the best individuals are to be identified or stored
(elite). It has been shown that elitism enables quicker
convergence to the global optimal solution [32]. These
genetic operators are repeated until a stopping condition is
satisfied (time, generation number, etc.). In the end, one
chooses the best solution for the final population (from
elite) as the solution of the optimization problem. Distinct
approaches to genetic operators determine different
Genetic Algorithms.

GAs are very efficient in searching for good quality
solutions, for a wide variety of optimization problems,
because they do not possess many of the limitations found
in traditional methods [29]. In fact, GAs do not require a
well-behaved objective function, and they can be adapted
to produce feasible solutions, thus being suitable to
optimization problems with a broad range of objective
functions and constraints. They have also the advantage of
determining a discretized solution that is well-suited for
real-world application, as in the specific case analyzed in
this paper.

In this work, we define the chromosome structure of
an individual as a vector u with T elements, in which the
allele present in the tth gene u(t), t = 1, ...,T represents the
amount of control applied on the day t (Figure 1).

Fig. 1: Chromosome structure used in the GA, representing a

Wolbachia-based biocontrol strategy to be applied during T days.

The steps followed by the GA are:

1. Define the input parameters: number of generations
G, population size N , number L of individuals to be
selected (generally L ≤ 0.8N), mutation probability α
(usually α ≤ 0.05) and the chromosome size T .

2. Initial Population: Generate the initial population P

with N individuals as shown in Figure 1 and do PA← P

(PA is an auxiliary matrix) .
3. Evaluation: assess each individual (ind) of P by its

fitness Find .
4. Genetic operators: Repeat G times:

a) Selection: apply the selection criterion to the L

individuals to be crossed (tournament method);
b) Crossover: Perform crossover of the L selected

individuals as shown in Figure 2 (description
below). Store the new individuals in PA;

c) Mutation: Perform mutation of the chosen
individuals for it (explained below) and store the
new individuals in PA. Evaluate all individuals
generated through Crossover and Mutation
operators according to step 3;

d) New Population: Create a new population P by
retaining the N best-fitted individuals from PA and
update PA: do P ← {}, P ← {N best individuals
from PA}, PA ← {} and PA ← P in a row. This
way of storing the new individuals ensures that elite
individuals are not lost.

5. Output: the solution u∗ is the best solution of P.

The initial population was randomly generated. Each
individual ind was built with one integer w randomly
generated in [0,wmax], where ind = 1, . . . , N and wmax is
the maximum number of Wolbachia-carrying mosquitoes
available for each daily release. In this way, the
individuals of the initial population were of the form
uind = [w,w, ..., w]. Applying the genetic operators
changes the composition of the individuals.

The evaluation of any individual ind was based on the
following functional

Find = Jind + pind, ind = 1, 2, . . . , N, (40)

where Jind is the value of the functional (31) and pind
penalizes the infeasibility of the individual ind (when it
does not satisfy the constraints (33)-(34)).

Selecting was carried out by tournament. The fitter
among two randomly selected individuals of P gets in the
Mating Pool. This process is repeated L times (L ≤ N).

For crossover, two individuals (parents) from the
Mating Pool are taken and one draws two random integers
for chromosome cut-off points: r1 ∈ [1,T − 1] and
r2 ∈ [r1,T − 1]. These numbers are used to crossover the
genetic charge of parents and generate two new
individuals (Figure 2).

Fig. 2: Two-point crossover process.

As for the mutation operator, the probability of an
individual mutating is α (usually α = 0.05). A number
r ∈ [0, 1] is drawn and if r ≤ α the individual mutates,
otherwise nothing changes. To the mutation of the
individual uind one draws three random integer numbers:
rind1 ∈ [1,T − 1], rind2 ∈ [rind1,T − 1] and
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wind ∈ [0,wmax]. Ultimately, the genetic load from rind1

to rind2 is replaced by wind generating the mutated
individual uindm (Figure 3).

Fig. 3: Mutation process.

The proposed GA was able to determine the
sub-optimal control u∗ for a given time period T . To
minimize T , one suggests studying the trade-off between
the objectives of minimizing T and minimizing J(u,T ).
For this, one fixes ever lower values of T solving the
optimization problem (31)-(39) until finding a minimal
value T ∗ to which there exists a solution. This technique is
similar to the ǫ-restricted method [33], in which T ≤ ǫ is
added to the constraint set, and then one solves the model
for fixed values of the upper bound ǫ .

6 Numerical simulations and discussion

To illustrate the proposed methodology, computational
tests were carried out aiming to determine a control
strategy based on the releasing of Wolbachia-carrying
mosquitoes (u(t), system (1)) in order to promote the
coexistence of both Wolbachia-free (wild) and
Wolbachia-carrying mosquitoes. Following the earlier
explanation from Subsection 4.2, there may be two types
of strategy depending on the initial size of the wild
population F(0):

–one-control strategy: if F(0) < Fc + Kb, the uc-driven
control (given by equation (28)) is enough to bring the
system solution to the coexistence point;

–two-control strategy: if F(0) ≥ Fc + Kb , u∗ is applied
until t = T ∗ in order to have F(T ∗) < Fc + Kb. Then,
the uc-driven control is triggered on.

Table 1 shows the parameter set [24] regarding to
wMelPop strain for the model (1) and for uc (given by
(28)) used in the simulations; φ f , φw, δf , δw, rf , rw in

[days]−1, and K f ,Kw,K0 in [individual]. The parameters
a, b, and q0 have no units. For this parameter setting,
Fc = 40.943, Wc = 259.06, Kb = 33.327 and
K∗ = 413.17.

To determine u∗ and T ∗, the optimization model (31)-
(39) was solved by using the proposed GA (Section 5),
whose parameter values are given in Table 2. The chosen
value for the upper bound wmax = 400 was never reached.

GNU Octave 6.3.0 was used to solve both the ODE
system (1) and the optimization problem (31)-(39).

Table 1: Parameter set [24] for the system (1) and for uc (28)

used in all simulations

Parameter Range

φ f = 0.32667 0.28 − 0.38

φw = 0.21333 0.18 − 0.25

δf = 0.03333 1/8 − 1/42

δw = 0.06666 2/8 − 2/42

K f = 374

Kw = 300

K0 = 30

a = 0.1

b = 10

q0 = 0.5

Table 2: Parameter set for the GA described in Section 5.1

Parameter G N L α

Value 50 100 0.8N 0.5

6.1 One-control strategy

Firstly, we illustrate the control law uc (given by (28))
efficacy to promote alone the asymptotic local stability of
the coexistence steady state when F(0) < Fc + Kb (see
Subsection 4.2). For an initial wild population
F(0) = Fc + Kb − 1 < Fc + Kb , Figure 4 (top chart)
exhibits the corresponding uc-driven control suggesting a
large release of Wolbachia-carrying females on the first
days and virtually none from about the 10th day. Figure 4
(bottom chart) shows that with such control, both
populations converge to the coexistence steady state
(Fc,Wc) just over 20 days.

The shape of the uc-driven control curve, derived from
the asymptotic convergence which it yields, could lead to
the misconception that it is possible to permanently stop
the intervention at some point. As we shall see, the control
may only be interrupted temporarily, but for a considerable
time span.

6.2 Two-control strategy

Now, we show the combination of both the sub-optimal u∗

and uc-driven controls to achieve the asymptotic stability of
the coexistence equilibrium (Fc,Wc)when F(0) > Fc+Kb.
Henceforth, we approach the worst scenario expected in
nature [24] with the wild female Aedes aegypti population
at its upmost level F(0) = K∗ and no prior Wolbachia-
carrying individuals. As discussed in Subsection 4.2, just
the uc usage would not work to drive the population to
the coexistence equilibrium. Let us see how u∗ and T ∗ are
obtained.

6.2.1 Getting u∗ and T ∗ through GA

The minimum application time T ∗ = 22 days was reached
by studying the trade-off between minimizing both T and
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Fig. 4: Temporal evolution of the uc-driven control (28)

accounting for daily releases of Wolbachia-carrying individuals

(top); trajectories of system (1) under uc application, given the

initial condition F(0) = Fc +Kb−1 < Fc +Kb and the parameter

set displayed in Table 1 (bottom).

J(u,T ). The initial value T = 63 was reduced until the GA
was unable to find a feasible solution to the optimization
problem (31)-(39). Interestingly, shorter periods of control
application do not imply higher costs, but rather we see
a quasi-linear increasing tendency of the total amount of
Wolbachia-carrying mosquitoes to be released as the time
span rises (Figure 5).

Figure 6 shows the convergence study for the
metaheuristic GA. It could minimize the functional (31)
in 60 generations (iterations). As there was no cost
improvement thereafter, the algorithm ceased the search
with 100 generations.

For the minimum period T ∗ = 22 days, the
sub-optimal solution u∗ suggests a massive release of
Wolbachia-carrying females for three days (2nd to 4th)
followed by a sharp control reduction (Figure 7). From
day 5, the population dynamics is practically driven by the
interaction between infected and non-infected mosquitoes.
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Fig. 5: Cost of the sub-optimal control u∗ versus application time

(during which the Wolbachia-carrying mosquitoes are released).

Each point corresponds to the sub-optimal solution obtained via

GA algorithm.
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to T = 33 days.

0 5 10 15 20 25
0

25

50

75

100

125

150

175

200

225

time (days)

c
o
n
tr

o
l f

ro
m

 G
A

u*

Fig. 7: Sub-optimal control u∗ to the optimization problem (31)-

(39) for the shortest possible time span T∗ = 22 days.

© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


530 A. S. Benedito et al.: Establishing the Coexistence of Wolbachia-Carrying and Wild Aedes...

While running the GA, one observed a few feasible
solutions to the optimization problem (31)-(39). Thus, a
sensitivity analysis was performed in order to investigate
if small variations in the sub-optimal solution incur a loss
of feasibility related to the conditions (33) and (34). The
analysis consisted of making randomized perturbations
([u∗(t) − 4, u∗(t) + 4]) on the values of u∗, t ∈ [1,T ∗],
T ∗ = 22 days, and verify the impact in terms of still
fulfilling the conditions (33) and (34) (Figure 8).
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Fig. 8: Sensitivity analysis as for small perturbations in the control

u∗ and consequent disturbance in meeting the conditions (33)

and (34) from the optimization model: feasibility shift due to

perturbations in u∗ for t ∈ [1, 11] (blue) and in u∗ for t ∈ [12, 22]
(pink) (top); value of J(u,T∗) in which u is a feasible disturbance

of u∗ (bottom).

Figure 8 (top chart) shows the coordinates
(F(T ∗),W(T ∗)) of u∗ (sub-optimal control), a part of the
feasibility region (which comprises 0 ≤ F(T ∗) < Fc and
0 ≤ W(T ∗) < Fc), and the impact of small perturbations
in u∗ over the solution of the system. We can see that
small perturbations in the daily release of
Wolbachia-carrying mosquitoes cause a great variation in
the values of (F(T ∗),W(T ∗)), which might lead the
solution to a feasibility loss concerning the conditions

(33) and (34) or to an increase of the control cost
associated to the functional J. Furthermore, Figure 8 (top
chart) suggests that when the perturbations are on the first
11 days, there is a high change in the amount of wild and
Wolbachia-carrying females at the final time T ∗, while
perturbations from day 12 to day 22 imply greater
variation mainly in Wolbachia-carrying females. Figure 8
(bottom chart) indicates that the control cost is greater
when perturbations in u∗ occur at t ∈ [1, 11] than at
t ∈ [12, 22], regardless of the iteration number. The fact
that all perturbed solutions have a large cost compared to
that of u∗ indicates that the GA has a good performance in
searching for the optimal solution.

Figure 9 (top chart) shows the control strategy
composed of the sub-optimal control u∗ along 22 days
followed by the uc-driven releases. As we observe in
Figure 9 (bottom chart), from about day 45, the uc-driven
control becomes rather low and the solution apparently
“stabilizes” at the coexistence point. Both u∗ and
uc-driven controls point out a higher intensity at the
beginning of their respective applications, while much
less effort is needed at any other moment.

6.3 General remarks

In both presented cases, it is important to highlight that if
the uc-driven control is disabled at a time t the solution
shall converge to (K∗, 0) since F(t) ≈ Fc > Kb and W(t) ≈
Wc ≈ Kw [24]. Retaking the scenario in Figure 9, we
stopped the uc-driven control from day 51 and the solution
slowly converged to this point (Figure 10).

Remarkably, after being close to the coexistence
equilibrium (Fc,Wc) one may turn off and on the
uc-driven control without leaving the feasibility region
(Figure 8) wherein uc application is effective (Figure 11).
For the parameter set used, the uc-driven control could be
turned off for a maximum of 44 days (from 51th to 94st

day) having to be retaken from then on (Figure 11). This
on-off process seems to be an attractive cost-saving
characteristic of our control strategy, mainly because
when the uc-driven control is reactivated, low and
short-term releases are needed to keep the population size
close to the coexistence equilibrium.

In conclusion, the proposed control strategy is quite
appealing from a practical point of view because it
consists in releasing Wolbachia-carrying mosquitoes in
larger amounts in the first days, significantly reducing
them as the solution approaches the coexistence point.
Afterward, the control can be interrupted temporarily,
reducing the costs to zero for a substantial length of time.
Differently from the approach of [24], we dealt with the
coexistence of both wild and Wolbachia-carrying
populations, providing through the feedback linearization
technique a way to achieve it, instead of replacing the wild
population by Wolbachia-carrying mosquitoes. Even
though there is no attested evidence that
Wolbachia-carrying mosquitoes may induce damage to
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Fig. 9: Temporal evolution of both u∗ (continuous line) and uc-

driven controls (dashed line) (top); trajectories of system (1) for

the initial condition F(0) = K∗, under application of the sub-

optimal control u∗ for t ∈ [0,T∗], T∗ = 22, (continuous line), and

the control law uc (28) from t = T∗ on (dashed line) (bottom).

Parameter values were taken from Table 1.
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Fig. 11: Temporal evolution of both u∗ (continuous line) and uc-

driven (dashed line) controls. The initial conditions are: F(0) =
K∗, W(0) = 0, and the parameters’ values were taken from Table 1

(top); trajectories of system (1) for the initial condition F(0) = K∗
under application of the sub-optimal control u∗ for t ∈ [0,T∗],
T∗ = 22, (continuous line), and the control law uc (28) for both

t ∈ (T∗, 50] and from t = 95 on (dashed line); no control was

applied for t ∈ [51, 94] (dotted line) (bottom).

the local ecosystems, such evidence may appear in the
future. In this context, the control method proposed here
looks more worthwhile, since it allows the recovery of the
wild mosquito population, unlike the technique proposed
in [24], which guarantees a complete population
replacement.

A limitation of the work proposed here is that the
discussed control is based on time-continuous application.
More realistic implementations of the feedback
linearization control law might be investigated by
considering discrete time, piecewise, or impulse
functions, for example. We intend to explore these
possibilities in future work.

7 Conclusion

This work readdressed a mathematical model describing
the population dynamics of Aedes aegypti composed by
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Wolbachia-free and Wolbachia-carrying individuals. In
the original paper [24], the equilibrium points and their
stability were performed, but the unstable steady state of
coexistence of the aforementioned populations was not
explored by the authors in their optimal control approach.
With this in view, our main goal was to design a control
intervention policy that relies on daily releases of
Wolbachia-carrying females, promoting within the
shortest possible period of time the invasion and
persistence of Wolbachia, and the coexistence of both
populations of Aedes aegypti mosquitoes. For this, a
generic control law was designed to assure the
stabilization of the coexistence equilibrium point through
the feedback linearization technique. The control
represents the number of Wolbachia-carriers to be
released on a given day at a target locality. Depending on
the number of Wolbachia-free mosquitoes, an additional
control, obtained here through a Genetic Algorithm,
should be applied before the control law implementation.
Remarkably, the presented strategy is rather attractive
because it consists in applying the control with higher
intensity in the first days and fairly low as the solution
approaches the coexistence point. Furthermore, the
control can be temporarily interrupted, reducing the costs
to zero for a considerable length of time. The results of
the computer simulations suggest that the presented
methodology has great potential as a tool for
decision-makers to keep the wild Aedes aegypti

population size at an acceptable level, hence containing
the transmission of arboviral diseases by this species.
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